
AD-RI56 Big ON THE LANCZOS METHOD FOR SOLVING SYMMETRIC LINEAR /
SYSTEMS WITH SEYERAL R..(U) YALE UNIV NEW HRYEN CT DEPT

OF COMPUTER SCIENCE Y SAD 13 JUN 85 YRLEU/DCS/RR-396

UNCLASSIFIED N@9@14-82-K-9i84 F/G 12/1i N

MEl'



3 111. 5 !l~ 1111125

JL4

I 11111-1.8IIIIN IIII IIIHA

MICROCOPY RESOLUTION TEST CHART

.NAJ 

l k )



Lnu

On the Lanzos Method for Solving

Symmetric Linear Systems with

Several Right-Hand-Sides

Youcef ad

. ~ ~~Technical Report YALEU /DCS/RR-398_ " b. -'T E'

YA\L,14 UIN 1 ,"IRSITIN

8 5 7 0 1 0 8 ,

C., D) ," )IK,

,, .0.0,.: . . - . . . - ., . :: . . . .. '. , . ., . . . . - . . : . , . . ,



Abstract

This paper analyses two methods based on the Lanczos algorithm for solving large sparse

symmetric linear systems with several right hand sides. The methods examined are suitable for

the case where the right sides are not too different from one another as is often the case in time

dependent or parameter dependent problems. We will show in particular that a modified Lanczos

algorithm, introduced by Parlett is in some sense equivalent to the block Lanctos algorithm.

On the Lanczos Method for Solving
Symmetric Linear Systems with

Several Right-Hand-Sides

Youcef Saad 1

Technical Report YALEU/DCS/RR-398

June 13, 1985

Contract N00014-82-K-0184

'Computer Science Department, Yale University, Box 2158, Yale Station, New Haven, CT 06520. This work was
y.rted in part by the Dept. Of Energy under Grant AC02-81ERIOgg6, in part by Army Research Office under

contract DAAG-4&0177 and in part by US Air Force Grant AFOSR-81-013



1. Introduction

In many applications one needs to solve several symmetric linear systems of the form

A 0 )  b() i-1,2..k. (1)

When all of the right hand sides are available simultaneously, then several block methods can be

successfully applied to (1), in particular the block Lanczos algorithm [5, 111, the block Stiefel

method [11, 121.

In practice it is often the case that the b(i)'s are not available at the same time, i.e. that a

given right hand side b(l) depends on the solutions x()j--,..i-1 of the previous systems. Then

the block methods are no longer applicable. For this common situation, Parlett [7] suggested to

use the Lanczos algorithm to solve the first system and to save the Lanczos vectors thus

generated in order to provide good approximate solutions to the subsequent systems. For

example, an approximate solution to the second linear system can be obtained by using a

projection (Galerkin) technique onto the Krylov subspace generated when solving the rst linear

system. We refer to this as the Lanczos-Galerkin projection procedure. The approximation

obtained from the Lanczos-Galerkin projection process alone niay not be sufficiently accurate and

a further refinement is often needed. A suitable and efficient way of improving the Lanczos-

Galerkin approximate solution is to use a special Lanczos process introduced by Parlett [71 which

consists of orthogonalizing the current Lanczos vector not only against the previous two vectors,

as is classically done, but also against the Lanczos vector of the previous Krylov subspace. We

will refer to this technique as the modified Lanczos algorithm.

The purpose of the present paper is to analyse these techniques, from the theoretical point of

view. We will establish an error bound which will show that the Lancos-Galerkin procedure will

provide a good accuracy under the condition that the residual vector of the new system is almost

contained in the previously generated Krylov subspace. We will also show that the modified

Lanczos algorithm is, in a certain sense, equivalent to a block-Lanczos method with a particular

initial system.

We will start by a brief presentation of the Galerkin projection methods based on the Lanczos

algorithm as described in [71. Then we will analyse the techniques from a theoretical point of

view and give a priori error bounds for the Lanczos-Galerkin method. Finally we will show the

relation with the block Lanczos method.
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2. The Lanezos algorithm for solving a linear system

In this section we briefly describe the Lanczos method for solving linear systems. Consider the

(single) linear system:

A x -b (2)

Suppose that a guess x0 to the solution is available and let r0 be its residual vector r0 - b-Ax0.

Then the Lanczos algorithm for solving (2) can be described as follows:

Algorithm:

Stage 1: Generate the Lanczoe Vectors

" Start: v1=ro/($:=1roII)

* For j-I,2..m do:

Compute:

a,:-(Avj,vj) (3)

+:- A, - av -j., ( 1V.o) (4)

01j+1 "----I i'+111 (5)

+1 :- +,/oi+ (8)

Stage 2: Form the approximate solution

x :- x0 + Vm T- 1 ($ei) (7)

where Vm - [v,v 2 ,..v.l and T m is the tridiagonal matrix:

at 02
02 &2"

To= (8)

In theory, the vectors v, computed from this process form an orthonormal basis of the Krylov

subspace K. m span(r0 ,Ar,..Am' r0). If we denote by Vm the matrix Vmm[vl,..vml then we

have VTAVm,-T which means that T, is nothing but the matrix representation of the section

of A in the Krylov subpace K. with respect to the basis V.. Furthermore, it is easily seen that



3

the Lancos algorithm realizes a projection process, i.e. a Galerkin process, onto the Krylov

subspace KM, see e.g. [7, 9]. In other words the approximate solution xm can be found by

expressing that it belongs to the affine subspace x0+K m and that its residual vector b-Ax m is

orthogonal to Km. Denoting by Pm the orthogonal projector onto K,? this means that the

Lanczos method solves the approximate problem:

Find x. E x0+Km such that:

Pm(b- Axm)=0 (9)

The approximation thus computed is identical with that provided by m steps of the conjugate

gradient (CG) method when A is positive definite [71. When A is not positive definite this

relation between the Lanczos algorithm and the CG method can be exploited to derive stable

generalizations of the CG algorithm to symmetric indefinite systems [6, 7, 2, 10].

A well known and troublesome misbehavior of the Lanezos algorithm is the loss of

orthogonality of the vi's. Fortunately, this does not prevent the method from converging but

often results in an important slow down. Parlett [7] and Simon [13] have made the important

observation that the fast convergence properties can be regained by resorting to different sorts of

partial reorthogonalizations. This important matter will be further discussed in the last section.

3. The Lanezos-Galerkin projection method

Consider now the two linear systems

A x' ) - b' )  i-1,2 (10)

and assume that m steps of the Lanczos algorithm described in the previous section have been

performed to solve the first system in a frst pass. We would like to use the information gathered

during the solution of the frst system to provide an approximation to the second system:

A x(2) - b(2).  (11)

Clearly, we assume that the vectors vi, i-1l,2... m as well as the tridiagonal matrix (8) have been

saved, possibly in some secondary storage.

Suppose that we have an initial guess x(2) to the solution of (11). Let r(2) be the residual vector0 0

of X(2), that is, r(2) - b(2}-Ax(2). A natural way of improving the approximation x(2) is by means0 0 0 0

of the Galerkin method onto the Krylov subspace K. generated for the solution of the first

system. This will yield an approximate solution i defined by:
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-X2) + VT-' VTr(2) X(2 +y (12)

which is obtained by solving the m-dimensional problem:

P,( b(2) - A z) = 0

or equivalently

VT( b(2 ) - Az) =0 (13)

for z belonging to the affine subspace x(2 +K.. We will refer to the above method as the

Lanczos-Galerkin process.

One important question concerning the approximation obtained from the above Lanczos-

Galerkin process is its accuracy. Let us first recall that when A is positive definite we can define

the A-'-norm of a vector as IuIA_1-(A-1x,x)1 / 2 and that the projection process described above

minimizes the A-'-norm of the residual vector over all vectors of the form x(2 + y where y

belongs to Km [41. In the following we denote by Pm the orthogonal projector onto K., where

Km is the Krylov subspace obtained from m steps of the Lanczoes algorithm for solving the first

system.

Proposition 1: Assume that A is symmetric positive definite with largest cigenvalue
X, and smallest eigenvalue XN* Then the approzimation I obtained from the Lanezos
Galerkin projection process (12) is such that

I1b(2 ) -A 1 hA-1 - 11 (IPm)S2 IA-1 + (14)

where
Il

I' < (15)
Tm("t)

in which -y + IN)/ (I1 - XN), a is the first component of PmA) in the basis
(uv~,,4 A- V, and Tm represents the Chebyehev polynomial of degree m of the
first kind.

Proof: The residual vector F - b(2) - A i is such that

F - b - A(x(2) + y)
0

0r2 -AY

where y is the vector of Km computed from equation (12). The residual F can be further

decomposed as:

F p r(2 ) - AY ) + (I-Pn)r( 2) (1)

Clearly, the projection method (12) also solves the system A y - Pmr(2 ) by the same Galerkin

/:.~~~~~~~~~ ~~~~~ 0.. .. .. . '. .. ,,.. ,.. .. :..i,.-, ., .. .... /i- .- .•. .



process. Hence the vector y also minimizes 11 P r(2) - A y IIA:.1 over all vectors y of Km. Next,

from (16) we have by the second triangle inequality:

III y 11A_1- (iPm)r() ,A-i I --. II Pmr(2) - AYhIA-, (17)
Let us set t(y) - 11 Pmr(2) - AyIIA-l, and write Pmr(2) as P r(2) - q(A)vl where q is a polynomial

of degree not exceeding m-i. Clearly, the scalar a defined in the proposition is the constant term

in the polynomial c i.e. a=q(O). Since y minimizes £(y) for y E Km , if we write y=4A)v,, and

define the polynomial p(X)-=q(X)-Xs(X), we see that

II Pmr(2) - A Y"A- - min j1 p(A)v 1IJA-1 (18)
0p E P... 00=0

where Pm-I represents the set of all polynomials p of degree <m-1. The above equality can be

rewritten as:

IPmrA) - A YIIA-s -IG I min II p(A)viIIiA-M 0 P ro- p(O)----

The last term of the right hand side is a classical factor in the theory of the conjugate gradient

method and a well-known upper bound for it is available (e.g. [21) and yields

1
II Pmr- -A YJIA-' < hal (19)

with -1 - (XI+)N)/(XI-)N). T&e result finally follows from inequality (19) and inequality

(17)0

Let us now interpret the result of the proposition. Notice that if r(2) belongs to the previous

Krylov subspace K., then the term 11 (l-Pm)r(2) 11A-i in the right hand side of (14) vanishes. The

proposition then indicates that in this case the method will provide a good accuracy when a is

not too large. In fact the accuracy will be of the same order as that obtained from m steps of the

regular conjugate gradient method. Note that if a-O then the term ( is zero. As a consequence

an extreme case where the new system can be ezactlV solved by the application of the projection

process would be when the two following conditions are fulfilled:

" (l-Pr) ) - 0, i.e. A) EKm

* and a-0, i.e. r 2 ) has no component in vJ;

The opposite extreme case is when the projection process leaves the starting approximate

solution x(2) unchanged. This happens when P r(A) - 0, i.e. when r(A) is orthogonal to Km In

0 . 0 0.r
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this case a = 0 and the proposition yields I1i IIA-1-i r(2)1A1 which is clearly true since (2)

More realistic situations arising in practice will lie somewhere between these two extremes. For

such general cases the proposition shows that the error consits in a 'small' part e and a 'large'

part 11 (1-Pm)r(2) IIA-i . The 'small' part is usually as small as would be obtained from m
'average' steps of the conjugate algorithm. The 'large' part depends essentially on the new system

and can be quite large as compared with e. Perhaps the most interesting and useful such

situations arise in time dependent, or more generally parameter dependent poblems, in which the

right hand sides b(), i-1,2,.. change very little. Then the system can be expected to be solved

relatively accurately because the 'large' term I(I-Pm)r(2)}AI becomes small.

When II(l-Pm) r(2) IIA_ is large, then it is likely that the error in the A-'-norm sense cannot be

decreased below 11 (I-P)r(*j IA-1 by the projection process (12) alone. This means that some

additional refinement must be applied.

4. Refining the Lancsos-Galerkln approximation

Let us start by summarizing the essential of the two stages of the process described in the

previous section.

1. We have solved the first linear system Ax(1) -b 1) by the Lanczos method and this has

provided us with a Krylov subspace K. of dimension m, an orthonormal basis Vm=[vI,v 2,..vm]

of that subspace and a tridiagonal matrix Tm, representing the section of A in Km, with respect

to this basis.

2. We are faced with a new system Ax(2)ub(2), for which an initial guess x(2) is available. This0
approximation is improved by use of the Lanczos-Galerkin projection process which yields the

approximation:

S- 2 + VmT-' VT r(2)

whose residual vector is F - b - A L

We have at this stage shown only how to improve an initial solution x(2) to the second system

0
given the data gathered from the first system by use of a Galerkin projection process on KM'

The accuracy of i thus obtained may be far from sufficient as is shown by the comments at the

end of the previous section. We are therefore faced with the problem of improving the new

approximation I. An easy way of achieving this is by a completely new sequence of Lanczos

• . . . . . - i . . . . .- , .. , . - , a- . , -, -i - . ' " i
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approximations starting with . However, this does not fully take advantage of the available

information, i.e. of the previous Krylov subspace and the representation Tm. A suitable

alternative would be one which continues naturally the previous process by constructing a

sequence of subspaces containing K. and of increasing dimension.

One such process was first introduced by Parlett [7) and was later rediscovered by Carnoy and

Geradin [1 in a different context. The following algorithm, which will be referred to as the

modified Lanczos algorithm, differs only in its presentation from Parlett's algorithm and the

algorithm in \cite{Carnoy-Geradin). Its purpose is to compute a sequence of vectors wi, i=1,2,....

which is orthonormal and also orthogonal to the vi's,i-l,..,m, generated for the first system.

Modified Lancios Algorithm

.Start: take w, - F/IlIl

2.1terate: For j-1,2,...do

Compute ? j=(Aw.,w.)

6j (Awj,vm)

ii Aw.j' j .w - 7jwjrjm (20)

wi+1 = j+j/j+I

All the difference with the usual Lanczos algorithm is that at each step we now orthogonalize

against one more vector, namely the vector vM. We claim that this simple modification of the

Lanczos algorithm, yields a sequence of vectors so that the system Wp=(v 1,V2,....vm,wl,..w p} is

orthonormal. This is an important property since it will allow us to realize in a simple way, as

will be seen shortly, the Galerkin process onto the span of Wp.

Proposition 2: Suppose that p steps of the Modified Lanczos algorithm are feasible.
Then the sequence vl,vV...Vm,l,OV7 ,... w, forms an orthonomal sequence of vectors.

Proof: Since (v1) =ilim is an orthonormal system, we must prove that for j-1,2,.. we have:

I. wj is orthogonal to the vi's i-i=,.m

2. wj is orthogonal to the previous wj's, i I,2,..j-l.

IJ
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The proof in by induction. Clearly the above property is true for j-i, because w, is equal to 1

apart from a multiplicative constant and F is known to be orthogonal to the subspace Km by the

Galerkin condition. Suppose that the propoerty is true for j and let us prove that it is true for

j+l, i.e. that

(wj+l,vi) - 0, i-1,2...m (21)

(wj+1 ,wi) - 0, i=1,2,..j. (22)

Consider (21) first. By construction, (wj+IVm)=O, so we can restrict ourselves to the case i<m.

(wj+j'vi)---(A+j)-I [(Aw,'vi)- &j (wjvj) - i(w-'v.) -6.(v,v) I

By the induction hypothesis and because {vi}i=,m is orthogonal, the terms (w.,vi), (wj.,,vi) and

(vm,vi) on the right hand side all vanish. The remaining term (Awjv 1) can be expanded as

follows:

(Awj,vi)=(wjAv) - (wj,8i+lVi+l--ivi+8iVi-l

MM i+ l(Wj,Vi+ l)+,i(wj,vi)+ i(wj,Vi. 1)

Using again the induction hypothesis, we seethat all these terms are in turn equal to zero. This

completes the proof of (21).

Now consider (22).

(wj+l,wi)= [+, i-I [ (Awj,wj) - bj(wj,wi) - (wj1 ,wj) . 6j(Vm,Wi) ]

Assume first that i<j - 1. By the induction hypothesis we obviously have

(wj,wi) --(w 1j,w 1) = (Vm,Wi)= 0.

Proceeding as before, we expand the remaining term (Awi,wi) as follows:

(Awjwi)=(w,,Awi) = 1wj,+lWi+?+iwi+iwi.I + 6ivm)

- i+,(Wj,Wi+l)"fi(Wj,Wi)'l' i(Wj,) + 6 i(wj,vm)

which, by a final application of the induction hypothesis shows that (Awj,w)=--O. Hence

(wj+,wi)=0, for i<j -1. For i-j and i=j-1, the scalars &F' $., and 6. have been precisely chosen

so that the property is true. This completes the proof.O3

Consider the subspace spanned by the orthonormal system Wp[vlv 2,...vm,Wl 1,..w p]I which we

will denote by K mop* Note that KinP is no longer a Krylov subspace but, as will be seen shortly,

the case p-m is of particular importance. The matrix representation WTAW of the section of
p p



A in the subspace Kmp with respect to the basis W is the (m+p) x (m+p) matrix:

/
arl 02

02 a2 73
03 a3 . #.

m a 61 p _

T -

~1 '-' 02 -2 -" 2 '63
03 63

L --I
Hence the new approximate solution obtained at step p of the projection process onto the

subspace KMip is given by:

z P + Wp T -p WT Fmgpp

Noticing that Wp - WT I1i1l wl, this simplifies into:

zp - + IrJI Wp T- em+a

where e+1 is the vector of length m+p whose components are zero except the (m+l)st which is

equal to 1. Once the augmented tridiagonal system T mvp s - em+ is solved, the linear

combination Wps of the vectors vi and wi should be formed and added to i. The whole set of

vectors W must therefore be kept in storage.

It is important to interpret the method outlined above, in order to compare its rate of

convergence with that of the regular Lanczos process. We will establish the following result for

the particular case where p=-m.

Proposition 3: When p--m, the modified Lanczos process is equivalent to m steps of
the block Lanczos method with block dimension of 2, with starting block consisting of
the vectors v, and w.

Proof: The proof amounts to showing that the two methods realize the Galerkin process on

the same subspace.

For the block Lanczos method [-, 14, 121, the subspace is simply span(S,AS1, ... Am'IsI} where

s-(v 1 ,wl}.

The modified Lanczos algorithm is a projection process onto the subspace
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)an(vl,v2 ,...vm,wl,w 2....wm}. It is a simple exercise on proofs by induction to show from the

gorithm that the vis and wi's are linear combinations of the vectors Akvi and Ajw,

<kj<m-1 and vice-versa. Thus the two subspaces are identical and the proof is complete.O

The proposition asserts that there are two ways of realizing the block Lanczos method. One is

ie regular algorithm in either its block form [141 or its banded form [8], and is suitable for the

ise when the linear systems are avaibale simutneously. The other way is the modified Lanczos

Igorithm which is more suitable when the right hand sides are not available simultaneously, i.e.

hen the right hand side b(2) depends on the solution P{1 ) of the first system.

The rate of convergence of the block Lanczos algorithm for solving linear systems has been

udied in [5, 11] and we will not report the results here. It suffices to say that, not surprisingly,

ie bounds on the rate of convergence of the block method are superior to those of the single

ector method. We should point out however that our experience reveals that when only one

Vatern is to be solved it is not in general effective to use a block method as a means of

ccelerating the convergence [11].

To summarize, the modified Lanczos method has the advantage of the rapid convergence of

he block Lanczos method without the drawback of requiring that the second right hand side be

vailable at the same time as the first.

*. Practical Considerations

One important feature of both the Lanczos-Galerkin Process and the modified Lannczos

rocess is that we must save a large number of vectors in some secondary storage. This may

em impractical at first but there are numerous reasons why it is not always so:

" Once a vector has been computed it is not needed until the convergence of the process

is reached. There exists a simple formula for evaluating the residual norm of the

solution without even having to compute the solution [7, 10] thus allowing to

determine when to stop.

* There are supercomputer systems with very fast auxiliary memories, e.g. the Cray-

)EMP with Solid-state Storage Device (SSD).

" In many cases the dominant cost is the matrix by vector product and therefore the

priority is to economize on the number of matrix by vector multiplications. The

Lanczos-Galerkin process of section 3 requires only one matrix-vector product (for
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computing the initial residualr0).

The Lanczos-Galerkin process was successfully used in the context of stiff ODE's [3]. In some

ODE problems the cost of a matrix by vector multiplication can be extremely high and the

Lanczos-Galerkin process becomes very attractive.

In the context of symmetric generalized eigenvalue problems, a technique similar to the one

described in the previous section has recently been presented by Carnoy and Geradin [1], who

report some interesting numerical results.

It seems important that the vectors vi's that must be saved from the first linear system, be

orthogonal because the Lanczos-Galerkin process is essentially based on the orthogonality of these

vectors. The Selective Orthogonalization [7] and the Partial Orthogonalization [13) methods can

both be extended to the modified Lanczos method and are attractive alternatives to the more

expensive full reorthogonalization schemes. Simon [131 has shown that any partial

reorthogonalization that guaranties semi-orthogonality, i.e. orthogonality within the square root

of the machine accuracy e, will also deliver an approximate solution vector that is within Fe of

the ideal solution vector from the Krylov subspace.

Although not explicitely mentioned, it is clear that the techniques of the previous two sections

can easily be extended to systems with more than two right hand sides. The resulting algorithms

are straightforward and so is the theory.
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