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Abstract—This paper carries out a comparison of the fit-
ness landscape for four classic optimisation problems: Max-Sat,
Graph-Colouring, Travelling Salesman and Quadratic Assign-
ment. We have focused on two types of properties, local average
properties of the landscape and properties of the local optima. For
the local optima we give a fairly comprehensive description of the
properties, including the expected time to reach a local optimum,
the number of local optima at different cost levels, the distance
between optima, and the expected probability of reaching the
optima. Principle component analysis is used to understand the
correlations between the local optima. Most of the properties
we examine have not be studied previously, particularly those
concerned with properties of the local optima. We compare and
contrast the behaviour of the four different problems. Although,
the problems are very different at the low level, many of the
long-range properties exhibit a remarkable degree of similarity.

Index Terms—Combinatorial Optimisation Problems, Graph-
Colouring problem, Travelling Salesman problem, Maximum
Satisfiability problem, Quadratic Assignment problem, fitness
landscape, scaling analysis, long-range correlation.

I. INTRODUCTION

TO design and improve heuristic search algorithms for

combinatorial optimisation problems requires an under-

standing of the fitness landscapes for these problems. There

has thus been a considerable interest in study of fitness

landscapes. However, most of these studies have focused on

a relatively small number of properties such as the autocor-

relation [1] and fitness distance correlation [2], often in the

hope that such measures may capture the problem difficulty.

Alas, we have seen little evidence that a very small number

of measures can capture the complexity of combinatorial

optimisation problems. It is our belief that to obtain a thorough

understanding of these problems requires examining a much

broader set of properties of the fitness landscapes. Thus in a

series of papers we have undertaken a detailed study of four

well known combinatorial optimisation problems: maximum

satisfiability (Max-Sat) [3], graph-colouring [4], the Travelling

Salesman Problem (TSP) [5] and the quadratic assignment

problem [6]. This paper give a comparison of these four

problems.

On the surface, these problems look very different. For

example the natural search space for Max-Sat is binary vectors,

while that of graph-colouring is the set of k-ary vectors, where

k is the number of colours, and TSP and quadratic assignment
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are most naturally, encoded as permutations. The problems

have different symmetries, so that Max-Sat and quadratic as-

signment have no obvious symmetry, symmetric TSP problems

have a simple symmetry under reversing the direction of the

tour (although this is only a two fold symmetry, it has a

profound consequence for search operators) and finally graph-

colouring has a k!-fold colour permutation symmetry, where

k is the number of colours. The search operators also vary

considerably between problems, particularly for TSP where

finding a move operator is non-trivial. As the search operators

determine the neighbourhood structure of the landscape, each

of the problems we have studied has a different neighbourhood

topology.

At a more profound level, Max-Sat and graph-colouring

are constraint satisfaction problems (that is, their objective

function can be seen as a sum of constraints). In both problems

we can progressively add constraints. With a small number

of constraints, it is possible to find configurations which

satisfy all the constraints (giving zero cost solutions). As more

constraints are added, eventually a situation is reached when

it is no longer possible to satisfy all the constraints, and the

best an optimisation algorithm can do is to attempt to find

a solution that satisfies as many constraints as possible. If

the instances are drawn uniformly from some ensemble of

problems, it is typical to find that the probability of choosing

a problem that satisfies all the constraints makes a very rapid

jump, which has long been identified as a phase transition from

satisfiability to unsatisfiability. Empirically, it is found that the

time complexity of the problem changes around this phase-

transition. Thus, below and away from the phase transition,

the problems are found to be easy to solve. Around the phase

transition the problems are difficult to solve. Away and above

the phase transition, it is often easy to prove that the problem is

unsatisfiable, but it tends to be difficult to find the lowest cost

solutions. We will see that this phase transition determines

other properties of the fitness landscape, in particular it is

associated with large plateau regions which can significantly

slow down local search. TSP and quadratic assignment are

not constraint satisfaction problems and consequently do not

undergo a satisfiability phase transition.

Despite the many differences between these combinatorial

optimisation problems, we will see that there is a considerable

degree of similarity in the large scale structure of the fitness

landscape. These similarities provide an explanation why

general purpose algorithms such as evolutionary algorithms

have quite wide applicability. One explanation of the similarity

between problems is that their cost functions all involve a sum

of terms, each involving a small number of variables. For a
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randomly chosen set of variables the cost can be seen as a

sum of rather weakly correlated random variables; however,

neighbouring configurations are relatively highly correlated,

leading to quite smooth landscapes with long-range correla-

tions. These properties appear to lead to the similarity in the

large scale behaviour of the fitness landscape that we observe.

Clearly, there is considerably selectivity in the problems we

have chosen to study. For example, it is possible to envisage

problems where the objective function is again a sum of a

large number of terms, but the terms are much more strongly

coupled. Examples of this are the Sherrington-Kirkpatrick

spin-glass model [7] and the binary perceptron [8], [9], [10].

In such models we would expect the fitness landscape to be

locally much less smooth, although there would still exist

long-range correlations. We have chosen not to study such

models as we believe the ones that we have chosen are more

representative of the type of classical optimisation problems

encountered in practice. This is clearly a judgement call. It

is dangerous to extrapolate from the problems studied here to

the set of all problems; however, this paper does show that

in a diverse set of combinatorial optimisation problems there

exist considerable similarities.

Where the similarities between problems exist, they are

often qualitative rather than quantitative. This is true even

for instances from the same class of problems. To obtain a

clearer insight into the quantitative similarities, we have tried

to study the scaling behaviour of the properties we measure

as a function of the problem size. For Max-Sat and graph-

colouring we can also show the change in behaviour as we

vary the number of constraints (thus, exploring the change in

the behaviour as we move through the phase transition). For

TSP and quadratic assignment we can explore the behaviour

as we vary the problem type. Thus, for example, in TSP we

studied the behaviour of 11 different class of TSP [5]. Where

appropriate, we show the results for these different classes

of problem; however, to keep this paper readable, we have

focused on Euclidean TSP. Many details for TSP and for the

other problems have naturally been missed in this paper. Also

some of the details of the analysis, such as the algorithm

for finding local optima, and a full description of the use of

principle component analysis has been omitted here, but can

be found in the problem specific papers.

We have followed the same methodology in studying all

the problems. Most significantly, we have used local search

starting from many different random initial configurations to

find the local optimal solutions. We have studied problems of

size up to around 100 variables. For this size of problem, it

has been possible to obtain a good representative sample of

the local optima and in particular most, if not all, of the low

cost local optima, which tend to have a much larger basin

of attraction than average cost local optima. From these local

optima we have computed different properties which we report

in the paper.

A. Previous Literature

The concept of fitness landscape goes back to Sewell

Wright [11] who introduced it to understand biological evolu-

tion. Fitness landscapes have been studied for many years, both

in the physic community [12], [13], and in the optimisation

community [14], [15], [16], [17]. In the evolutionary algorithm

community, work on the fitness landscape started in the early

1990s [18], [19], [20], [2]. An early influential measure of the

roughness of the fitness landscape was the autocorrelation [1],

[21], [22]. Later the fitness-distance correlation was introduced

to measure problem difficulty [2], [23], [24], [18]. Algebraic

properties of the solutions in the landscape [16], [25], modality

(number of local optima) [26] and the fractal dimension of the

fitness landscape [27] are other examples. Some researchers

try to explain when a problem becomes hard, by studying the

area in the landscape called “Olympus”, in which the better

local optima are located [28], [29]. Fitness clouds is another

method proposed to visualise the fitness landscape, which tries

to represent some properties of the fitness landscape [30], [31],

[32], reflecting the problem hardness.

During the last two decades many researchers have studied

the landscape of optimisation problems including Travelling

Salesman [33], [34], [35], Quadratic Assignment [23], Knap-

sack [36], [37], Max-Sat [38], [39], [3], graph drawing [40],

Graph-Colouring [41], [42], [43], [44], [17], [45], evolutionary

antenna design [46], flow-shop scheduling [47] and Bayesian

network structure [48] problems.

The rest of this paper is organised as follows. In the

next section we introduce the four combinatorial optimisation

problems studied in this paper and describe the local search

algorithm we use to find the optima in the landscape. Sec-

tion III describes two bulk properties of the landscape, namely

the auto-correlation and the mean fitness in a Hamming sphere

around a given configuration. In section IV we present a study

of the properties of global and local optima, including the

number of steps a local-search algorithm takes to get to a

local optimum, the number of local and global optima and

distance between the optima, and the probability of reaching

a local optima at a given cost. We also use principle component

analysis to obtain a better understanding of the structure

of the local optima. We draw conclusions including making

comparisons between different problems in Section V.

II. PROBLEMS AND METHODOLOGY

In this section, we describe the four different combinatorial

optimisation problems studied in this paper and explain the

way we generate the problem instances. We finish this section

with a discussion about the local-search algorithms we use to

find the local optima, and the way we distinguish different

local optima from each other.

A. Problem Definition

1) Maximum Satisfiability Problem: The Max-Sat problem

is closely related to the satisfiability decision problem, collo-

quially known as SAT. This problem involves a set of Boolean

variables xxx = (x1,x2, . . . ,xn) and a set of disjunctive clauses

consisting of a subset of literals (a literal is either a variable

or its negation). For example, a clause might be x1∨¬x5∨x10.

Each clause can be considered as an additional constraint that

we want to satisfy. K-Sat are instances of Sat where each

clause consists of K literals. Max-Sat is the generalisation of
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SAT to problems which are not fully satisfiable. It asks the

question whether there exists an assignment of the variables

which satisfies all but T clauses. Max-K-Sat is NP-hard for

K ≥ 2. We will treat Max-Sat as an optimisation problem

in which we try to find a configuration of variables which

minimises the number of unsatisfied clauses. In this paper

we consider Max-3-Sat. We use the objective function as the

number of unsatisfied clauses, which we seek to minimise.

Assuming there are m clauses and denoting the clauses by

gi(xxx), then the cost function is given by

c(xxx) =
m

∑
i=1

Jgi(xxx) is not satisfiedK , (1)

where JpredicateK denotes the indicator function which is

equal to 1 if the predicate is true and 0 otherwise.

Our focus will be on randomly generated instances, where

each clause consists of K randomly chosen variables which are

negated with probability of a half. We require each variable in

a clause to be different and all clauses to be unique. We denote

the number of variables by n, the number of clauses by m, and

the ratio of clauses to variables by α . In this paper we consider

K = 3, for different values on n and α . We note that Max-3-

Sat has a phase transition for α ≈ 4.25n (the fact that this

phase-transition scales linearly with n, makes it particularly

easy to carry out a scaling analysis of this problem).

We look at the Hamming neighbourhood. The classic search

algorithm for this neighbourhood is known as GSAT, which

always chooses the best available neighbouring configuration.

This can be efficiently implemented to run in O(1) time

(see [3] for details).

2) Graph-Colouring Problem: The Graph-Colouring prob-

lem is a combinatorial optimisation problem which belongs

to the class of NP-Hard problems. Given an undirected graph

G(V ,E ), with a vertex (node) set V and edge set E , and k

different colours, the Graph-Colouring problem is defined as

finding a colouring of the vertices to minimise the number

of edges whose vertices share the same colour. We denote a

configuration of the Graph-Colouring problem with k colours

as a vector xxx of size n = |V |, with elements xi ∈ {1, 2, . . . , k}
representing the colour of the i-th node. The cost of a

configuration xxx is defined as the number of colour conflicts

in the graph, i.e., the number of edges whose vertices have

identical colours,

c(G,xxx) = ∑
(i, j)∈E

Jxi = x jK .

We consider the problem of finding a colouring, xxx, which

minimises the cost.

In this paper we will concentrate on instances drawn from

the ensemble of random graphs G (n, p), consisting of graphs

with n vertices where each edge is drawn with a probability p.

In particular we focus on the case p = 0.5, so that the graphs

are dense in the sense that typically the number of edges are

of order n2. For these instances we study the properties both

as a function of the number of vertices n and as a function of

the number of colours k.

The chromatic number, χ(G) of a graph, G, is defined to

be the smallest number of colours k such that a configuration

exists with no colour conflicts (i.e. a cost of zero). The

chromatic number for most graphs in G (n, p) is very heavily

concentrated and differ by one at the most. The chromatic

number marks the phase-transition between satisfiable and

unsatisfiable problems. We will see, just as for Max-Sat, many

other properties are determined by the position of this phase

transition. Unfortunately, unlike in Max-Sat, the position of

the phase transition does not depend linearly on the instance

size; thus it is not easy to carry out a simple scaling analysis.

Note that although an asymptotic result for the Chromatic

number of random graphs is known [49], it provides a poor

estimate for finite size graphs. A much tighter upper bound for

finite size random graphs is given in [50]. In table I we give

the chromatic number for different graph sizes. For a more

complete discussion on the chromatic number see [4].

TABLE I
MEAN CHROMATIC NUMBER FOR GRAPHS DRAWN FROM G (n,1/2).

n 10 20 30 40 50 60 70 80 90 100

χ(n) 3 5 6 7 8 9 10 11 12 13

3) Travelling Salesman Problem: The Travelling Salesman

Problem (TSP) is arguably the most famous combinatorial

optimisation problem. The classic description of the problem

is that you are given a list of cities and the distances between

every pair of them; the task is to find the shortest tour that

visits each city once and then returns to the start city. Despite

its deceptively simple description, it is surprisingly difficult to

solve. In general, it is NP-hard, although for some problem

types such as Euclidean TSP, there are polynomial time

approximation schemes [51]. In this paper we present results

mainly for Euclidean TSP, although where it is interesting,

we present results for a number of different instances. These

instances were proposed in [52], [53]; details can be found

in [5]. For the Euclidean instances the cities are placed

uniformly at random in a 106 ×106 square.

The constraint that a solution to TSP must be a valid tour

strongly restricts the move set. The classic move set for TSP

is k-opt, where the tour is broken into k sections at k edges.

These sections are then stitched back together to create a new

tour. We have examined 2-opt, 3-opt and 4-opt; however, we

predominantly consider 3-opt as we found 2-opt has so many

local optima that it made the analysis computationally difficult.

Furthermore, 2-opt always reverses part of a tour, making

it a highly non-local operator for asymmetric problems. On

the other hand 4-opt had such a huge neighbourhood that it

was computationally challenging to ensure a local optimum is

reached.

4) Quadratic Assignment Problem: The quadratic assign-

ment problem is the least well-known combinatorial optimi-

sation problem discussed in this paper. The problem is to find

an assignment between a set of n facilities, F , and a set of

n locations, L , which minimises the communication costs

between facilities. More formally, we assign a flow between

facilities w : F ×F → R and a distance between locations

d : L ×L → R. Then the cost of an assignment xxx : F → L
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is taken to be

c(xxx) = ∑
i, j∈F

w(i, j)d(xi,x j), (2)

which is to be minimised. If all the distances were the same,

then this reduces to the linear assignment problem which

is solvable by the Hungarian algorithm in O(n3) operations.

However, with different distances this problem is in general

NP-hard. Although we have described quadratic assignment in

terms of facility and distances, just like TSP, it arises in many

different guises in real applications.

An assignment can be viewed as a permutation; however,

unlike TSP there is no further constraint. Thus the simplest

move set is to swap the location of two randomly chosen

facilities. To generate instances of this problem, we have to

make two matrices; one is the distance matrix containing the

distances between every pair of locations, and one the flow

matrix containing the flow between every pair of facilities.

To do so we randomly place the locations in a 100 × 100

square and the flows between the pair of facilities are chosen

uniformly randomly between 0 and 100.

B. Methodology

To define the landscape of a problem requires some defi-

nition of the neighbourhood of the configurations. The neigh-

bourhood is usually defined in terms of the configurations that

can be reached by some local search operators. A neighbour-

hood is defined for each problem type. For the Max-3-Sat,

Graph-Colouring and the Quadratic Assignment problems a

simple Hamming neighbourhood is used. For the Travelling

Salesman problem a 3-opt neighbourhood operator is used.

We also need to define the distance measure. This could

be defined as the number of local search moves between two

configurations or the number of non-common variables in two

configurations. For Max-3-Sat we use the number of non-

common variables which is also known as Hamming distance.

For the TSP we take the number of non-common edges in

two tours as the distance. Because of the symmetry in the

landscape, for the case of the Graph-Colouring problem, two

distance measures could be defined. One is the Hamming

distance and the other is what we call the partition distance,

which is defined as

Dp(xxx,yyy) = min
π

Dh(xxx,π(yyy)), (3)

where π(·) is a permutation operator which permutes the

colours. The minimisation is over all possible permutations

of the k colours. The partition distance measures the smallest

number of reallocations of partition membership to make the

partition represented by xxx into the partition represented by yyy.

When the Hamming distance is small, it is often the same as

the partition distance.

In this paper, we define a local minimum to be a connected

set of configurations with no lower-cost neighbours. One way

to study the topology of a fitness landscape is to search

for local optima by an exhaustive search of the landscape;

however, this would confine us to studying small problems

with sizes up to 20 or 30 variables (see, for example, [54]

and [55]). Instead, we use a local search algorithm which

allows us to study larger instances. To find a local minimum

we search all neighbours of the current configuration. If there

is an improving move we take it, otherwise, if there are

neighbours of the same cost, we systematically explore all

their neighbourhoods, keeping a record of all configurations

we have explored, and all configurations whose neighbours

we have still to explore. This guarantees that either we find

an improving move or we have reached a local optimum. Once

we reach an optimum we use the lexigraphic least member as a

unique identifier of the minima (in graph colouring we permute

the colours to a canonical ordering beforehand to ensure that

all minima which are identical up to a colour permutation are

treated identically). This approach limits the size of problem

we can explore, either because the neighbourhood becomes

too large (as happens in TSP using 4-opt) or because the size

of the local optima is too large (as happens around the phase-

transition in Max-Sat and graph colouring).

III. BULK PROPERTIES

In this section we study two properties that are not directly

related to the local optima. The first one is the auto-correlation

function and the second is the mean fitness in a Hamming-

sphere about a particular configuration. These measures tell

us about the average ruggedness of the landscape and long-

range correlations in the landscape.

A. Auto-Correlation

The auto-correlation measures the local ruggedness of the

fitness landscape by measuring the expected correlation of

a random configuration and that of a configuration where

we have made τ randomly chosen steps [1]. For a problem

instance, the auto-correlation is given by,

R(τ) =
1

σ2
E
(

(c(xxx(t + τ))− c̄)(c(xxx(t))− c̄)
)

,

where xxx(t) is the configuration at step t of a random walk, and

σ2 is the variance in the cost for random configurations of the

problem instance. To compute this, we consider a random walk

starting at an arbitrarily chosen initial configuration and move

to a Hamming neighbour at each step.

The empirically measured log-auto-correlation for the Max-

Sat, Graph-Colouring, Travelling Salesman and Quadratic As-

signment problems for different instance sizes is represented

in Figure 1. In all cases the fall off of the logarithm is almost

linear, indicating an exponential fall off with a characteristic

“correlation length” (note that the deviation for large τ which

is most prominent for TSP is most likely due to sampling

errors). The correlation length is proportional to the system

size for all the problems. We observe that in all cases the

landscapes are fairly smooth, and become smoother as the

system size increases.

For Max-Sat we show the auto-correlation for different

ratios of clauses to variables, α . For α = 2 almost all instances

have a relatively large fraction of satisfiable configurations. In

contrast, at α = 10, almost no instances are satisfiable, with

instances around α = 4.3 marking the phase-transition. The
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Fig. 1. The logarithm of the auto-correlation of the fitness landscape for the
Max-Sat, the Graph-Colouring, the Travelling Salesman and the Quadratic
Assignment problems for different values of n and parameters plotted against
the time difference τ/n. The results are for randomly generated problem
instances. The number of steps is 109.

behaviour of the auto-correlation gives no indications of this

rather important change in the behaviour of the problem. For

graph-colouring the correlation length grows as n(1−1/k)/2

(see [56], [4]), where k is the number of colours. The

phase-transition depends non-linearly on both k and n. As

the difficulty of the problem instances varies depending on

the proximity of the phase-transition, we observe that the

auto-correlation function is not a good measure of problem

difficulty. For the Euclidean-TSP we show the autocorrelation

function for different search operators. As would be expected,

the more disruptive the move operator the more quickly the

correlation function falls.

B. Expected Cost in Hamming Sphere

The auto-correlation shows the existence of a strong cor-

relation in the cost of neighbouring configurations. Another

measure which shows the same behaviour is the expected cost

of a configuration in a Hamming Sphere from some refer-

ence configuration. This can often be computed analytically

(see [3], [4]). We show plots of this, starting from different

low-cost minima in figure 2. The costs fall off from their initial

value to the average cost as we move towards the expected

Hamming distance between randomly chosen configurations.

This behaviour arises because the cost functions involve a sum

of terms each of which depends on only a few variables. Thus,

perturbing a few variables results in a relatively small change

in the cost of a solution. One consequence of this behaviour

is that low cost solutions have a long range influence on the

fitness landscape. Furthermore, we will see later that the lower

cost minima tend to have larger basins of attraction than the

higher cost minima.

IV. PROPERTIES OF LOCAL OPTIMA

In the rest of this paper we concentrate on properties of

local optima. These were found using the exhaustive local
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Fig. 2. Expected cost of the configurations in a distance sphere for the
most local optima at each cost for different problems of different size. For
the Max-Sat α = 8 and for the Graph-Colouring k = 5. The data are averaged
over 105 different runs.

search, described in section II-B, many thousands of times

to obtain a representative sample of local optima with large

basins of attraction. As we argue later we believe that this

sample includes almost all low cost solutions and in particular

the global optima.

A. Time to Local Optimum

We consider properties about the search process, starting

with the time (number of moves) to reach an optimum. Note

that we count the number of moves used, rather than the

number of fitness evaluations, since in highly optimised local

search algorithms data structures are used to avoid or speed up

fitness evaluations. The time complexity of the local search is

dominated in these algorithms by the update of the local search

after making a move. We discuss this further at the end of this

section. In this section, we distinguish between the constraint-

satisfaction problems (Max-Sat and graph-colouring) and the

other two. As discussed earlier, the constraint satisfaction

problems undergo a phase-transition from an easy phase to a

hard phase, as the number of constraints increases (assuming

the number of variables is kept fixed). In figure 3 we show

the empirically measured mean time to reach a local optimum

versus α for Max-Sat and versus k for graph-colouring.

For Max-Sat, small α corresponds to the easy-phase with a

small number of constraints. For small α there is a relatively

high proportion of the configurations that satisfy all the

constraints. A local search algorithm will consequently find

a globally optimal solution quickly. However, as α increases

towards the phase transition (which occurs around α = 4.3),

local search slows down dramatically as the searcher explores

very large plateau regions. Above the phase-transition the

search plateau regions become less common and the search

rather rapidly finds a local optimum. Exactly, the same pattern

of behaviour is observed for graph-colouring. Note that for

graph colouring we have examined changing the number of

colours k. A large number of colours makes it easier to find
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Fig. 3. Logarithm of the time to reach a local optimum for the problems
with phase transition. The data for the Max-Sat problem are plotted versus α
on a log-log scale, where the size of the problem is n = 50. The data for the
Graph-Colouring problem are plotted against the number of colours k on a
logarithmic scale for n = 100. Each data point represents the mean over 100
instances and 105 hill-climbs per instance.

a satisfying solution; thus, the easy phase occurs on the right

side of figure 3(b) and the hard side on the left (which is a

mirror image of what occurs in figure 3(a) for Max-Sat). The

phase-transition occurs for this size of instance at k = 9.

In the Max-Sat problem, graph representing time to local

optima versus α consists of three stages. From α = 1 up to

α = 3.2 (phase transition), on a log-log scale, the time to local

optima versus α fits a straight line, suggesting that the time

grows polynomially as T ≈ α4.16. After the phase transition,

there are the second and the third stages in which the time

decreases polynomially. At the second stage, as α increases,

the time decreases rapidly by T ≈α−7.55 (note that empirically

it is difficult to distinguish between an exponential increase

and a large polynomial—we fitted with a polynomial as it

gives a slightly better fit). After reaching a certain point, the

third stage begins, where the time decreases less rapidly as

T ≈ α−0.28.

A quite similar behaviour is seen in the Graph-Colouring

problem. The time to reach a local optimum also consists

of three stages. On a logarithmic scale, at the first stage,

from k = 2 to k = 9 (the chromatic number), the data fit a

straight line, meaning that for k up to the chromatic number,

the number of steps grows exponentially with the number of

colours. The second and the third stages of the graph show

different behaviours. On a log-log scale, the data for these

two stages fit a straight line, suggesting that the time to local

optima decays polynomially with the number of colours. Note

that this time consists of the time taken on the flat regions, plus

the number of improvement moves the local search algorithm

sees during its search process. We will study each component

separately in the rest of this paper.

The time to reach a local optimum as a function of the

instance size is found to grow as a slow polynomial of the

system size. This is shown in figure 4. For TSP we find a

similar behaviour in a suit of instances (see [5]). The Max-Sat

and graph-colouring data are for instances in the unsatisfiable

(hard) phase.
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Fig. 4. Time to reach a local optimum for the problems versus the system
size. For the Graph-Colouring problem k = 7, and for the Max-Sat problem
α = 8. Each data point represents the mean over 100 instances and 105 hill-
climbs per instance.

We observe that the number of moves to reach the local

optima grows sub-quadratically in all cases. To compare the

run times between the different problems we also need to take

into account the time taken to make a move. This depends

on the implementation of the local search operator. The best

algorithm known by the authors for solving Max-Sat can per-

form a move in O(1) operations, while that for graph-colouring

takes O(n) [3]. TSP can be much slower, as it has a large

neighbourhood (O(n3) for 3-opt), and each move can require a

non-local rearrangement of the tour. Efficient implementations

of TSP usually restrict the neighbour and use sophisticated

data structures to store the tour. The quadratic assignment

problem is considerably simpler than TSP, but still has a large

neighbourhood to explore (n(n−1)/2) compared to n for Max-

Sat and (k−1)n for graph-colouring. Thus, the clock time can

grow faster than figure 4 suggests. Nevertheless, the time taken

to reach a local optimum is not a limiting constraint in finding

a global optimum.

The analyses provided for different combinatorial problems
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suggest that the time to local optima for these problems grows

sub-quadratically with the system size. This, in a sense, means

that in terms of the time to find a local optimum, the NP-

Hard problems (or at least the ones studied in this research)

become polynomially hard as the system size grows. However,

this does not mean that finding the best solution to a NP-Hard

problem can be performed in a polynomial time. There are

other properties related to the hardness of the problems. The

number of local optima and the correlation between the size of

the basin of attraction of a local optimum and its cost are other

important properties which are targeted in the next sections.

The average time to reach local optima hides details of

how the search algorithms make progress. To study this we

examine the change in cost as a function of the number of steps

averaged over many different runs. This is shown in figure 5

as a density plot of the cost of a solution versus the number

of steps (plotted on a logarithmic scale) for many different

runs for the graph-colouring and the quadratic assignment

problems. For graph-colouring (and similarly for Max-Sat)

there is a characteristic dog-leg shaped curve, with rapid initial

progress until the knee of the dog’s leg is reached. At this stage

on most runs a local optimum has been reached and no further

progress is made, but on a small proportion of runs, large

flat regions are reached and the rate of progress slows down

significantly once this happens. The probability of reaching

a large flat region increases considerably in the proximity of

the phase-transition. In contrast, for quadratic assignment (and

similarly for TSP), this second phase is not observed. This is

a consequence of the fact that for quadratic assignment (and

TSP) configurations with the same fitness are rare, so there

are no large flat regions.
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Fig. 5. The density plot of the record of the steps taken by the local search
algorithm to get to the local optima for 105 different search process, starting
from random configurations. The cost of the configurations at each step is
represented against number of steps on a logarithmic scale. The size of the
problem is n = 50. For the Graph-Colouring problem the number of colours
is k = 5.

Note in figure 5 that we have plotted the number of steps on

a logarithmic scale; thus, initially, the frequency of improving

steps and the average size of an improving step is significantly

larger than that which occurs later on in the search.

The time it takes for a local-search algorithm to find a local

optimum consists of two components. One is the number of

improving moves (cliffs) the search algorithm sees, and the

other is the flat regions on which the algorithm wanders while

searching for an improving move. These two properties change

as the parameters of the problems change. Since there is no

flat region in the landscape of the Quadratic Assignment and

the Travelling Salesman problems, the time to local optima is

entirely made of improving moves. The landscape of Graph-

Colouring and Max-Sat however, consists of both improving

moves (when the search has reached a cliff edge) and flat

regions. For the Graph-Colouring problem, we saw that up

to the chromatic number, the time to local optima grows

exponentially with the number of colours. Figure 6 shows the

contribution of number of improving moves and the number

of steps on flat regions in the time to local optima. Up to the

chromatic number, the number of improving moves needed

to reach a local optimum grows with the number of colours.

After reaching its peak at the chromatic number, the number

of improving moves decreases with the number of colours.

The number of improving moves also depends on the system

size. It seems that it grows linearly with the system size. On

the other hand the number of steps on the flat regions has a

more important role in the time to local optima. Quite similar

to the behaviour we saw in time to local optima in figure 3, the

graph representing the size of the flat regions in the landscape

consists of three stages. At the first stage, from k = 2 up

to the chromatic number, the size of the flat regions grows

exponentially with the number of colours. At the second stage,

the size decreases polynomially with the number of colours

until it reaches zero. And finally is the third stage at which

the size of the flat regions is zero. This means that at the third

stage (far above the chromatic number), the search algorithm

directly reaches the local optima without wandering on the flat

regions and the time to local optima consists entirely of the

improving moves.
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Fig. 6. Number of improvement moves and the size of the flat regions the
local search algorithm sees during its search process versus the constraint
parameter for different size of the problems. This is for the Graph-Colouring
and the Max-Sat problems. Each data point represents the mean over 100
instances and 105 hill-climbs per instance. The data for the number of steps
on the flat regions are plotted on a logarithmic scale.

A rather similar behaviour is seen in the Max-Sat problem.

Up to the phase-transition, the number of improving moves

need to reach a local optimum grows with the α . Here, in

contrast to the Graph-Colouring problem, after the phase-

transition, the number of improving moves remains constant

as α grows. Figure 6 also shows the number of steps on

the flat regions in the Max-Sat problem. Quite similar to the
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Graph-Colouring problem, the size of the flat regions in the

Max-Sat problem has three stages. From α = 1 up to the

phase-transition, the size of the flat regions grows rapidly with

α . After the phase-transition, the size decreases polynomially

with α , but unlike the Graph-Colouring does not reach zero.

The analyses provided here show that unlike the Quadratic

Assignment and the Travelling Salesman problems, which

show no flat region in their landscape, for the problems with

highly degenerative objective function, the size of the flat

regions has a much more important role in the time to local

optima than the number of improving moves has. This means

that for these problems, most of the time of the local search

algorithms is spent wandering on the flat regions (note that

the data for the number of steps on the flat regions are plotted

on a logarithmic scale). When wandering on the flat regions,

it speeds up search if we do not check repetitive solutions.

This property suggests that the Tabu search might be a more

appropriate algorithm for the degenerative objective functions,

particularly around their phase transition.

B. Local Optima Properties

In this section, we explore properties of the local optima.

As discussed above, these were found by performing multiple

runs of the exhaustive search algorithm. As well as storing all

the local optima, we count the number of times each optimum

is visited. For all problems we found that fitter local optima

were visited more often on average than less fit local optima.

The mean number of visits for local optima binned according

to their costs is shown in figure 7. For all four problems shown,

the probability of visiting a local optimum appears to fall off

exponentially with the cost. Similar behaviour was found for

instances at other parameter values and also for different types

of TSP (see [5]). The only exception was for TSP with random

“distances”, where there was little, if any, correlation between

the cost of the local optima and the probability of visiting

them. We attribute this to the lack of significant long range

structure in this problem.

Note that for low-cost (i.e. fit) local optima we visited each

optimum a very large number of times. This provides some

confidence that we have sampled almost all of these local

optima (see the discussion on elves below for more on this). In

contrast for high-cost local optima we often visited them only

once, and we almost certainly have missed a large number

of these. We are not aware of any means for estimating the

number of such local minima. As we are significantly under

sampling these, we cannot determine the probability of them

being visited. Our best guess would be that the probability of

visiting a local minimum continues to fall off exponentially

with cost.

For local minima at the same cost, there is a considerable

variation in the probability of them being visited. An expla-

nation of this is due to the shadowing of minima by close

by minima and the funnelling of the search into restricted

parts of the search space. We cannot empirically rule out

the existence of low cost (fit) solutions with extremely small

basins of attraction. We have called such states elves (as they

are virtually invisible entities, which we believe are unlikely to
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Fig. 7. Number of local optima are hit at each cost for different problems.
For the Graph-Colouring and Max-Sat problems we show the maximum, mean
and minimum number of times the local optima are hit at each cost level. For
the Quadratic Assignment and the Travelling Salesman it is highly unlikely to
have more than one local optimum at each cost, so the data show the number
of times each local optimum is hit versus its cost. The size of the problem is
n = 100 for the Max-Sat problem and n = 50 for the other problems. For the
Max-Sat problem α = 8 and for the Graph-Colouring k = 7. The number of
descents is 106.

exist). In small instances where we can systematically explore

the whole search space (see, for example, [54]), no elves were

reported. Furthermore, we have seen no evidence of elves in

any of problems we have investigated. From our discussion

in section III-B, we know that low cost solutions depress

the expected cost for all configurations that are more highly

correlated than random configurations. Thus an elf cannot

correspond to a deep and narrow well in the fitness landscape.

For all these reasons we consider elves to be unlikely. In

particular, we feel there is fairly strong evidence that for the

size of problems we have examined, we have found all the

global optima.

In figure 7, we see that the mean probability of visit-

ing a local optimum at cost c is approximately exponential

Pv(c) ∝ 10−λ c. The gradient, λ , depends on the properties of

the instances. In figure 8 we show this gradient as a function

of the system size and of α for Max-Sat and k for graph-

colouring. For Max-Sat this gradient is, to a first approxima-

tion, independent of the problem size, but quite dependent

on the ratio of clauses to variables, α . The situation is more

complicated in graph-colouring, although as the position of

the phase-transition does not scale linearly with n, this is not

surprising. For both problems, as the number of unsatisfiable

constraints increases, there is a small bias towards the low cost

solutions.

Better local optima have, on average, exponentially greater

chance of being found than less fit local optima, which

clearly helps in finding a global optimum. However, there are

exponentially more local optima at lower costs. We illustrate

this in figure 9 where we show the proportion of local optima

in different cost bins, and the probability of reaching a local

optimum in a particular cost bin. We see clearly that the

expected cost of a local optimum found by local search is
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generated problem instances and 106 runs on each. The data for the Max-Sat
problem are represented on a log-log scale.

substantially less than the mean cost of all local optima (note

that we only show the local optima that have been found;

we will almost certainly be underestimating the proportion of

local optima on the right of each graph).
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generated instance of different problems. The size of the problem is n = 50
for all the problems. The constraint parameters are set to k = 5 and α = 8.

Figure 9 suggests that there is a fairly high probability

of finding a global optimum. This is true for moderate size

problems of the type investigated here. However, the number

of local optima grows rapidly with the instance size. We will

see later that this results in the probability of local search

finding a global optimum decreasing exponentially. Figure 10

shows the scaling behaviour of the number of local optima

at different costs. We show the logarithm of the number of

local optima in each cost bin, divided by some power of n

chosen so that the peak of the curves are roughly similar. For

quadratic assignment the vast majority of local optima were

only seen once. It was thus not possible to estimate the scaling

behaviour for the number of local optima using this method.

The curves indicate that the number of local optima at each

cost grows roughly as
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Fig. 10. Number of local optima at each cost scaled by the system size,
n versus the cost divided by the average cost for different problems. This is
averaged over 100 randomly generated problem instances for 105 runs.

where g(·) is some approximately parabolic function (graph-

colouring is the slight outlier as it is difficult to find a

scaling relation due to the fact that the chromatic number

does not scale linearly with n). Each problem has a very

different scaling behaviour with n. This is seen even within

problem classes. Different types of TSP have different scaling

behaviour. Note that for graph-colouring we count local optima

that differ by a permutation symmetry as the same local

optimum. Thus with the Hamming neighbourhood, due to the

permutation symmetry, there are in fact k! more local optima.

To estimate the growth in the number of local optima for

quadratic assignment we measured the proportion of randomly

sampled configurations which were local optima. This was

only practical for problems up to size 12. From these very

small instance sizes we estimated that the number of local

optima grows approximately as exp(0.63n−2.2).

The number of local optima also depends on the other

details of the instances. In figure 11, we show the total number

of local optima for Max-Sat versus α and n, and for graph-

colouring versus k and n. Note that because of the simple

scaling behaviour of Max-Sat, we have scaled the y axis to

remove the main variation in n. We observe that the number

of local optima grows linearly (and rather slowly) as we

increase the number of constraints α n. The scaling behaviour

of graph-colouring is more complicated and we just show

the raw number of local optima as a function of n and k

(note that for large n and k we will be substantially under

sampling the number of local optima, so the rate of growth

may be significantly greater than shown). The behaviour is

more complicated than that for Max-Sat, since increasing k

both increases the size of the search space (which grows as

kn), and makes it easier to satisfy the constraints. These two

effects tend to balance, resulting in the number of local optima

remaining fairly constant for a considerable proportion of the

graph.
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Fig. 11. The number of local optima versus the number of colours k and
α for the Graph-Colouring and the Max-Sat problem. The data are averaged
over 100 randomly generated problem instances of different size. The number
of runs is 106. The data for the Max-Sat are plotted on a log-log scale.

C. Global Optima

As the instance size increases, the gap between the cost of

typical configurations found by local search and the global

minimum cost grows. This is shown in the top two graphs

in figure 12 for Max-Sat and graph-colouring. The y-axis has

been scaled by n and the average cost (n2) respectively, so

these gaps look linear. By plotting the Max-Sat result versus

1/n, it is possible to extrapolate back for large n. The typical

gap in this limit is around 0.03n. The extrapolation for graph-

colouring is more complicated. A plausible fit to the data

available would be

cmin = c̄

(

1− 0.22√
n
+O

(

1

n

))

,

where c̄ ≈ n2/(2k) is the average cost. What is clear is that

the gap between the minimum cost and the average cost found

by a local search is of order n2.
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Fig. 12. Plot of the expected maximum fitness (expected minimum cost
for Graph-Colouring), the average fitness (average cost for Graph-Colouring)
found by local search algorithm and the variance in the fitness of the
local optima versus 1/n (1/

√
n for Graph-Colouring). This is calculated

by performing 105 hill-climbs on 100 randomly generated instances of the
problem.

The bottom graphs in figure 12 show the variance in c/n

for Max-Sat and c/n2 for graph-colouring. We see that this

variance decreases towards zero in both cases, indicating that

as n increases, it becomes less likely for local search to find

local minima with a cost close to the global minimum cost.

In figure 13, we plot the log-probability of local search

finding a global minimum as a function of the instance size.

The straight line fits are consistent with an exponential fall

off in the probability of finding a local optimum for all these

problems. Note that we have chosen parameters so that both

Max-Sat and graph-colouring are in their unsatisfiable (hard)

phase. The exponents indicate the rate at which the problems

become difficult (at least for the local search we have used).

By this measure the quadratic assignment problem becomes

harder, substantially faster than the other problems, followed

by graph-colouring.
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Fig. 13. Natural log-probability of finding the maximum fitness optima
versus n averaged over 100 randomly generated instances. The number of
runs is 106. For the Graph-Colouring problem the number of colours is k = 5
and for the Max-Sat problem α = 8.

For Euclidean TSP and quadratic assignment the probability

of two configurations having the same cost is very low and

consequently there will nearly always be a unique global

optimum. This is not the case for Max-Sat and graph-colouring

where there is only a relatively small number of cost levels. In

figure 14 we show a histogram of the number of local optima.

In just over one third of cases the global optimum is unique,

but in a reasonable number of cases there can be quite a few

global optima.
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Fig. 14. Histogram of the number of global optima for 10 000 random Max-
Sat and Graph-Colouring instances with n = 100 where α = 8 and k = 8. The
number of runs is 105 on each problem instance.

Often the global optima are quite close to each other

in Hamming distance, but on occasion uncorrelated global

optima can exist. This is shown in figure 15 where we

have calculated the Hamming distance between global optima
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Fig. 15. Histogram of Hamming distances between the global optima in the
Max-Sat and Graph-Colouring problems. For the Graph-Colouring problem
we have also included the histogram of partition distances. The histograms are
made from 10 000 randomly generated problem instances. For the Max-Sat
problem n = 100 and α = 8, for the Graph-Colouring n = 50 and the number
of colours is k = 5.

averaged over a large number of instances with multiple

global optima. The mean distance between randomly chosen

pairs of configurations for Max-Sat with n = 100 is 50. For

graph-colouring we show both the Hamming distance and the

partition distance between global optima (the partition distance

being the minimum Hamming distance between two config-

urations up to a permutation in the colours). The expected

Hamming distance between random pairs of configurations

for this graph-colouring problem instance is 40, while the

mean partition distance is around 33. In both problems we

see that there can exist global optima which are unrelated to

one another.

D. Proximity to Global Optima

Given that it is exponentially unlikely to find a global

optimum, an important question is whether it is possible to

infer information about the position of the global optimum

(or a high quality optimum) from information provided by

local optima. To study this, in figure 16, we show a density

plot of the number of local optima as a function of the cost

and the distance from the nearest global optimum. For graph-

colouring we use the partition distance, since otherwise the

colour-permutation symmetry would hide the fitness distance

correlation. For TSP we show this both for Euclidean instances

and for random instances. In all cases, there is some fitness dis-

tance correlation, although this is rather minimal for quadratic

assignment and for TSP with random instances.

As fitter members of the population tend to be closer to a

global optimum, this could allow population-based algorithms

to search the landscape more effectively than local search. In

Max-Sat an effective search method is to perform a number

of independent searches and then to move to the centroid of

the best solutions found by local search [39], [3] (that is, the

solution with the lowest mean distance to the best solutions).

Although the centroid is usually at a higher cost than any

of the solutions found by local search, when the search is

restarted, the cost rapidly decreases and typically beats any of

the solutions found by local search. We can understand this

behaviour from figure 16. Local search finds optima which

tend to be at lower costs than the average optima. These

are slightly correlated with the global optima. The centroid,

although not itself an optimum, is correlated with the global

optimum. Although this method does not typically find the
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Fig. 16. Density plot of local optimum configurations as a function of their
cost and Hamming distance from the most frequently visited global optimum.
For the Max-Sat and the Quadratic Assignment problems we use the Hamming
distance; for the Graph-Colouring problem the partition distance and for the
Travelling Salesman problem the number of non-common edges are used as
the distance measure. The number of colours in the Graph-Colouring problem
is k = 5 and in Max-Sat α = 8. For the Travelling Salesman problem two types
of the Random and the Euclidean are used. The number of runs is 106.

global optimum solution, it will often find a solution close to

a global optimum with a low cost.

In graph-colouring, one of the most effective algorithms

over the last 10 years for solving dense random graphs is a

hybrid genetic algorithm [57], [4]. Again we can understand

this in terms of the density plot shown in figure 16. This

algorithm uses a specially tailored crossover which finds a

child with a small partition distance between its two parents.

The crossover is hybridised with a local search. The local

search finds solutions which are below average cost and thus

tend to be correlated with a global optimal solution. Crossover

produces new configurations which are no longer optimal, but

tend to be more correlated with a global optimum. Reapplying

local search tends to find a nearby above-average solution,

which is likely to be even more correlated with the global

solution.

However, the fitness distance correlation is rather weak.

In figure 17 we show the average distance to the global

optima for configurations in different cost bins. The axes have

been rescaled to make the data fall on top of each other

for different problem sizes (we were unable to do this for

quadratic assignment).

For both Max-Sat and graph-colouring we find that the mean

distance to a global optimum appears to scale approximately

as

dnearest ≈ n

(

c− cmin

n

)0.33

.

Therefore the mean distance to the global optimum for a local

optimum with cost of one greater than the global optimum

scales as n0.67. The number of configurations in a Hamming-

ball of size h is given by
(

n
h

)

≥ (n/h)h so that the number of

configurations in a Hamming ball with a radius of dnearest is

greater than n0.33n0.66
. Within this radius there are no lower cost
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Fig. 17. Measure of the mean distance to the closest global optimum from a
local optimum of cost c for different problems of different size. The data are
averaged over 100 problem instances and the number of runs is 106. For the
Max-Sat problem α = 8, and for the Graph-Colouring the number of colours
is k = 2.

configurations providing heuristic information about where

to search. The situation for TSP is no better, with very fit

solutions having in expectation around 0.2n edges different

from the global solution. The number of configurations in a

Hamming ball of this size is
(

n
0.2n

)

(0.2n)!= n!/(0.8n)!≈ n0.2n

(although not all these configurations are valid tours). The

situation is even worse for quadratic assignment where the

gap between a good solution and the global optimal solution is

greater than 0.8n and the number of configurations in a Ham-

ming ball of this size is
(

n
0.8n

)

(0.8n)! = n!/(0.2n)! ≈ n0.8n.

Thus, finding a global optimum, even when starting from the

next fittest local optimum, is still extremely challenging.

E. Principle Component Analysis

The local optima are correlated; however, a single measure

of the correlation provides very little information about the

directions in which the local optima differ. The very large

number of these local optima may actually just vary in a

relatively small number of ways. For example, in TSP we

can imagine a situation where there are many small local

alterations that are independent of each other. This can give

rise to an exponential number of local optima by choosing

different combinations of local variations. To explore the

variation in local optima, we perform principle component

analysis (PCA) on the set of local optima. For Max-Sat we can

compute PCA directly on the binary vectors representing the

solutions. For graph-colouring we consider vectors where each

component represents a pair of edges in the graph. We assign

1 to the component if the edges are connected to nodes of the

same colour and zero otherwise. Clearly, this representation is

invariant to colour permutations. For TSP we again consider a

representation in terms of the occupancy of each possible edge

in the tour. Finally, for quadratic assignment we consider the

occupancy of an edge in the bipartite graph between facilities

and locations.

This approach to exploring the set of local optima was first

introduced in [5]. That paper shows that each eigenvector can

be viewed as showing possible alternatives between different

ways of solving TSP. It was also shown that, by projecting

the data in the space spanned by the first few principle

components, it was often possible to find clustering in the

data that was not transparent otherwise. Often the high quality

optima were confined to a single cluster, suggesting that this

approach could potentially be used for guiding search.

In this paper we consider only the spectrum of eigenvalues,

that is the values of eigenvalues. Note that the expected

reconstruction error of a local minimum is proportional to the

sum of the eigenvalues that are dropped. Thus this spectrum

provides a measure of the number of relevant directions in the

space of local optima. In figure 18 we show the eigenvalue

spectrum for the four problems of interest.
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Fig. 18. Plot of the eigenvalues of the covariance matrix of local optima
versus their rank.

Note that the size of the eigenvalues measures the number of

components in which the solutions differ from each other. A

rapid fall off shows that the variation is dominated by only

a few major directions, while a slower fall off shows that

local optima can be constructed in very different ways. Max-

Sat has by far the smallest number of directions in which

the data can differ. This reflects the much smaller search

space. Note that in Max-Sat the variation in the local optima

increases considerably with α . This shows that increasing α

considerably increases the size of the space in which the

local optima sit. All the other problems have a very rapid

initial drop off in the eigenvalue spectrum, indicating that

there is a small number of directions where there are very

prominent changes in the solutions. In graph-colouring we

see that increasing k decreases the size of the space spanned

by the local optima, despite increasing the size of the search

space. In TSP we see that different problem types lead to very

different eigenvalue structures. Euclidean TSP is somewhat

atypical in being particularly easy to solve. This is reflected

in that the eigenvalue spectrum falls of faster than that of

other problems. Finally, we note that quadratic assignment

has a large number of non-zero eigenvalues, which may in

part explain its difficulty (although note that graph-colouring

with k = 3 shows slightly more variation).
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V. CONCLUSION

This paper provides a comparison between four very dif-

ferent combinatorial optimisation problems. We have had to

be selective in the data we present; a more complete set

of data is available in the problem specific papers [3], [4],

[5], [6]. The first observation is the remarkable degree of

similarity we observe in the four problems. Some of this is

qualitative only, and appears more similar than it really is,

due to selection of the scale of the axes. Nevertheless, there

are substantial similarities. As we argued earlier, we believe

the cause of these similarities is that the structure of the cost

function is similar in so far as they are all sums of a large

number of largely independent components (clearly they are

not completely independent as this is what makes the problems

hard). Furthermore, changing a small number of variables only

affects a small number of components, so there is a long range

correlation between costs. This results in a multi-modal fitness

landscape with some correlation between local minima.

At least for the properties we examined (which we believe

are all relevant to designing or choosing a search algorithm),

this similarity seems to be much more important than the

differences in the problem. These differences include the

neighbourhood structure, the size of the search space and

symmetries. In designing algorithms, these features are essen-

tial at an operator level (i.e. designing mutation or crossover

operators for EAs). However, at a high level (e.g. using a

population to explore the search space over long distances),

these differences seem much less important and the variation

within a problem class can be as significant as variations

between problem classes. Being able to separate the low-

level (short-scale) properties from the large-scale properties is

clearly of the utmost importance in developing meta-heuristics.

Despite the similarities, there are some important differ-

ences between problems. Most significantly, in the problems

we have studied, is the division between the constraint op-

timisation problems with a satisfiability phase transition and

TSP and quadratic assignment which do not show the phase

transition. Although all four problems behave similarly, when

Max-Sat and graph-colouring are above the phase transition,

there is a significant qualitative difference around and below

the phase transition. With a small number of constraints

(i.e. significantly below the phase transition) Max-Sat and

graph-colouring have a significant proportion of configurations

which satisfy all the constraints, and they tend to be easy to

solve. Around the phase transition, there can be exponentially

large low-cost flat regions which can dominate the search

time. At the same time, some of these correspond to local

rather than global optima. Efficient methods for navigating

through this space, such as Tabu search or using additional

heuristic information, can substantially speed up search for

these problems.

None of the behaviour we observe is that surprising, al-

though there are properties that would be difficult to guess and

occasionally contradict commonly held believes. We outline

some of these below.

• Auto-correlation is often used as a measure of problem

difficulty, and yet, as we have seen, all four hard problems

we have studied have a low correlation length. Further-

more the correlation length is oblivious to properties

such as the phase transition where the problem difficulty

changes drastically. In our opinion the importance of

auto-correlation is often over played in studies of fitness

landscapes.

• In all four problems the presence of a local optimum

strongly influences the expected cost of a configuration

up to a Hamming distance equal to the random Hamming

distance between configurations. One consequence of this

is that fitter local optima tend to have significantly larger

basins of attraction than less fit local optima as their

whole neighbourhood is on average fitter than that of a

less fit local optimum.

• The time for local search to reach a local optima is

poorly studied, although clearly of the utmost importance

in designing heuristic search algorithms. The number of

moves taken to reach an optimum grows sub-quadratically

as a function of the problem size for all four problems

investigated. However, it can grow exponentially large

as we approach the phase transition (for those problems

with a phase transition). The cause of this is the large

amount of time spent on very large flat regions of the

search space. The position of the phase transition is

the most important determiner of the behaviour of the

problem for constraint satisfaction problems. In the phase

where it is not possible to satisfy many of the constraints,

the constraint satisfaction problems (Max-Sat and graph

colouring) exhibit similar behaviour to TSP and quadratic

assignment.

• In all problems investigated, the number of local optima

grows exponentially as a small polynomial of the instance

size. This measure in combination with the basins of

attraction determines the difficulty of finding a global

optimum.

• The probability of finding a global optimum falls off

exponentially with the instance size; however, this fall

off is often sufficiently slow that medium sized problems

(often up to several hundred elements) can be solved

quite efficiently by running local search multiple times.

Interestingly, these sized problems are often found in

benchmarking libraries. Extreme caution is required in ex-

trapolating results obtained on such problems as repeated

local search becomes ineffective when considering larger

problems.

• In all problems very fit local optima often are a consider-

able distance apart. This is particularly evident in Max-Sat

and graph colouring where frequently there are multiple

global optima. These will often have small correlations

with each other showing that it is often possible to obtain

optimal solutions in very different ways.

• Despite the above observation there is a small but

significant positive correlation between fitness and the

proximity to a global optimum. The structure of this,

however, can vary considerably between problem types.

An evolutionary algorithm using selection and crossover

(possibly hybridised with a local search algorithm) may

be able to exploit this correlation.



IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION 14

• In all problems the mean distance from a global optimum

to the next best optimum is sufficiently large that finding

the global optimum by exhaustively searching the prox-

imity of the next best optima is intractable in problems

of any size.

• Finally, although the number of local optima increases

exponentially in some small polynomial of the system

size, there are often only a relatively small number of

ways in which the local optima vary. This is revealed by

the rapid fall off in the size of the principle components.

Optimisation is not easy. There are many properties that

can affect the choice of search algorithm to be used. We have

explored a number of them in this paper and a few more prop-

erties in the problem specific papers [3], [4], [5], [6]. However,

there is a surprising, but pleasing uniformity in the behaviour

of a lot of apparently different optimisation problems. This

holds out the promise that the task of understanding fitness

landscapes, for at least a large group of real world problems,

is not endless. We believe there is the hope of modelling many

of the properties of a fitness landscape for many different

problems using only a small number of parameters; hence,

providing a powerful classification system for landscapes. We

have not attempted that in this paper, but rather, provided the

raw data, as we believe it may be of use to other researchers

interested in understanding the anatomy of fitness landscapes.
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[30] P. Collard, S. Vérel, and M. Clergue, “Local search heuristics: Fitness
cloud versus fitness landscape,” CoRR, vol. abs/0709.4010, 2007.

[31] G. Lu, J. Li, and X. Yao, “Fitness-probability cloud and a measure of
problem hardness for evolutionary algorithms,” in Proceedings of the

11th European conference on Evolutionary computation in combinato-

rial optimization, ser. EvoCOP’11. Berlin, Heidelberg: Springer-Verlag,
2011, pp. 108–117.

[32] L. Vanneschi, M. Tomassini, P. Collard, S. Vrel, Y. Pirola, and G. Mauri,
“A comprehensive view of fitness landscapes with neutrality and fitness
clouds,” in Genetic Programming, ser. Lecture Notes in Computer
Science. Springer Berlin - Heidelberg, 2007, vol. 4445, pp. 241–250.

[33] K. Mathias and D. Whitley, “Genetic operators, the fitness landscape
and the traveling salesman problem,” in Parallel Problem Solving from

Nature. Elsevier Science Publishers, 1992, pp. 219–228.
[34] P. F. Stadler and W. Schnabl, “The landscape of

the traveling salesman problem,” Physics Letters A, vol.
161, no. 4, pp. 337 – 344, 1992. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/0375960192905573

[35] K. D. Boese, “Cost versus distance in the travelling salesman problem,”
UCLA computer science department, Los Angeles, Tech. Rep., 1995.

[36] H. Yoshizawa and S. Hashimoto, “Landscape analyses and global search
of knapsack problems,” in Systems, Man, and Cybernetics, 2000 IEEE

International Conference on, vol. 3, 2000, pp. 2311 –2315 vol.3.
[37] J. Tavares, F. B. Pereira, , and E. Costa, “Multidimensional Knapsack

Problem: A Fitness Landscape Analysis,” IEEE Transactions on Systems,

Man, and Cybernetics -Part B, vol. 38, no. 3, pp. 604–616, 2008.
[38] Weixiong and Zhang, “Configuration landscape analysis

and backbone guided local search.: Part i: Satisfiabil-
ity and maximum satisfiability,” Artificial Intelligence, vol.



IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION 15

158, no. 1, pp. 1 – 26, 2004. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0004370204000542
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