and it has been conjectured that n may be replaced by $m \leq n$ where m is the length of the longest circuit (with no repeated nodes or edges) in the graph of A. We show that when \boldsymbol{A} is doubly stochastic this conjecture is correct not only for the eigenvalues of A but also for all elements of the field of values of A.

Note: The conjecture mentioned above has recently been proven by R. B. Kellogg and A. B. Stephens in a paper to appear in Linear Algebra and Appl.

Received May 3, 1976.

On the largest prime factors of \boldsymbol{n} and $\boldsymbol{n}+\mathbf{1}$
Paul Erdös and Carl Pomerance

Let $P(n)$ denote the largest prime factor of n, let $A(x, t)$ denote the number of $n \leq x$ with $P(n) \geq x^{t}$, and let $B(x, t, s)$ denote the number of $n \leq x$ with $P(n) \geq x^{t}$ and $P(n+1) \geq x^{s}$. A classical result of Dickman is that

$$
a(t)=\lim _{x \rightarrow \infty} x^{-1} A(x, t)
$$

is defined and continuous on $[0,1]$. It is natural to guess that

$$
b(t, s)=\lim _{x \rightarrow \infty} x^{-1} B(x, t, s)
$$

is defined and continuous on $[0,1]^{2}$ and that $b(t, s)=a(t) a(s)$. Lending some support to these guesses, we prove that for each $\epsilon>0$, there is a $\delta>0$ such that the number of $n \leq x$ with

$$
x^{-\delta}<P(n) / P(n+1)<x^{\delta}
$$

is less than ϵx. Our proof entails Brun's method. A corollary is that the probability that $P(n)>P(n+1)$ is positive (almost certainly this probability is 1/2).

Our methods allow us to say something about integers n which have the same sum of their prime factors as $n+1$. We prove the number of such $n \leq x$ is $0\left(x /(\log x)^{1-\varepsilon}\right)$ for every $\epsilon>0$. We know a proof in the case $\epsilon=0$ as well, but it is more complicated and not presented.

In addition we present a brief discussion on the largest prime factors of 3 or more consecutive numbers.

