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ABSTRACT

The dynamics of gamma-ray burst jets during the afterglow phase have an important effect

on the interpretation of their observations and for inferring key physical parameters such

as their true energy and event rate. Semi-analytic models generally predict a fast lateral

expansion, where the jet opening angle asymptotically grows exponentially with its radius.

Numerical simulations, however, show a much more modest lateral expansion, where the

jet retains memory of its initial opening angle for a very long time, and the flow remains

non-spherical until it becomes subrelativistic, and only then gradually approaches spherical

symmetry. Here we suggest a new analytic model based on a new physically derived recipe for

the lateral expansion. We also generalize the model by relaxing the common approximations

of ultrarelativistic motion and a narrow jet opening angle. We find that the new analytic model

fits much better the results of numerical simulations, mainly because it remains valid also

in the mildly relativistic, quasi-spherical regime. This model shows that for modest initial

jet half-opening angles, θ0, the outflow is not sufficiently ultrarelativistic when its Lorentz

factor reaches Ŵ = 1/θ0 and therefore the sideways expansion is rather slow, showing no

rapid, exponential phase. On the other hand, we find that jets with an extremely narrow initial

half-opening angle, of about θ0 ≪ 10−1.5 or so, which are still sufficiently ultrarelativistic at

Ŵ = 1/θ0, do show a phase of rapid, exponential lateral expansion. However, even such jets

that expand sideways exponentially are still not spherical when they become subrelativistic.

Key words: hydrodynamics – relativistic processes – shock waves – methods: analytical –

gamma-ray burst: general – ISM: jets and outflows.

1 IN T RO D U C T I O N

The ultrarelativistic outflows that power gamma-ray bursts (GRBs)

are thought to be collimated into narrow jets (for reviews see Piran

2005; Granot 2007; Granot & Ramirez-Ruiz 2011). The evidence

for this is rather indirect, however, since their images are usually

unresolved, and in the best case (GRB 030329) the late time radio

afterglow image was only marginally resolved (Frail et al. 1997;

Taylor et al. 1997, 2004; Pihlström et al. 2007). The different lines

of evidence for jets in GRBs include analogy to other astrophysical

relativistic outflow sources such as active galactic nuclei or mi-

croquasars (e.g. Rhoads 1997), the difficulty in transferring enough

energy to ultrarelativistic ejecta in a spherical explosion of a massive

star (for long-duration GRBs; Tan, Matzner & McKee 2001; Perna

& Vietri 2002; Granot 2007), extremely large isotropic equivalent

energies in some GRBs (with Eγ,iso ≈ 4.9 M⊙c2 in GRB 080916C;

Abdo et al. 2009) and an achromatic steepening of the afterglow

light curves of some GRBs that is attributed to a jet (known as a

⋆E-mail: j.granot@herts.ac.uk

‘jet break’; Rhoads 1997; Fruchter et al. 1999; Harrison et al. 1999;

Kulkarni et al. 1999; Rhoads 1999; Sari, Piran & Halpern 1999;

Halpern et al. 2000; Price et al. 2001). Therefore, there is very little

direct observational information about the jet angular structure and

dynamics, which makes it difficult to interpret GRB afterglow ob-

servations and infer from them important physical parameters such

as the jet energy and opening angle, the external density profile and

the microphysical parameters of the relativistic collisionless shock

powering the afterglow emission.

Most studies of GRB jet dynamics during the afterglow phase

have focused on a roughly uniform jet with well-defined, sharp

edges. We shall also focus on such a uniform jet, and only briefly

remark on the expected relation to jets with a smoother angu-

lar structure (also known as ‘structured jets’). The jet dynamics

have been studied both analytically (Panaitescu & Mészáros 1999;

Rhoads 1999; Sari, Piran & Halpern 1999; Kumar & Panaitescu

2000; Moderski, Sikora & Bulik 2000; Piran 2000; Oren, Nakar

& Piran 2004; Granot 2007) and numerically, using 2D special

relativistic numerical simulations (Granot et al. 2001; Cannizzo,

Gehrels & Vishniac 2004; Zhang & MacFadyen 2009; Meliani &

Keppens 2010; van Eerten, Zhang & MacFadyen 2010; van Eerten
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& MacFadyen 2011; Wygoda, Waxman & Frail 2011), as well as an

intermediate approach where the dynamical equations are integrated

over the radial profile of the thin shocked region, thus reducing the

set of partial differential equations to one dimension (Kumar &

Granot 2003).

Let us consider a uniform double-sided jet of total energy Ejet,

initial half-opening angle θ0 and initial Lorentz factor Ŵ0. GRB

observations suggest that typically Ŵ0θ0 ≫ 1. At early times, as

long as Ŵ ≫ θ−1
0 , the bulk of the jet is causally disconnected from

its edge and thus evolves as if it where part of a spherical flow

with an energy Eiso = (1 − cos θ0)−1Ejet ≈ 2θ−2
0 Ejet, following

the spherical Blandford & McKee (1976) self-similar solution. This

early phase corresponds to radii R < Rj, where the jet radius Rj

is defined as the radius where Ŵ = 1/θ0 for a spherical flow with

E = Eiso. At R > Rj, the bulk of the jet is in causal contact with

its edge and the jet can in principal rapidly expand sideways. How-

ever, the degree of lateral spreading at this stage, which strongly

affects the dynamics, is not well known. Therefore, the jet dynam-

ics at R > Rj are still controversial. In particular, the radius RNR

at which the flow (or jet) becomes non-relativistic still remains

uncertain.

The Sedov length for a spherical flow with the true jet energy,

E = Ejet (i.e. the radius where it sweeps up a rest mass energy

equal to its own energy and becomes non-relativistic), RS(Ejet),

is very close to Rj. Therefore, in order for the jet to be already

close to spherical when it becomes non-relativistic (i.e. at RNR), it

must expand sideways very quickly and become close to spherical

already near Rj [i.e. RNR cannot be ≫Rj ∼ RS(Ejet)]. This is indeed

roughly what happens in simple analytic models, where the jet half-

opening angle, θ j, starts growing exponentially with radius near Rj,

and the jet quickly becomes close to spherical and non-relativistic

at a radius RNR ∼ (1 − ln θ0)Rj ∼ (1 − ln θ0)RS(Ejet), which is

larger than Rj only by a logarithmic factor,1 while at R > RNR

the flow quickly approaches the Newtonian, spherical, self-similar

Sedov–Taylor solution.

Numerical simulations, however, suggest that most of the energy

remains within the initial jet half-opening angle θ0 until the flow

becomes mildly relativistic, and only then does the flow start to

gradually approach spherical symmetry (Granot et al. 2001; Can-

nizzo et al. 2004; Zhang & MacFadyen 2009; Meliani & Keppens

2010; van Eerten et al. 2010). Under the crude approximation that

the jet does not expand sideways and keeps evolving as a conical

section of a spherical flow up until the radius where it becomes non-

relativistic, the latter is given by RNR ∼ RS(Eiso) = θ
−2/(3−k)
0 Rj. In

this case the flow is still highly non-spherical at RNR, and only very

gradually approaches spherical symmetry (Granot, Ramirez-Ruiz

& Loeb 2005).

This clearly shows that without lateral expansion RNR is sig-

nificantly larger, by a factor of ∼ θ
−2/(3−k)
0 /(1 − ln θ0) (which is

≫1 for θ0 ≪ 1), than if there is fast lateral expansion at R > Rj.

Thus, the dynamics of the flow at small radii (R ≪ Rj) and at large

radii [R ≫ RS(Eiso)] are reasonably well known, while at inter-

mediate radii [Rj � R � RS(Eiso)] they are still controversial. For

typical values of θ0 ∼ 0.1, this range of radii may appear rather

small, RNR/Rj ∼ 1 − ln θ0 ∼ 3.3 for exponential lateral expan-

sion and RNR/Rj ∼ θ
−2/(3−k)
0 ∼ 4.6 for no lateral expansion up

1 The mild discrepancy, by a logarithmic factor, between RNR and RS(Ejet)

∼ Rj likely arises from the fact that in simple analytic models the swept-

up mass at the radius where the jet becomes spherical is smaller than the

external rest mass within a sphere of the same radius.

to RNR ∼ RS(Eiso) with k = 0. However, it corresponds to a large

range in observed times (over which the corresponding afterglow

emission reaches us), of tobs,NR/tobs,j ∼ (1 − ln θ0)θ−2
0 ∼ 330 and

∼ θ
−(8−2k)/(3−k)
0 ∼ 460, respectively, since the observed time scales

as tobs ∼ R/cŴ2, and Ŵ decreases by a large factor (of θ−1
0 ) within

this range of radii.

Most simulations so far were for θ0 = 0.2, or even wider initial jet

half-opening angles. Recently, however, Wygoda et al. (2011) and

later van Eerten & MacFadyen (2011) have performed simulations

also for narrower initial jets, θ0 = 0.05, 0.1 and 0.2. Wygoda et al.

(2011) have found that significant lateral spreading starts when Ŵ

drops below θ−1
0 , as predicted by analytic models, and tried to rec-

oncile the apparent discrepancy with analytic models by attributing

it to their small range of validity after significant lateral spreading

starts (1 ≪ Ŵ < θ−1
0 ) for the typical modest values of θ0 used in

the simulations. van Eerten & MacFadyen (2011) disagree with this

conclusion, and we address this dispute in Section 7. More recently,

Lyutikov (2011) has argued that significant lateral spreading is ex-

pected only at a later stage, when Ŵ drops below θ
−1/2
0 (rather than

θ−1
0 as obtained in simple analytic models), based on an analytic

consideration (which we address in Section 3 and Appendix A, and

find to be in error). Thus, there appears to be an ongoing debate on

these important issues.

Here we try to reconcile the apparent differences between the

analytic and numerical results, in the light of this recent debate.

The different relevant critical radii are discussed in Section 2. In

Section 3 we discuss the recipe for lateral expansion used by an-

alytic models, and derive a new recipe that takes into account the

non-spherical nature of the shock driven by the jet into the external

medium. In Section 4 we construct an analytic relativistic model,

which includes both the traditional recipe and our new recipe for the

jet lateral expansion. It is also shown that while the region of interest

and validity of the analytic model (corresponding to 1 ≪ Ŵ < θ−1
0 )

increases as θ0 decreases, θ j reaches lower values, resulting in a

narrower jet at the time when the analytic solution becomes invalid.

Because this relativistic model breaks down in a region of interest

(both for typical GRB parameters and for comparison with simula-

tions), in Section 5 we generalize it so that it would be valid also

at low Ŵ and high θ j, using two different assumptions on the accu-

mulation of the swept-up external mass (in Sections 5.1 and 5.2).

According to the results of these models (Section 5.3), a phase of

rapid exponential lateral expansion exists only for sufficiently nar-

row initial jet half-opening angles, of approximately θ0 ≪ 0.05, 0.03

and 0.01 for k = 0, 1 and 2, respectively. In Section 6 we compare

our analytic models to numerical simulations (with a modest θ0 =
0.2) and find reasonably good agreement (with no exponential lat-

eral expansion in both cases), where the differences between the

two recipes for the lateral spreading have a smaller effect on the

agreement with numerical simulations compared to the generaliza-

tion of the model to small Ŵ and large θ j. The implications of our

results are discussed in Section 7.

2 T H E D I F F E R E N T C R I T I C A L R A D I I

AND TWO EXTREME ASSUMPTI ONS

F O R T H E J E T DY NA M I C S

Using the approximate equation for energy conservation (for Ŵ ≫
1), E ≈ Ŵ2M(R)c2, where M(R) is the swept-up rest mass at radius R

for a spherical flow in an external density ρext = AR−k (with k < 3),

and the definition of the jet radius Rj as the radius where Ŵ = θ−1
0
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Figure 1. A schematic figure showing the evolution of the jet radius R = R‖ (i.e. its extent along its symmetry axis) and lateral size R⊥ as a function of the

lab frame time t for two extreme assumptions on its degree of lateral spreading: (1) mildly relativistic lateral expansion in the jet comoving frame and (2) no

lateral spreading until the jet becomes non-relativistic. The jet becomes spherical when R‖ and R⊥ become equal, which occurs well after the jet becomes

non-relativistic, and then joins the Sedov–Taylor solution.

for a spherical flow of energy Eiso, we obtain

Rj =
[

(3 − k)Ejet

2πAc2

]1/(3−k)

= 21/(3−k)RS(Ejet). (1)

Similarly, the Sedov radius of a spherical flow with E = Eiso is

RS(Eiso) =
[

(3 − k)Eiso

4πAc2

]1/(3−k)

= θ
−2/(3−k)
0 Rj

=
(

θ2
0

2

)−1/(3−k)

RS(Ejet). (2)

Two extreme assumptions on the degree of lateral spreading,

which likely bracket the true jet dynamics, are (1) mildly relativistic

lateral expansion in the jet comoving frame and (2) no lateral spread-

ing until the jet becomes non-relativistic. Assumption 1, which is

made in most semi-analytic models, results in exponential growth

of θ j(R), until the jet becomes quasi-spherical and non-relativistic

at

RNR,1 ∼ (1 − ln θ0)Rj (fast lateral spreading). (3)

Assumption 2 was so far studied mainly by Granot et al. (2005),

and leads to

RNR,2 = RS(Eiso) = θ
−2/(3−k)
0 Rj (no lateral spreading). (4)

In this case the jet is still very far from spherical symmetry at RNR,

and thus approaches spherical symmetry only after the radius grows

by a factor of b2, of a few or several. Moreover, since the radius of

the Sedov–Taylor solution scales as

RST(E, t) ∼ RS(E)

[

ct

RS(E)

]2/(5−k)

∼
(

Et2

A

)1/(5−k)

, (5)

and at the non-relativistic transition time, tNR,2 ∼ RNR,2/c =
RS(Eiso)/c, the Sedov–Taylor radius of a spherical flow with the

true jet energy is much smaller than the jet radius at that time,

RST(Ejet, tNR,2)/RNR,2 ∼ θ
−2/(5−k)
0 ≪ 1, the flow approaches spher-

ical symmetry only at the time tsph,2 when RST(Ejet, tsph,2) = b2RNR,2

= b2RS(Eiso), which corresponds to tsph,2/tNR,2 ∼ θ−1
0 b

(5−k)/2
2 ≫ 1

(see equation 6 of Granot et al. 2005). Note that tsph,2/tNR,2

is much larger than the factor (b2) by which the radius grows

over the same time. For assumption 1, similar arguments imply

tsph,1/tNR,1 ∼ (1 − ln θ0)(3−k)/2b
(5−k)/2
1 , where b1 < b2 can be ex-

pected.

Fig. 1 shows the jet radius R = R‖ (i.e. its extent along its sym-

metry axis) and lateral size R⊥ as a function of the lab frame time t

for these two assumptions. The region where the dynamics for these

two extreme assumptions differ is basically where the dynamics are

most uncertain, and corresponds to the range of radii RS(Ejet) < R

< b2RS(Eiso) (i.e. a factor of fR ∼ θ
−2/(3−k)
0 b2 in radius), and (lab

frame) times RS(Ejet)/c < t < tsph,2 ∼ θ−1
0 b

(5−k)/2
2 RS(Eiso)/c (or a

factor of ft ∼ f
(5−k)/2
R ∼ θ

−(5−k)/(3−k)
0 b

(5−k)/2
2 in time).

Altogether, the ordering of the different radii is

RS(Ejet) ∼ Rj < RNR,1 < RS(Eiso) = RNR,2 (6)

or

1 ∼
RS(Ejet)

Rj

∼ (1 − ln θ0)−1 RNR,1

Rj

∼ θ
−2/(3−k)
0

RS(Eiso)

Rj

= θ
−2/(3−k)
0

RNR,2

Rj

. (7)

3 A NA LY T I C R E C I P E FO R L AT E R A L

E X PA N S I O N

The ‘traditional’ basic underlying model assumptions used for the

analytic modelling of relativistic jet dynamics during the afterglow

phase (e.g. Rhoads 1999; Sari et al. 1999) are (i) a uniform jet within

a finite half-opening angle θ j with an initial value θ0 that has sharp

edges; (ii) the shock front is part of a sphere at any given lab frame

C© 2012 The Authors, MNRAS 421, 570–587
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time t; (iii) the outer edge of the jet is expanding sideways mildly

relativistically, with u′
θ ∼ 1 in the local rest frame of the jet (where

quantities are denoted with a prime); and (iv) the jet velocity is

always in the radial direction and θ j ≪ 1. Under these assumptions,

the jet dynamics are obtained by solving the 1D ordinary differential

equations for the conservation of energy and particle number.2

The lateral expansion speed in the lab frame (i.e. the rest frame of

the central source and the external medium) is βθ = uθ/Ŵ = u′
θ/Ŵ,

where uθ = Ŵβθ is its lateral component of the 4-velocity (which

is Lorentz invariant, so that u′
θ = uθ ), while ur = Ŵβr is its radial

component. Primed quantities are measured in a frame moving at

βr r̂ in the radial direction, so that β ′
r = 0 and β ′ = [1−(Ŵ′)−2]1/2 =

β ′
θ . The usual assumption (Rhoads 1999; Sari et al. 1999) is that

u′
θ ∼ 1, which corresponds to

βθ ∼
1

Ŵ
. (8)

As is shown in the next section, βθ ≈ dθj/d ln R directly determines

the jet lateral expansion rate in the lab frame.

Here we derive a new physically motivated recipe. It relies on

the fact that for any shock front, with an arbitrary shape, the local

velocity vector of the material just behind the shock front as mea-

sured in the rest frame of the upstream fluid ahead of the shock (i.e.

the lab frame in our case), β, is normal to the shock front (i.e. in the

direction of the shock normal, n̂, at that location; Kumar & Granot

2003), namely

β̂ = n̂. (9)

A simple way to understand this result is that as each fluid element

passes through the shock, it samples only the local conditions (and

is not aware of the large-scale or global shock front geometry),

and locally the shock normal is the only preferred direction in the

upstream rest frame (e.g. the pressure gradients that accelerate the

fluid element are in the −n̂ direction and thus accelerate it in the n̂

direction). For an axisymmetric shock (with no dependence on the

azimuthal angle φ), equation (9) immediately implies that the angle

α between the shock normal, n̂, and the radial direction, r̂ , which

is defined by cos α ≡ n̂ · r̂ = β̂ · r̂ , satisfies

tan α =
βθ

βr

= −
1

R

∂R

∂θ
= −

∂ ln R

∂θ
, (10)

where θ is the polar angle measured from the jet symmetry axis.

Since R ∼ βct, we have ∂ ln R/∂θ ∼ ∂ ln β/∂θ = Ŵ−2
∂ ln u/∂θ ∼

−1/Ŵ2
θ , where 
θ is the angular scale over which u varies

significantly, and we have assumed that u decreases with θ , as is

usually expected. Since for Ŵ ≫ 1 and α ≪ 1 we also have βr ≈ 1,

equation (10) implies that βθ ∼ 1/Ŵ2
θ . For a roughly uniform jet

of half-opening angle θ j we have 
θ ∼ θ j, and therefore

βθ ∼
1

Ŵ2
θ
∼

1

Ŵ2θj

, (11)

which is our new recipe for lateral expansion.

2 For the adiabatic energy conserving evolution considered here, the equation

for momentum conservation is trivial in spherical geometry, and does not

constrain the dynamics. For a narrow (θ j ≪ 1) highly relativistic (Ŵ ≫ 1) jet,

the equation for the conservation of linear momentum in the direction of the

jet symmetry axis is almost identical to the energy conservation equation.

When the jet becomes subrelativistic the conservation of energy and linear

momentum force it to approach spherical symmetry, and once it becomes

quasi-spherical then again the momentum conservation equation becomes

irrelevant.

Equation (11) was first derived in the context of GRBs by Kumar

& Granot (2003). Recently it was rederived by Lyutikov (2011),

based on an earlier work by Shapiro (1979). Lyutikov (2011) has

argued that equation (11) implies a negligible lateral expansion as

long as Ŵ > 1/
√

θj, suggesting that with this model one obtains

a slow sideways expansion, as seen in the numerical simulations.

However, as we show later, this formula results in a slower lateral

expansion (compared to the usual recipe, i.e. equation 8) only as long

as Ŵ > 1/θ j (the standard condition for the onset of significant lateral

expansion), but once Ŵ < 1/θ j this formula leads to a faster sideways

expansion. We also show later that other factors, namely the break

down of the ultrarelativistic and small angle approximations, are the

main cause for the discrepancy between the existing simple analytic

models and the numerical simulations. For completeness we discuss

the details of Lyutikov’s and Shapiro’s work in Appendix A.

4 A SI MPLE RELATI VI STI C MODEL

We turn now to compare the traditional recipe for the lateral expan-

sion speed, βθ ∼ 1/Ŵ (equation 8), with our own new simple recipe,

βθ ∼ 1/Ŵ2θ j (equation 11), which was derived in the previous sec-

tion. These recipes are implemented here within the semi-analytic

model for the jet dynamics of Granot (2007). The main results are

provided here and we refer the reader to that work for more details

on that model. Broadly similar semi-analytic models, with some

variations, were used earlier by other authors (e.g. Rhoads 1997;

Panaitescu & Mészáros 1999; Rhoads 1999; Sari et al. 1999; Kumar

& Panaitescu 2000; Moderski et al. 2000; Oren et al. 2004).

The lateral size of the jet, R⊥, and its radius, R = R‖, are related

by R⊥ ≈ θ jR. The evolution of R⊥ is governed by

dR⊥ ≈ θjdR + βθcdt ≈
(

θj + βθ

)

dR, (12)

and therefore

dθj

d ln R
≈ βθ ≈

1

Ŵ1+aθa
j

, a =

⎧

⎨

⎩

1 (β̂ = n̂),

0 (u′
θ ∼ 1),

(13)

where we have conveniently introduced the parameter a that enables

us to analyse these two different recipes together.

The external density is assumed to be a power law in radius,3 ρext

= AR−k. The total swept-up (rest) mass, M(R), is accumulated as

dM

dR
≈ 2π(θjR)2ρext(R) = 2πAR2−kθ2

j (R), (14)

where the factor of 2 is since a double-sided jet is assumed. As long

as the jet is relativistic, energy conservation takes the form Ejet ≈
Ŵ2Mc2, which implies that Md(Ŵ2) = −Ŵ2dM , and

dŴ

dR
= −

Ŵ

2M

dM

dR
= −πAR2−kθ2

j (R)
Ŵ(R)

M(R)
. (15)

One can numerically integrate equations (13)–(15), thus obtaining

θ j(R), M(R) and Ŵ(R). Alternatively, one can use the relation Ejet ≈
Ŵ2Mc2 (energy conservation) which reduces the number of free

variables to two, and solve equations (13) and (15). Changing to

normalized dimensionless variables θ ≡ θ j/θ0, γ ≡ Ŵθ0 and r ≡
[(3 − k)/2]1/(3−k)R/Rj gives

dθ

dr
= r−1 γ −1−a(r) θ−1(r), (16)

3 We consider here and throughout this review only k < 3 for which the

shock Lorentz factor decreases with radius for a spherical adiabatic blast

wave during the self-similar stage of its evolution (Blandford & McKee

1976).
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dγ

dr
= − r2−k γ 3(r) θ2(r), (17)

where the initial conditions at some small radius r0 ≪ 1 (just after

the deceleration radius) are

θ (r0) = 1, γ (r0) =
√

3 − k

2
r

−(3−k)/2
0 . (18)

Note that by definition, γ θ = Ŵθ j. Equations (16) and (17) imply

d(γ θ )

dr
=

1

r(γ θ )a
− r2−k(γ θ )3 =

1 − r3−k(γ θ )3+a

r(γ θ )a
. (19)

For r ≪ 1 the second term on the right-hand side of equation (19)

dominates, implying (γ θ )2 ≈ [(3 − k)/2]rk−3, which is consistent

with equation (18). This suggests that the two terms become com-

parable at r ≈ rc that is given by

rc =
(

3 − k

2

)(3+a)/[(1+a)(3−k)]

. (20)

While rc > 1 for k < 1, it can reach very low values (rc ≪ 1) as

k approaches 3. We are interested here mainly in k � 2, for which

rc ∼ 1 still approximately holds. We do note, however, that the

lower values of rc for higher values of k result in an earlier onset

of significant lateral expansion for such higher k-values. Now let us

examine what happens at r ≫ rc ∼ 1. If we assume that the first

term becomes dominant, then equation (19) would imply γ θ ≈ [(1

+ a)ln r]1/(1+a), which in turn implies that the second term would

be dominant (since (γ θ )3+ar3−k ≈ [(1 + a)ln r](3+a)/(1+a)r3−k ≫ 1),

rendering the original assumption inconsistent. The same applies if

the opposite assumption is made, that the second term is dominant

(in this case γ θ ≈
√

3−k
2

r (k−3)/2 which implies that the first term

would be dominant, (γ θ )3+ar3−k ≈ [(3 − k)/2](3+a)/2r(k−3)(1+a)/2

≪ 1). This implies that the two terms must remain comparable,

implying γ θ ∼ r(k−3)/(3+a). A similar conclusion can be reached by

taking the ratio of equations (16) and (17) which implies that

d(θ3+a) = rk−3d(γ −3−a). (21)

A more careful examination shows that they must cancel each other

to leading order, and the first two leading terms for r ≫ 1 are given

by

γ θ ≈ r (k−3)/(3+a) +
3 − k

(3 + a)2
r (k−3)(2+a)/(3+a). (22)

Substituting equation (22) into equations (16) and (17) yields

d ln θ

d ln r
≈ r (3−k)(1+a)/(3+a) −

(3 − k)(1 + a)

(3 + a)2
, (23)

d ln γ

d ln r
≈ −r (3−k)(1+a)/(3+a) −

2(3 − k)

(3 + a)2
(24)

and

θ ≈ b r−(3−k)(1+a)/(3+a)2

exp

[

(3 + a)

(3 − k)(1 + a)
r (3−k)(1+a)/(3+a)

]

,

(25)

γ ≈
1

b
r−2(3−k)/(3+a)2

exp

[

−
(3 + a)

(3 − k)(1 + a)
r (3−k)(1+a)/(3+a)

]

,

(26)

where the normalization coefficient b is determined numerically.

For r ≪ 1 we have

γ θ ≈
√

3 − k

2
r (k−3)/2 +

(

3 − k

2

)(−2−a)/2
ra(3−k)/2

(3 + a)
. (27)

Fig. 2 shows the results of our model in terms of the normalized

jet half-opening angle θ = θ j/θ0 and Lorentz factor γ = Ŵθ0 (as well

as their product, γ θ = Ŵθ j) as a function of the normalized radius

r = [(3 − k)/2]1/(3−k)R/Rj. The results are shown both for a uniform

external medium (k = 0), which is the main focus of this work, as

well as for a stellar wind (k = 2; this is included mainly for com-

pleteness and is only briefly discussed in Section 7). The dynamical

range in this figure is unrealistically large, and it is shown mainly

in order to demonstrate the properties of this solution, and show

how well our analytic approximation for r > 1 works (the dashed

green lines in the middle and bottom panels, which are practically

on top of the numerical results). The excellent agreement between

our semi-analytic results (the numerical solution of equations 16

and 17) and analytic formulae (equations 25 and 26) shows that our

analytic results (including equations 22 and 27) can be safely used

in order to analyse the result of this model. This good agreement

was also used in order to find the exact values of the numerical

coefficient b that determines the normalization for θ and γ , which

were found to be b(k = 0, a = 0) ≈ b(k = 0, a = 1) ≈ 0.60, b(k =
2, a = 0) ≈ 0.395 and b(k = 2, a = 1) ≈ 0.45. Our new recipe for

the lateral expansion speed (equation 11) results in a slower initial

lateral expansion compared to the old recipe at r ≪ 1, where Ŵθ j =
γ θ ≫ 1. However, at larger radii, r � 1, where Ŵθ j < 1, it results

in a faster lateral expansion.

Fig. 3 shows similar results for a uniform external medium (k =
0) and for three different values of the initial jet half-opening angle,

θ0 = 0.05, 0.1 and 0.2. Since the dynamical equations (equations

16 and 17) involve only the normalized variables θ , γ and r, and

the initial conditions (equation 18) for θ and γ depend only on the

initial normalized radius r0, the lines for these normalized variables

in the top two panels for the different θ0 values exactly coincide.4

The two bottom panels show the unnormalized quantities θ j and

Ŵ for our three values of θ0. In the bottom panel we have added

for comparison the Sedov radius, RS(Eiso), for a spherical flow with

the same isotropic equivalent energy the jet started with. We define

RNR for our model as the radius where formally Ŵ = 1 (at which

point this model clearly breaks down). Fig. 4 is similar to Fig. 3, but

the jet radius R is normalized by the radius RS(Eiso) = θ
−2/(3−k)
0 Rj

instead of [(3 − k)/2]−1/(3−k)Rj = [(3 − k)/4]−1/(3−k)RS(Ejet).

Fig. 5 shows RNR/Rj and θ j(RNR) as a function of θ0. It can be seen

that RNR depends on θ0 only logarithmically (as can also be seen

from equation 26), while RS(Eiso)/Rj = θ
−2/(3−k)
0 is simply a power

of θ0. It is also evident that θ j(RNR) < 1 for θ0 ≪ 1, and its value

increases with θ0 (while θ j(RNR)/θ0 decreases with θ0). This can also

be seen from equation (22), using the leading-order term in r and

the definition Ŵ(rNR) = 1, which imply that θj(rNR) = r
−(3−k)/(3+a)
NR ,

while rNR (or RNR) decreases (logarithmically) with θ0. For k =
2 the jet becomes non-relativistic and the model breaks down at

smaller values of r = [(3 − k)/2]1/(3−k)R/Rj compared to k = 0,

which is consistent with the fact that the jet also starts to spread

sideways significantly at smaller values of r, of the order of rc ≈ [(3

− k)/2](3+a)/[(1+a)(3−k)]. However, we are primarily interested here

in k = 0.

The model breaks down when Ŵ drops to 1 (or even slightly

earlier). As can be seen from Figs 2–4, it breaks down earlier

for larger θ0 values, and its region of validity (especially at R �

Rj) decreases as θ0 increases. In particular, for the value of θ0 =
0.2, which was most widely used so far in numerical simulations

4 This is since the same value of r0 = 0.4 was used, but in the limit r0 ≪ 1

the dependence of the solution on r0 goes away at r ≫ r0.
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Figure 2. The jet dynamics according to our relativistic analytic model (see text in Section 4 for details), for either a uniform (k = 0) or a wind-like, stratified

(k = 2) external density profile, and for either the old (a = 0) or our new (a = 1) recipe for the jet lateral expansion speed. The dynamical range in this figure

is unrealistically large, and it is shown mainly in order to demonstrate the properties of this solution, and show how well our analytic approximation for r > 1

works (the dashed green lines in the middle and bottom panels, which are practically on top of the numerical results).

(Granot et al. 2001; Zhang & MacFadyen 2009; van Eerten et al.

2010), while an even larger value of θ0 = 20◦ ≈ 0.35 rad was used

in some works (Meliani & Keppens 2010; van Eerten et al. 2011a),

this dynamical range is very narrow, and the asymptotic exponential

growth of θ j with R is not reached before the model breaks down

at Ŵ � 1.5−2 or θ j � 0.5−1. Even for θ0 = 0.05, which was used

in the most recent simulations (van Eerten & MacFadyen 2011;

Wygoda et al. 2011) and is at the low end of the values inferred

from afterglow observations, the asymptotic exponential regime is

only barely reached before the model breaks down (in agreement

with the conclusions of Wygoda et al. 2011). Note that in this (lim-

ited) region of validity of this semi-analytic model, our new recipe

might still result in smaller or comparable values of θ (r) (i.e. of θ j

for a fixed θ0, at a given radius for a fixed Ejet) compared to the

old recipe. The discussion about when this model breaks down is

expanded in Section 6, where we compare the analytic models to

numerical simulations. Because of this important limitation of our

relativistic analytic model, in the next section we generalize it so

that it would not break down when the jet becomes subrelativistic

or wide.

5 G E N E R A L I Z E D M O D E L S VA L I D

F O R A R B I T R A RY Ŵ A N D θj

In order to avoid the breakdown of the model at small Lorentz

factors Ŵ or large jet half-opening angles θ j, we construct here

simple generalizations of the analytic model studied in the previous

section, which do not require the jet to be very narrow (θ j ≪ 1)

or highly relativistic (u ≈ Ŵ ≫ 1). Two variants are introduced,

named the trumpet model (in Section 5.1) and the conical model

(in Section 5.2), according to the shape of the region from which

the external medium is assumed to have been swept up by the jet

(before it becomes spherical).
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Figure 3. Similar to Fig. 2 but only for a uniform external density (k = 0) and for three different values of the initial jet half-opening angle: θ0 = 0.05 (green),

θ0 = 0.1 (red) and θ0 = 0.2 (blue). The old (a = 0) and new (a = 1) recipes for the jet lateral expansion are sown by dashed and solid lines, respectively. In

the top two panels the lines for different θ0 and the same a values coincide (see text for details). The values of RS(Eiso) are indicated in the bottom panel for

reference.

The rate at which the jet half-opening angle, θ j, increases depends

on the lateral velocity at the edge of the jet, βθ , as dθj = βθcdt/R =
(βθ/βr )dR/R, or

dθj

d ln R
=

βθ

βr

. (28)

A crude approximation for the comoving 4-velocity of the lateral

expansion (u′
θ ), which would roughly correspond to the sound speed

both in the relativistic and in the Newtonian regimes, is u′
θ ∼

β = u(1 + u2)−1/2. This would modify the traditional recipe to

βθ = u′
θ/Ŵ ∼ β/Ŵ = u/(1 + u2) or βθ /βr ∼ βθ /β ∼ 1/Ŵ = (1

+ u2)−1/2. In our recipe,5 βθ/βr = −∂ ln R/∂θ ∼ −∂ ln β/∂θ ∼

5 Note that we use ∂ln u/∂θ = u−1
∂u/∂θ ∼ −1/
θ since the 4-velocity u,

unlike β or Ŵ, generally varies significantly with θ both in the relativistic and

in the Newtonian regimes, so that ∂u/∂θ ∼ −u/
θ in both regimes, while

∂Ŵ/∂θ ∼ −Ŵ/
θ only in the relativistic regime and ∂β/∂θ ∼ −β/
θ

only in the Newtonian regime.

−Ŵ−2
∂ ln u/∂θ ∼ 1/Ŵ2
θ ∼ 1/Ŵ2θj = 1/[(1+u2)θj]. Therefore,

just as before, we still have

dθj

d ln R
=

βθ

βr

≈
1

Ŵ1+aθa
j

, a =

⎧

⎨

⎩

1 (β̂ = n̂),

0 (u′
θ ∼ 1).

(29)

5.1 The ‘trumpet model’

In this model we follow the usual assumption that the external rest

mass is swept up by a working area consisting of the part of an

expanding sphere of radius R within a half-opening angle θ j(R).

Thus, the total swept-up (rest) mass, M(R), for a double-sided jet is

accumulated as

dM

dR
≈ [1 − cos θj(R)]4πR2ρext(R) = [1 − cos θj(R)]4πAR2−k .

(30)
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Figure 4. Similar to Fig. 3 but shown as a function of the jet radius R normalized by RS(Eiso) = Rjθ
−2/(3−k)
0 instead of [(3 − k)/2]−1/(3−k)Rj = [(3 −

k)/4]−1/(3−k)RS(Ejet), where Eiso ≈ Ejet2/θ2
0 is the isotropic equivalent energy in the jet, while Ejet is its true energy.

Energy conservation takes the approximate form Ejet ≈ u2Mc2,

implying Md(u2) = −u2dM , and

du

dR
= −

u

2M

dM

dR
= −

2πAc2

Ejet

R2−k[1 − cos θj(R)]u3(R). (31)

Thus, in terms of r = [(3 − k)/2]1/(3−k)R/Rj, we have

dθj

d ln r
≈

1

(1 + u2)(1+a)/2θa
j

,
du

dr
= −r2−ku3(r)2[1 − cos θj(r)],

(32)

where the initial conditions at some small radius R0 ≪ RS(Ejet) ∼
Rj (just after the deceleration radius), corresponding to r0, are given

by

θj(r0) = θ0, u(r0) =

√

3 − k

4(1 − cos θ0)
r

−(3−k)/2
0 . (33)

5.2 The ‘conical model’

Here we note that the usual assumption that leads to equation (30)

neglects the external matter at the sides of the jet. Because of this,

when eventually θ j reaches π/2 at Rsph and is thus assumed to be

fully spherical, the amount of swept-up external rest mass at Rsph

calculated according to equation (30) will be significantly smaller

than that originally within a sphere of the same radius. Therefore,

here in the conical model we adopt an alternative approach of using

for the rest mass of the swept-up matter, originally within a cone of

half-opening angle θ j,

M(R) ≈ [1 − cos θj(R)]
4π

(3 − k)
AR3−k . (34)

This still has the drawback of assigning the same Lorentz factor to

all of the swept-up external matter, even though that at the sides of

the jet should have a significantly smaller 4-velocity than that near

the head of the jet. Using a slightly different normalized radius, rS =
R/RS(Ejet) = 21/(3−k)R/Rj = [4/(3 − k)]1/(3−k)r, energy conservation
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Figure 5. Upper panel: the non-relativistic transition radius for our analytic relativistic model, RNR, defined by Ŵ(RNR) = 1, normalized by Rj, as a function

of θ0. For comparison, RS(Eiso) is also shown; the two radii, RNR and RS(Eiso), become similar at θ0 ∼ 1 but are very different for θ0 ≪ 1. Lower panel: the

value of the jet half-opening angle, θ j, at RNR, where our simple analytic relativistic model breaks down.

(Ejet ≈ u2Mc2) and equation (29) imply

u(rS) =
r

−(3−k)/2
S

√

1 − cos θj(rS)
,

dθj

d ln rS

≈
1

[1 + rk−3
S (1 − cos θj)−1](1+a)/2θa

j

, (35)

where the initial conditions at some small radius R0 ≪ RNR,sph(E)

∼ Rj, corresponding to rS,0, are given by

θj(rS,0) = θ0, u(rS,0) =
r

−(3−k)/2
S,0√

1 − cos θ0

. (36)

5.3 Results for the generalized models

Figs 6–8 depict a comparison of these two models with the rela-

tivistic model. All three models agree at early times, while the jet is

still highly relativistic, narrow and hardly expanded sideways. The

approximations of our relativistic model hold well at this stage, and

the difference in the swept-up mass between the trumpet and conical

models is still very small. At later times, however, the three models

show a different behaviour. The main effect of the relaxation of the

small θ and ultrarelativistic approximations is that for typical values

of θ0 � 0.05 the region of exponential growth of θ j with R largely

disappears, and is replaced by a much slower, quasi-logarithmic

growth. This can most clearly be seen by comparing the results of

the relativistic model (from Section 4; solid lines in Figs 6 and 8,

and green, red or blue lines in Fig. 7) and the trumpet model (from

Section 5.1; dot–dashed lines in Figs 6 and 8, and black, magenta or

cyan lines in Fig. 7). These two models share the same assumption

on the accumulation of the swept-up external medium, and differ

only by relaxing in the trumpet model the requirements of Ŵ ≫
1 and θ j ≪ 1. The results of these two models are very close at

early times while Ŵ ≫ 1, but diverge as Ŵ becomes more modest

and the simple relativistic model reaches the exponential regime.

This can also be seen in Fig. 8 through the fact that θ j(r) for the

two models start diverging when θ j becomes modest and the small

angle approximation breaks down.
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Figure 6. Comparison between our relativistic (solid lines), trumpet (dot–dashed lines) and conical (dashed lines) models, where all models use our new recipe

for the lateral spreading of the jet (a = 1), and for a uniform external medium (k = 0). Results are shown for three different values of the jet initial half-opening

angle: θ0 = 0.05 (in green), θ0 = 0.1 (in red) and θ0 = 0.2 (in blue). For reference we also indicate the values of Ŵθ j = 1 in the top panel, some relevant values

of θ j in the two middle panels, as well as the values of RS(Eiso) and Ŵ = 1, 2 in the bottom panel.

The main difference between the trumpet and conical models

is that for the conical model the swept-up mass at a given ra-

dius R is larger than for the trumpet model, resulting in a smaller

Ŵ and therefore also a larger θ j, i.e. a faster evolution of θ j and

Ŵ with R. Since the larger swept-up mass comes from the sides

of the jet, it becomes important only once the jet starts expand-

ing sideways significantly, which occurs at rc (see equation 20).

This can be clearly seen in Fig. 8, where the dot–dashed (or solid,

which practically coincide at early times) and dashed lines, for

the trumpet (or relativistic) and conical models, respectively, start

diverging near rc. Note that this remains valid for all k-values,

while rc decreases with k. Fig. 8 also shows that for sufficiently

small values of θ0, roughly θ0 ≪ 0.05 for k = 0 and even some-

what smaller θ0 values for larger k values, there is still a phase of

quasi-exponential lateral expansion for rc � r � r(θ j ∼ 10−0.5) or

1.5θ0 � θ j � 10−0.5. For such extremely small values of θ0, the

difference between the conical and trumpet models becomes large

during the exponential sideways expansion phase, where the lateral

expansion is faster in the conical model. We note, however, that

such extremely narrow initial jet half-opening angles are below the

smallest values that have so far been reliably inferred from GRB

afterglow modelling, so that they might not be very relevant in

practice.

Figs 9 and 10 show the jet dynamics according to our different

analytic models, for θ0 = 0.1. It can be seen that the differences

between the various models are rather small until the point where

our relativistic model breaks down. The behaviour of the jet radius

(R = R‖) and lateral size (R⊥) as a function of the lab frame time (t)

shows a lot of similarities to the analytic expectations (compare the

bottom panel of Fig. 9 to Fig. 1). This, again, demonstrates that our

new recipe for the lateral spreading of the jet results in slower lateral

expansion compared to the old recipe (and is closer to assumption

2 of no lateral spreading – dashed red lines in Fig. 1) at early times

when Ŵ > θ j but faster lateral expansion at late times when Ŵ <

θ j (i.e. closer to assumption 1 of fast lateral spreading – solid blue

lines in Fig. 1).
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Figure 7. Similar to Fig. 6 but shown only (1) for our relativistic model (green, red and blue lines for θ0 = 0.05, 0.1 and 0.2, respectively) and trumpet model

(black, magenta and cyan lines for θ0 = 0.05, 0.1 and 0.2, respectively), (2) for both the old recipe (a = 0; dashed lines) and our new recipe (a = 1; solid

lines) for the jet lateral expansion and (3) as a function of the jet radius R normalized by RS(Eiso) = Rjθ
−2/(3−k)
0 instead of [(3 − k)/2]−1/(3−k)Rj = [(3 −

k)/4]−1/(3−k)RS(Ejet).

6 C O M PA R I S O N W I T H N U M E R I C A L

SIMULATIONS

We turn now to a comparison of our analytic models with the results

of full 2D special relativistic hydrodynamic simulations. To do so,

one needs first to define which quantities should be compared. This,

however, is not unique and can be done in different ways. For the

4-velocity, u, and as one (out of a few) reference value for the jet

half-opening angle, θ j, we use the weighted mean over the energy

E in the lab frame (excluding rest energy) of u and θ , respectively,

〈u〉E =
∫

dE u
∫

dE
, 〈θ〉E =

∫

dE θ
∫

dE
. (37)

For the jet radius (or parallel size, R‖ = R) and lateral size (R⊥), we

use

〈R‖〉 = 〈z〉E =
∫

dE z
∫

dE
,

〈R⊥〉 = 〈x〉E = 〈y〉E =
2

π
〈rcyl〉E =

2

π

∫

dE rcyl
∫

dE
. (38)

These averages reduce to R‖ = R⊥ (or 〈R‖〉 = 〈R⊥〉) for a spherical

flow.

In order to perform a proper comparison to our analytic models,

we need to calculate similar averages for our jet, which at any given

time is the part of a thin spherical shell within a cone of half-opening

angle θ j. Thus, the radial integration drops out and we are left only

with an integral over μ between μj = cos θ j and 1,

R‖

R
=

∫ 1

μj
dμ μ

∫ 1

μj
dμ

=
sin2 θj

2(1 − cos θj)
,

R⊥

R
=

2

π

∫ 1

μj
dμ

√

1 − μ2

∫ 1

μj
dμ

=
2θj − sin(2θj)

2π(1 − cos θj)
. (39)

We can see that R‖ = R⊥ for θj = π/2, as it should.

Similarly, one can calculate 〈θ〉E as a proxy for θ j in our models,

〈θ〉E =

∫ 1

μj
dμ arccos(μ)
∫ 1

μj
dμ

=
∫ θj

0
dθ θ sin θ

1 − cos θj

=
sin θj − θj cos θj

1 − cos θj

.

(40)
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Figure 8. Comparison between our relativistic (solid lines), trumpet (dot–dashed lines) and conical (dashed lines) models in terms of the evolution of the jet

half-opening angle θ j with the normalized radius r, for k = 0, 1 and 2 (top to bottom panels), where all models use our new recipe for the lateral spreading

of the jet (a = 1). Results are shown for log10(θ0) = −3, −2.5, . . ., −0.5 (using different colours), while the values of θ0 = 1, π/2 and the critical radius rc

(given by equation 20, where the lateral spreading is expected to become significant) are shown for reference.

This shows that 〈θ〉E ≈ (2/3)θ j for θ j ≪ 1, while 〈θ〉E = 1 for

θj = π/2 (which is the value for any spherical flow, also one with

a radial profile) and (2/3)θj < 〈θ〉E < (2/π)θj for 0 < θj < π/2.

One can also calculate the angle out to which a fraction f of the

energy is contained (or the energy 100f percentile),

θf = arccos[1 − f (1 − cos θj)], (41)

and compare it to the corresponding value from the numerical sim-

ulations.

Figs 11 and 12 show a comparison (for k = 0 and θ0 =
0.2) between the results of our analytic models and of 2D spe-

cial relativistic hydrodynamic simulations (from De Colle et al.

2011a,b), when quantifying all of them as discussed above. As

can be seen from Fig. 11, our models provide a reasonable over-

all description of the full hydrodynamic simulations, and thus ap-

pear to catch the basic underlying physics, despite their obvious

simplicity.

Fig. 12 shows three different ways of quantifying the jet half-

opening angle, namely the weighted mean over the energy, 〈θ〉E

(bottom panel), and two different energy percentiles, θ0.75 (mid-

dle panel) and θ0.95 (top panel), i.e. the values of θ up to which

75 and 95 per cent of the energy, respectively, is contained. It

can be seen that θ0.95 provides the best match between our ana-

lytic model and the numerical simulations. For θ0.75 or 〈θ〉E the

match is not as good (though even then the difference is not very

large). This might be attributed to the fact that our analytic mod-

els assume a uniform energy per solid angle, ǫ = dE/d�, within

the jet opening angle (θ < θ j), while in practice (or in the nu-

merical simulations) it drops towards the outer edge of the jet.

The drop in ǫ from the jet axis towards its edge causes smaller

values of both 〈θ〉E and θ f for the lower energy percentiles (or

f -values) relative to a uniform jet with the same θ f for a large en-

ergy percentile (or f -value; e.g. f = 0.95 in our case). The results

for our new recipe for the jet sideways expansion are somewhat

closer to the numerical simulations compared to the usual recipe for
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Figure 9. The jet dynamics according to our different analytic models, for θ0 = 0.1 and k = 0. We show the jet 4-velocity, u (upper panel), half-opening angle,

θ j (middle panel), as well as its normalized radius r‖ = r and lateral size r⊥ = rsin θ j (bottom panel), as a function of the normalized lab frame time, t/tj, for

our relativistic (green lines; until it breaks down at Ŵ ≈ 1), trumpet (red lines) and conical (blue lines) models. The solid and dashed lines are, respectively, for

our new recipe (a = 1; equation 9) and the old recipe (a = 0; equation 8) for the jet lateral expansion.

〈θ〉E and θ0.75, while the usual recipe is perhaps slightly closer for

θ0.95.

Both the analytic models and the numerical simulations show

that the flow becomes spherical more than a decade in time after it

becomes subrelativistic (which may be quantified as the time when

〈u〉E = 1). This can be attributed to the fact that once the flow be-

comes subrelativistic, its sound speed quickly drops, and so does the

rate of lateral expansion. Moreover, as the flow gradually becomes

more spherical, the lateral gradients become smaller, which makes

the flow approach spherical symmetry more slowly.

The numerical simulations show that θ f corresponding to lower

energy percentiles (or f -values) approach their asymptotic values

for a spherical flow at later times. This shows that the transfer of

energy to larger θ -values is the slowest near the centre of the jet and

larger near its edges, which may in turn be attributed to the lateral

gradient (say of ǫ) in the jet, which are smallest near its centre and

largest near its edge.

7 D I SCUSSI ON

In this work we have introduced a new, physically motivated recipe

for the lateral expansion of the jet (in Section 3). It is based on the

jump conditions for oblique shocks of arbitrary 4-velocity, which

imply that the velocity of fluid just behind the shock front (in the

downstream region) is in the direction of the local shock normal (i.e.

perpendicular to the shock front at that location; β̂ = n̂, equation 9)

in the upstream rest frame (which in our case is identified with

the rest frame of the external medium and the central source). Our

new recipe for the lateral expansion rate of the jet (βθ ∼ 1/Ŵ2θ j,

equation 11) has an extra factor of Ŵθ j in the denominator relative

to the usual recipe that has been used so far (βθ ∼ 1/Ŵ, equation 8).

This results in slower lateral expansion relative to the usual (or old)

recipe at early times when Ŵ > θ j, but faster lateral expansion at

later times when Ŵ < θ j, i.e. once the lateral expansion becomes

significant.
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Figure 10. Similar to Fig. 9 but as a function of the observed time, T los, at which photons from the head of the jet reach an observer located along its symmetry

axis, normalized by its value at the jet break time T los,j.

Next (in Section 4), we have implemented our new recipe as well

as the old recipe in a simple analytic model for the jet dynamics,

which is valid only for high Lorentz factors (Ŵ ≫ 1) and narrow

jet half-opening angles (θ j ≪ 1). This model shows an exponential

lateral expansion for Ŵ < θ0, like previous analytic models of this

type. However, we demonstrate that for typical values of the initial

jet half-opening angle (0.05 � θ0 � 0.2) this model is valid only over

a very limited dynamical range for Ŵ < θ0, so that the asymptotic

exponential lateral expansion regime is hardly reached before the

model breaks down. This leads to a reasonable agreement with

numerical simulations over this limited range (as shown by Wygoda

et al. 2011, and in Section 6).

This motivated us (in Section 5) to generalize our relativistic

model so that it would be valid for any values of Ŵ and θ j. This

was done by switching to the 4-velocity u (instead of Ŵ) as the dy-

namical variable that we evolve (so that it would vary significantly

in both the relativistic and the Newtonian regimes), and systemati-

cally not relying on any relativistic or small angle approximations.

Moreover, we have implemented two different assumptions for the

accumulation of the swept-up external rest mass, corresponding to

a different variant of the model. The trumpet model makes the usual

assumption that the working surface is the part of a sphere of radius

R within a cone of half-opening angle θ j(R). The conical model

assumes that all the mass within a cone of half-opening angle θ j(R)

was swept-up, so that once the flow becomes spherical the swept-up

mass is equal to that originally within a sphere of the same radius.

Our relativistic, trumpet and conical models all agree at early

times when the jet is still highly relativistic, narrow and hardly ex-

panded sideways (Ŵ > θ−1
0 ≫ 1). At this stage the approximations

of our relativistic model hold well, and there are only very small

differences in the swept-up mass between the trumpet and coni-

cal models. However, at later times when Ŵ < θ−1
0 the relativistic

model enters a phase of rapid, exponential sideways expansion and

it quickly breaks down, before becoming spherical. We note, how-

ever, that for a stratified or stellar wind like external medium (k = 2)

the jet is closer to being spherical than for a uniform or interstellar

medium like external medium (k = 0; see bottom panel of Fig. 5)

when the relativistic model breaks down.

For the trumpet and conical models, which are valid for any Ŵ

or θ j, the phase of rapid, exponential sideways expansion largely
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Figure 11. Comparison, for θ0 = 0.2 and k = 0, between our analytic models (thin lines) and the results of 2D special relativistic hydrodynamic simulations

(from De Colle et al. 2011a,b) of a jet with initial conditions of a conical wedge of half-opening angle θ0 taken out of the Blandford & McKee (1976) self-similar

solution (thick dot–dashed black line), in terms of the jet 4-velocity (u), half-opening angle (θ j) as well as normalized parallel (r‖) and perpendicular (r⊥) sizes.

The green, red and blue lines are for our relativistic, trumpet and conical models, respectively. Thin solid lines are for our new recipe for lateral expansion

(a = 1), while thin dashed lines are for the old recipe (a = 0).

disappears for typical values of θ0 � 0.05. This occurs because

the jet is no longer ultrarelativistic soon after Ŵ drops below θ−1
0 ,

and once it becomes mildly or subrelativistic its sound speed and

therefore its rate of lateral expansion decrease compared to the

ultrarelativistic regime. The conical model evolves somewhat faster

than the trumpet model, since it accumulates external rest mass also

from the sides of the jet, and thus it slows down faster. The smaller

Ŵ results in turn in even faster lateral expansion rate and a larger θ j

(at a given radius R or lab frame time t).

We compared (in Section 6) our analytic models to the results of

2D special relativistic hydrodynamic simulations (from De Colle

et al. 2011a,b), finding that they provide a reasonable description of

the numerical results at all times. Therefore, they can be used for

analytic calculations of the afterglow emission, and would provide

more realistic results compared to previous analytic models. The

main factor that significantly improves the agreement with simula-

tions compared to previous analytic models is the fact that we have

generalized the model to be valid also at modest Lorentz factors Ŵ

and large jet half-opening angles θ j. Both our analytic generalized

(trumpet and conical) models and the numerical simulations show

that the jet first becomes subrelativistic and only then gradually

approaches spherical symmetry over a long time.

For typical initial half-opening angles (θ0 � 0.05) the phase of

rapid exponential lateral spreading is largely eliminated, and it is

replaced by a quasi-logarithmic increase in θ j with radius R or

lab frame time t. van Eerten & MacFadyen (2011) have stressed

that while noticeable sideways expansion starts for Ŵ < θ−1
0 , this

initially involves only a small fraction of the total jet energy in its

outer parts, and the central parts of the jet that carry most of its

energy take longer to start spreading their energy to wider angles.

While it is true that the jet does not remain uniform, the differences

in the early growth of the angles θ f containing different fractions f

of the jet energy, normalized by their initial value, are not very large

– less than a factor of 2 in lab frame time or radius between f =
0.95 and 0.5, and tend to become smaller for narrower θ0. This can

be seen from fig. 4 of van Eerten et al. (2011b), which also shows
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Figure 12. Similar to Fig. 11 but for three different ways of quantifying the jet half-opening angle, θ j. The top and middle panels show two different energy

percentiles, θ0.95 and θ0.75, respectively, i.e. the values of θ up to which 95 and 75 per cent of the energy is contained. The bottom panel shows the weighted

mean over the energy, 〈θ〉E .

that as θ0 is gradually decreased down to 0.05, its initial growth

becomes steeper and it looks as if an early phase of exponential

growth starts to develop, contrary to what is claimed in van Eerten

& MacFadyen (2011). Therefore, we conclude that (i) although the

uniform jet approximation used in our analytic models is obviously

rather crude, it nonetheless provides a reasonable description of the

energetically dominant part of the jet; and (ii) the prediction of our

analytic models that an early exponential sideways expansion phase

should exist for sufficiently small θ0 is not only consistent with the

existing simulations, but these simulations even show a hint for the

development of such a phase. This should obviously be tested more

thoroughly by simulations that reach even lower values of θ0.

A phase of exponential lateral spreading was first found by

Rhoads (1999) and Piran (2000) using a simple analytic model.

Later, Gruzinov (2007) found a self-similar solution with a similar

scaling. Our main conclusion (which is in agreement with Wygoda

et al. 2011) is that such a phase will occur in practice only for jets

that are initially extremely narrow (with θ0 ≪ 0.05 or so), while for

more modest values of θ0 � 0.05 that are more typically inferred

in GRB jets, such a phase effectively does not exist. This basically
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reconciles the long-lasting apparent discrepancy between analytic

models and numerical simulations.
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A P P E N D I X A : C O M PA R I S O N TO PR E V I O U S

WO R K S

We compare here our formulation for the jet lateral expansion rate,

equation (11), with earlier work. This formula was first derived

within the context of GRBs by Kumar & Granot (2003), who pro-

vided two different derivations. The first follows our line of argu-

ment and is based on the orthogonality of the shock front and the

velocity of the fluid just behind it in the rest frame of the fluid

ahead of the shock (equation 9). The second derivation involves

an analysis of the dynamical equations integrated over the radial

profile.

A result similar to equations (10) and (11) was also recently

derived by Lyutikov (2011), based on an earlier work by Shapiro

(1979). Lyutikov (2011) has argued that it implies a negligible lat-

eral expansion as long as Ŵ ≫ 1 unless 
θ < 1/Ŵ2, suggesting that

with this model one obtains a slow sideways expansion, as seen in

the numerical simulations. However, we note that the condition 
θ

< 1/Ŵ2 corresponds to βθ ∼ 1. This requirement is too extreme

since βθ ∼ 1 would result in a quasi-spherical flow within a single

dynamical time (since in that case βθ � βr). As is well known (see

also Section 4), the traditional recipe for lateral expansion (equa-

tion 8), namely βθ ∼ 1/Ŵ, already gives an asymptotic exponential

growth of θ j with R (i.e. very rapid lateral expansion).

The earlier work by Shapiro (1979) discusses two possible ap-

proximations for the dynamics of a non-spherical relativistic blast

wave, both based on a thin shell approximation for the layer of

shocked external medium that carries most of the energy, but with

different additional assumptions: (i) the quasi-radial approximation

(used in the Newtonian regime by Laumbach & Probstein 1969)

in which each part of the shock is assumed to move in a radial

trajectory as if it were part of a spherical flow with the same local

conditions (and in particular the same energy per solid angle, ex-

cluding rest energy, ǫ = dE/d�); and (ii) the Kompaneets (1960)

approximation that the pressure behind the shock is uniform, i.e. the

same at all locations behind the shock and is proportional to the av-

erage energy density in the region bounded by the shock front. The

first approximation assumes that the energy per solid angle in the

flow (excluding rest energy) does not change and remains equal to

its initial value, ǫ(t, θ ) = ǫ(t0, θ ). In this sense, it basically assumes

no lateral expansion (as the jet retains its initial angular structure

in ǫ(θ ) indefinitely), so that this is a model assumption in this case

rather than a result.

The second approximation, which was originally used by Kom-

paneets (1960) in the Newtonian regime, does not appear to be very

appropriate for the relativistic regime where the angular size of

causally connected regions is ∼1/Ŵ ≪ 1, so that the local dynamics

of a small portion of the flow should not be affected by the average

energy per unit volume in the whole flow, which may be dominated

by regions that are not in causal contact with it. A simple example

of how the Kompaneets (1960) approximation violates causality

in the relativistic regime is that for a uniform external medium, it

implies that the velocity of the shock front is uniform (i.e. depends

only on the lab frame time, but not on the location along the shock

front; Shapiro 1979), which necessarily implies that the flow must

approach spherical symmetry within a few dynamical times.6 This

6 The direction of the velocity of the fluid just behind the shock, which is

along the shock normal, might be initially non-radial, but since the shock

velocity is the same everywhere and highly relativistic, it quickly approaches

spherical symmetry, similar to the wave left by a stone thrown into water,

where the velocity of the surface water wave is uniform and the wave

front quickly forgets the shape of the stone and becomes circular as its

radius becomes larger than that of the stone. In our case, within a few

dynamical times ǫ becomes essentially independent of θ , since its local value

is dominated by the recently shocked material, where the shock Lorentz

factor is uniform.
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obviously violates causality, since as we discussed in the Section 1,

a roughly uniform jet with reasonable sharp edges cannot expand

sideways significantly as long as Ŵθ0 ≫ 1, from causal consider-

ations (since its bulk is not in causal contact with its edges, and it

does not ‘know’ that it is not part of a spherical flow and should

thus start expanding sideways).

Shapiro (1979) reaches the conclusion that the two approxima-

tions give the same result in the extreme relativistic limit only

because he explicitly assumed that in the quasi-radial approxima-

tion, the energy per solid angle, ǫ = dE/d�, is not only independent

of time, but also of the location along the shock front (this can be

seen from the fact that his energy integral is independent of θ ). This

assumption quickly leads to a quasi-spherical flow for a spherical

external density profile, and the non-spherical solutions obtained

by Shapiro (1979) arise since he considered an exponential atmo-

sphere, which is a highly non-spherical external density profile. The

problem of interest for us, namely the dynamics of GRB jets dur-

ing the afterglow phase, involves a non-uniform initial distribution

of the energy per solid angle, ǫ(t0, θ ), and in such a case the two

approximations are not equivalent in the extreme relativistic limit.

Therefore, we conclude that neither of these two approximations

appears to be appropriate for studying the dynamics or degree of

lateral spreading of GRB jets during the afterglow phase.
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