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The eubacterial plasma membrane, in common with other 
biological membranes, is now thought generally to be 
organized as a 'fluid mosaic' of proteins and protein com­
plexes, dispersed in, on and through a 'sea· of phospholipid 
molecules arranged as a bilayer. Our attention is therefore 
directed to more quantitative questions, of the form "How 
fluid?" and "What sort of a mosaic?". In other words, how 
fast are the hydrodynamically constrained lateral mobilities 
of prokaryotic membrane proteins. and to what extent is 
their 'instantaneous' distribution random (Kell, 1984a)? 

As a first approach, and from a biophysical standpoint. 
it is simplest to consider a 'model' system (Saffman & 
Delbriick. 1975; Kell & Harris. 1985a,h) consisting of a 
spherical shell (radius r) of phospholipid bilayer, of thick­
ness hand 'average' viscosity II· containing cylindrical mem­
brane protein complexes of radius a, the whole separating 
aqueous phases of viscosity 11'. If we treat the proteins as 
'hard' cylinders (i.e. ignoring 'boundary' lipids and long­
range intercomplex forces) which take up a negligible area 
fraction of the membrane, we may relate the membrane 
protein translational diffusion coefficient D to the vesicle 
radius and to the (exponential) relaxation time r that a 
protein (complex) inserted at a given position takes to adopt 
a 'random' position on the vesicle surface, according to the 
equation (Huang. 1973: Sowers & Hackenbrock, 1981): 

T = r1 /2D (I) 

It may be noted that this equation differs from the 
usual Einstein-Smoluchowski equation for two-dimensional 
'random-walk' diffusion by a factor of 2 and by the fact that 
r represents the vesicle radius and not the distance diffused. 
Because of the squared dependence, for a given value of D. 
of r upon r. values of r to be expected are significantly 
smaller for prokaryotes than for eukaryotes. 'Viscosities' for 
typical biomembranes (above the gel-to-liquid phase tran­
sition) are in the range I-lOP (0.1-1 Pa · s) (e.g. Cherry & 
Godfrey, 1981 ). and thus the hydrodynamically restricted 
value of D for a typical membrane protein of radius 5 nm 
and at high lipid/protein ratio is expected and found to be 
some 10 9 cm';s (e.g. Webb eta! .. 1981; Vaz eta/., 1982). 
For a (spherical) micro-organism of radius 0.5f1m this 
implies r = 1.25s. 

It is useful first to make explicit the distinction between 
the mobility on a scale of time (and hence distance) that is 
either short or long relative to the enzymic turnover time of 
the protein in question. since such a distinction relates in 
particular to current discussions concerning pool behaviour 
in electron-transport chains (Rich. 1984; Ragan & Cotting­
ham. 1985: Kaprelyants, 1985) and membranous free energy 
transfer (Kell & Harris, 1985a; Kell & Westerhoff. 1985; 
Slater et a! .. 1985). We shall here be concerned mainly with 
the question of a long-range long-time mobility. However. 
a small calculation regarding the former is in order. 

If a bacterial cell is modelled as a sphere of radius 0.5f1m, 
its membrane has an area equivalent to a square of radius 
I. 73 ,urn. If each cell contains 1000 molecules each of 
enzymes of type and A and B arranged in sequence as a 
square lattice. their centres would be 27 nm apart. If 
D = I 0 9 em" js. the time taken to 'visit' one target mole­
cule ~ 20 ,us whilst that taken to visit I 0 target molecules. 
a number giving kinetics indistinguishable from pool behav­
iour (Rich, 1984), would be some 2ms. Given typical 
enzymic turnover times (1-IOms) it is evident that in the 
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absence of 'specific' interactions a random disposition of 
membrane proteins is to be expected a priori, certainly on a 
'long' time-scale and most probably on a 'short' one. What 
types of factor additional to those in the simple model might 
therefore be invoked if values significantly lower than 
10 9 em" /s are found? 

The second point to be made is that the bacterial plasma 
membrane, like the inner mitochondrial membrane, has a 
typical protein/lipid ratio of 3: I (although some physiologi­
cally significant variability is possible; see, e.g., Dombek & 
Ingram. 1984). As pointed out by Sowers & Hackenbrock 
( 1981 ). however. the relative areas have a somewhat lower 
ratio. since membrane protein complexes arc not flush with 
the phospholipid head groups. Now whilst bacterial respirat­
ory and other protein complexes are known to be smaller and 
simpler than their eukaryotic (i.e. mitochondrial) counter­
parts, published electron micrographs do suggest that pro­
tein complexes take up some 3(} 50% of the membrane area 
in each case (e.g. Kleeman & McConnell, 1974: Sowers & 
Hackenbrock. 1981 ). although more systematic and defin­
itive bacterial work seems warranted. The 'archipelago 
effect' (Saxton, 1982). which considers the extent to which 
the fact that proteins do not take up a negligible area of the 
membrane and thus (even though they are treated as hard 
cylinders) have net (long-range) diffusion coefficients lower 
than expected. will not therefore decrease the diffusion coef­
ficient of a hard cylinder by more than an order of mag­
nitude for protein areas in the range quoted (Jacobson 
& Vojcieszyn. 1981: Kell. 1984h; Pink. 1985; Sowers & 
Hackenbrock, 1985). Thus we do not expect values of D to 
be much less than I 0 10 em' /s and. for bacteria of radius 
r = 0.5ttm. r to exceed 12.5 s. Although few biophysical 
studies have sought accurately to estimate values of the 
long-range two-dimensional diffusion coefficients of mem­
brane proteins in bacteria (although many more qualitative 
studies of membrane 'fluidity', homoeoviscous adaptation 
and so forth are available; McElhaney. 1982: Melchior. 
1982). there do seem to be at least some cases in prokaryotes 
in which one is forced to invoke values of D (for long-range 
diffusion) much smaller than I 0 10 cm2 js (e.g. Kaprelyants 
& Ostrovsky, 1984: Kell. 1984a. h). Such findings are par­
ticularly noteworthy in prokaryotes since a substantial 
cytoskeleton and geometrically extensive membrane;cell 
wall interactions are not currently thought to be present in 
bacteria. 

Biosynthetic studies using penicillin-induced lysis to dis­
tinguish dispersive from conservative modes of the distribu­
tion of membrane proteins between mother and daughter 
cells provide an approach to placing bounds on values of D. 
Unfortunately, such experiments have as yet given conflict­
ing results (Cadenas & Garland 1979: Kepes & Autissier. 
1972; Poole, 1981 ). To obtain a more striking and appar­
ently clear-cut example of a non-random organization of 
membrane protein complexes we must turn our attention to 
differentiating prokaryotes. 

Two prokaryotic systems are of special interest here: 
facultative diazotrophs (Post et a!., 1982, 1983; Payne & 
Socolofsky. 1984) and facultative phototrophs (Oeize. 198 L 
Kaufmann et al .. 1982. Chory eta! .. 1984; Drews, 1985). In 
each case ( op. cit) the transition from heterotrophic growth 
to the stated growth conditions results in the extreme lateral 
differentiation of the cytoplasmic membrane so that special­
ized areas ('intracytoplasmic membranes"), invaginated but 
contiguous with the cytoplasmic membrane. are formed. 
Such structures would require, in our simple model above. 
that D ~ 10 12 cm1 js (Kell, 1984a). Whilst the physical 
basis for such 'organization' remains quite unknown, there 
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is evidence that it persists in chromatophores derived from 
the membrane invaginations of photosynthetic bacteria 
(Casadio eta/., 1984). 

Finally, we have recently initiated a novel and entirely 
non-destructive approach to the assessment of the mobility 
of charged and dipolar species in biological membranes: the 
use of dielectric spectroscopy (Kell, 1983; Harris & Kell, 
1985; Kell & Harris, 1985a, b; Kell & Westerhoff, 1985). 
Since a full discussion of this method is available in the 
above-mentioned papers, it will suffice to state that the 
findings to date would suggest (i) that in the absence of 
strong external forces the mobility of prokaryotic mem­
brane proteins is not restricted by hydrodynamic forces 
alone, and (ii) that electro-osmotic interactions between 
double layer ions and polytopic membrane protein com­
plexes are both more extensive and more subtle than has 
perhaps heretofore been realized. 
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