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This paper presents some new theorems concerning recursively enumerable (r.e.)
sets. The aim of the paper is to advance the search for a decision procedure for the
elementary theory of r.e. sets. More precisely, an effective method is sought for
deciding whether or not an arbitrary sentence formulated in the lower predicate
calculus with sole relative symbol £ is true of the r.e. sets. The main achievement
of the paper is the characterisation of the M-simple sets as those coinfinite r.e. sets
whose r.e. supersets form a Boolean algebra.

The reader is referred to Davis's book [1] for basic information about the partial
recursive (p.r.) functions and about r.e. sets. Other background material required
for a proper understanding of the present paper consists of [8], [3, Theorem 2],
[10, Introduction and §4], and [5] where the contributions have been listed in their
natural order. We take the formulation of the lower predicate calculus given in
Abraham Robinson [9].

Natural numbers are denoted by lower case Roman letters and sets of them by
lower case Greek letters. The empty set is denoted by 0 and the set of all natural
numbers by v. The complement of any set a is denoted by a'; a is called cofinite or
coinfinite just if a' is finite or infinite respectively. For sets a, ß we write a~ß just
if the set (a—ß) u iß—a) is finite; otherwise we write a%ß. By function we mean a
map of some subset of v x v x • • • x v into v; functions will be denoted by upper case
Roman letters as will relations on the natural numbers. The informal logical signs
used are v, &,->, —i, (x), (Ex), o which are to be read as "or", "and", "implies",
"not", "for all x", "there exists x", "is equivalent to" respectively. Let sé be a
finite class of propositions; then Ses/, y sé denote their conjunction and dis-
junction respectively. We use {A(x) | B(x)} to denote the class of objects A(a) for
which B(a) holds. If a is a finite set of natural numbers then sup a denotes the
greatest member of a; otherwise sup a is to be oo.

The plan of the paper is as follows. In the first section we give a brief discussion
of the elementary theory of r.e. sets and prove that its decision problem is of the
same degree as that of the elementary theory of the lattice obtained by taking the
equivalence classes of r.e. sets with respect to ~. In §2 we prove the main theorem
which states: if a is an r.e. subset of an r.e. set ß then either there exists a recursive
subset 8 of ß such that a U S=ß or there exists a recursive sequence {S¡} of disjoint
finite subsets ofß such that S¡ —a is nonempty for all i. This theorem was inspired by
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2 A. H. LACHLAN [January

Myhill's review [7] of Yates [10]. Yates pointed out [10, p. 344] that if ftx_, p.n
are maximal sets such that any pair differ by an infinite set then any class of dis-
joint r.e. sets, each member of which has infinite intersection with (p± n • ■ • n pn)',
has cardinality ^ n. Myhill in his review introduced the notion of covering number
where the covering number of a set a is

sup {cardinality of 91 | 91 is a class of disjoint r.e. sets each having infinite inter-
section with a}.

Myhill claimed for Yates firstly that an r.e. set a is maximal if and only if the cover-
ing number of a' is 1, and secondly that an r.e. set a is M-simple if and only if the
the covering number of a is finite. Neither of these claims was justified. The result
of Yates mentioned above may be restated as follows: if p1;..., p,n are maximal
r.e. sets such that any two differ by an infinite set, then (^ r\ ■ ■ • n p,n)' has covering
number n. From the main theorem we shall deduce the converse of this which for
n = 1 justifies Myhill's first claim. Another consequence of the main theorem is the
following characterisation of AA-simple sets : an r.e. set a is hh-simple if and only
if a u ß' is r.e. for every r.e. set ß. It follows that the intersection of two M-simple
sets is also hh-simple. Thus with any M-simple set a we can associate the Boolean
algebra formed by the lattice of r.e. supersets of a; this lattice we denote by áf(c¿)
and the lattice formed from it by taking equivalence classes with respect to ~ we
denote by =S?*(a).

In §3 we prove the falsity of Myhill's second claim by constructing an AA-simple
set y which has no maximal superset. In fact r¡ has the property that, if ß is any r.e.
superset of ■>? then there exist r.e. supersets ft, ß2 of 77 such that ft u ß2=ß, ft n ft
=r¡, and such that

ft K r, V ft ~ 7, .-> ß ~ v.

This property characterises £?(r¡).
In §4 the method of constructing r¡ in §3, itself derived from Friedberg's con-

struction of a maximal set [3, p. 312], is adapted to provide the following charac-
terisation of the Boolean-algebras associated with /zA-simple sets. Let R be a
binary 3V3-relation, that is, let there be a recursive relation S such that

R(x, y) o (Eü)(v)(Ew)S(x, v, m, v, w).

Suppose further that R is reflexive and transitive. Consider the class of sets
s/={a0, ctj,...} where

<x¡ = {x I R(x, i) & R(i, x)}

and define ^ on ¿a/ by

«i á a-i o R(i,j).
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The class sé is partially ordered by g because R is reflexive and transitive. For
some choices of R the class sé partially ordered by g forms a Boolean algebra,
that is, sé is a distributive lattice having a least element and a greatest element and
such that every element has a complement. Any such Boolean algebra is called a
Hl-Boolean algebra provided that there are recursive functions U, I such that for
all x, y

aU(.x,y) = «* U ay, aHx,y) = ax n ay

We shall show that if a is hh-simple then ^*(a) is isomorphic to a li^-Boolean
algebra, and conversely that if sé is a BUl-Boolean algebra then there exists an
hh-simple set a such that ,S?*(a) is isomorphic to sé.

In §5 are discussed some problems concerned with simple but non-A/z-simple
r.e. sets. It is proved that if a is any nonrecursive r.e. set then there exists an r.e.
subset ß of a such that a-ß is infinite and such that for any r.e. complement tu
of a we have ß u w~v. From this and the main theorem is obtained an alternative
to the construction by Martin [5] of an r.e. set which is coinfinite and which has no
AA-simple superset. We shall also construct an r-maximal set with no maximal
superset. An r-maximal set is a coinfinite r.e. set a such that for every recursive
set p either p n a or p n a is finite. This counterexamples the conjecture of
R. W. Robinson [10] that every r-maximal set has a maximal superset.

Finally, in §6 we mention some problems concerning the elementary properties of
r.e. sets which seem both interesting and within the reach of present methods.

1. The elementary theory of r.e. sets. We shall use the terminology and formal
language L of Abraham Robinson [9]. However, we shall only use L when we have
in mind a particular lattice J§?. Which lattice & is will be clear from the context.
The object symbols of L are to be in fixed (1-1) correspondence C with the elements
of =£?, the only relative symbol is to be the 2-place relative symbol Q( , ). The
dummy symbols of L are to be xx, x2,... ; we shall also use these symbols as in-
formal variables. Moreover, we shall be concerned with only one semantic inter-
pretation of L, namely the one in which the structure is SC, in which the object
symbols are mapped by C, and in which Q( , ) is mapped onto the inclusion
relation of i?. Below, sentence means sentence containing no object symbols, and
predicate means predicate containing no object symbols.

Let Xbe any predicate and au...,an be any object symbols, then X(ax,..., an)
denotes the well-formed formula obtained by substituting au...,an for xu ..., xn
respectively in X. Let R be a relation of order n on =Sf. The predicate X is said to
define R just if none of the variables xn + 1, xn + 2, ... occurs free in Z and if for any
object symbols ax.an, X(ax,..., an) holds in j£? if and only if R(a%,..., a*)
where ax,..., an correspond to the respective elements af,..., ajf of J§?. A relation
on SC is called elementary just if there is a predicate which defines it.

We suppose given a particular Gödel numbering of the well-formed formulas
ofL.
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Denote the lattice of r.e. sets of 3&, we define certain relations on SÜ as follows :

In(x, y, z) o x n y = z,
Un(x, y, z) o x U y — z,

Emp(x) o x = 0,    All(x) o x = v,
Rec(x) o x is recursive,
Fin(x) o x is finite,
Sim(x) o x is simple,

Max(x) o- x is maximal.

Each of these relations is elementary. For the first four the following are correspond-
ing predicates :

Q(x3, x,) A Q(x3, x2) A (Vx4)[ô(*4, *i) A Q(xi} x2) .=> Q(xit x3)],

Q(xu x3) A Q(x2, xa) A (Vx4)[ß(x1, Xi) A Q(x2, x4) .=> Q(x3, x4)],

(Vx2)[ß(x1, x2)l       (Vx2)[ß(x2, Xl)].

We can construct in turn predicates corresponding to the last four relations by
using the equivalences :

Rec(x) o (Ey)(Ez)(Ew)[ln(x, y, z) &. Un(x, y, w) & Emp(z) <& Alii»],
Fin(x) o ( v)[ v £ x -> Rec( v)],
Sim(x) o (v)(z)[Emp(z) & Info v, z) .-+ Fin(y)],

Max(x) o ( v)(£z)(£w)[x £ v -+: Fin(z) & All(w) & [Un(x, z, v) v Un(z, y, w)]].

By the decision problem for .S? we mean the problem of deciding whether an
arbitrary sentence of L holds in 3? or not. For precision we define the decision
problem for 3 to be the degree of unsolvability d(i£) of the set

D(3?) = {x | x is the g.n. of a sentence which holds in 3}.

We say the decision problem for =â? is solvable just if d(SC) = O, where O is the degree
of the recursive sets. We say the decision problem for =S? is reducible to that for M
if d(&)£d(JÍ).

It is apparent from the list of elementary relations on ai given above that the
decision problem for M cannot be easily proved solvable. For even the existence of
a maximal set is by no means trivial. Also, if 8% has unsolvable decision problem,
to demonstrate this we shall have to gather much more information about the
elementary properties of r.e. sets than is presently available.

Let Jf denote the lattice formed by all subsets of the natural numbers, and let.^f
be any sublattice of JÍ. Suppose further that 3 is closed under addition and sub-
traction of finite sets, i.e., if A is in 3? and <f> is finite then both A u <f> and A — <f> are
in 3 also. We denote by JSP* the lattice whose elements are the equivalence classes
of members of 3 under ~. We shall now prove that the decision problem for 3
can be reduced to that for 3*.
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Theorem 1. If ' 3?<=,Jf and 3?* £ JT* then the decision problem for 3? is reducible
to that for Se*.

Proof. Suppose that the hypothesis of the theorem is satisfied, then ££ is closed
under the addition and subtraction of finite sets because ££*<^jV*. If if has a
greatest element it contains v, if it has a least element it contains 0. We shall
suppose below that ¿C contains both v and 0 ; we shall discuss at the end of the
proof what modifications are necessary in case one or both of v, 0 are absent from
.2?.

We let y denote the £-tuple yu ..., yk of variables which range through ¿£. Let
k={1,2,..., k) and for each subset i of k let y(i) denote

C\{yi\i^}r\f\{yl\ieK-i}.
For each natural number m let Cm, Cim denote the respective relations on =Sf

defined by
Cmiy) "*** y has cardinality m,

C^miy) <>y has cardinality ^m.

By an A-relation of order k we mean a relation R of order k on 3? such that
Riy) is equivalent to

(i) &{CCK0)l'£*},
where each Ct has one of the forms Cm, CSm or is identically false. By a B-relation
of order k we mean a relation R of order k on ¿£ such that R(y) is equivalent to
5({y}) where S is a relation of order k on £?* and where {y} denotes {j^},..., {yk},
these being the respective members of Jâf * to which yu ..., yk in 3? belong. We
define the B-relation corresponding to the ^-relation (1) to be

(2) &ŒÎA») I ' S «}.
where F, is identically false if C, is, F, is identically true if C, has the form Cäm
and where Ft(z) is

(3) nfol»'e«}£U{z«l*e*-t}
otherwise. The left-hand side of this last inclusion is to be {v} when 1=0, and the
right-hand side is to be {0} when i = k. Notice that (3) holds for z={y} if and
only if y(i) is finite. Notice also that (1) implies (2).

By an AB-relation of order k we mean a relation R of order k on SC such that
Riy) is equivalent to

(4) \/{My)&-M¿y)\i = (hl,...,p)
where each A¡ is an /i-relation and each 5¡ is a Ä-relation. Notice that any ^-relation
of order k is an ^¿-relation of order k, and similarly for any 2?-relation of order k.

We give Godel numbers to the ^-relations of order k so that from the g.n. of
R we can effectively find all the relations C in (1), and vice-versa. A number e is
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6 A. H. LACHLAN [January

said to be the g.n. of a 5-relation of order k just if the well-formed formula of L
with g.n. e defines a corresponding relation of order k on JSP*. We give g.n.'s to
the ^-relations of order k so that from the g.n. of the ^-relation expressed by (4)
we can effectively find p and g.n.'s of A0, Au..., Av, B0, BU...,BP respectively,
and vice-versa. Now when we say "given an A-, B-, or /1-B-relation" we mean
given its g.n., and when we say we can effectively find an A-, B-, or ^LS-relation we
mean we can effectively find its g.n.

We now develop certain closure properties of the class of ^45-relations. It is
clear that given two ^-relations we can effectively find their disjunction as an
^5-relation. We shall prove that the conjunction of /^-relations can also be
effectively found as an ^.ß-relation. Suppose then that for j = 0, 1 we have R'(y)
equivalent to

VL4ÍÜ0 &B\(y)\ / = 0,1,...,^}
where the A{ are ,4-relations and the B[ are 5-relations. Now R°(y) & Rx(y) is
equivalent to the disjunction of all the expressions of the form

A°(y) & B°g(y) & A\(y) & B&y);       0 è g ú p°,   0 S hg p\

Thus it is clearly sufficient to show that given two ^4-relations we can effectively
find their conjunction as an ,4-relation. Suppose then that for j = 0, 1 we have

A'(y)o&{C!(y(t))\lSK}

where C°, C,1 can take the same forms as Ct in (1). It is easy to see that A°(y) &
Äi(y) is equivalent to (1) provided that the relations Ct are chosen as follows.
If C°, C1 are Cm, Cn respectively, we take CL to be Cm if m=n and to be identically
false otherwise. If C,°, C,1 are Cm, CSn in some order then we choose C to be Cm
if man and to be identically false otherwise. If C,0, Ç1 are CSm, Cên respectively,
we take C, to be Cê maX(m,n). Finally, if one of C°, C} is identically false we take
C to be identically false. Thus given the ,4-relations A0, A1 we can effectively find
their conjunction as an /4-relation ; from above it follows that the same is true for
/45-relations.

The negation of (4) can be written

(5) & {-vU|) -v. -nBAy) | i - 0,1,.. .,/>}.

To show that we can find the g.n. of an ^-relation R such that R(y) is equivalent
to (5) it is sufficient to show that given an ^-relation we can effectively find its
negation as an ^Lß-relation, and that given a ^-relation we can effectively find its
negation as a 5-relation. The latter is immediate, for to obtain the negation of a B-
relation we need only take the negation of the corresponding elementary relation
on 3*. Now consider the ^-relation expressed by (1); the negation of (1) is a
disjunction of terms of the forms —,Cm(y(a)), —iC¿m(y(a)) where misa natural
number and aç«. We are neglecting the case in which one of the C, is identically
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1968] ON THE LATTICE OF R.E.  SETS 7

false, because the identically true relation is obtained by taking each Ct to be
Cgo in (!)• Now for m>0

-nCm o [Co V Cx V • • • V Cm_i V C\m + 1]

and

^Câm o [C0 V Ci V • • • V Cm_a].

Also, —iC0 is equivalent to CS1, and —iC60 is identically false. Thus it suffices to
show that given m and a subset a of k we can find an yf-relation R such that Riy)
is equivalent to whichever of Cm(y(o¡)), CAm(y(a)) we choose. Now the former is
equivalent to (1) when we take C, to be Cao for i^a and Ca to be Cm, the latter is
equivalent to (1) when we take CA to be CA0 for i^a and Ca to be Cgm. Hence the
negation of an ^5-relation is an ./12?-relation which can be found effectively.

Consider now an ^-relation R of order k+1. We can suppose that Riy, y) is

V{At(y,y) &Biiy,y)\i = 0,l,...,p}
where At is an .¿-predicate and B¡ is a 5-predicate for Ogigp. We shall show that
iEy)R(y, y) can be effectively expressed in the form (4). Because an existential
quantifier can be taken inside a disjunction it is sufficient to consider the case
p — 0. Thus we suppose that Riy, y) is Aiy, y) & Biy, y) where A is an ,4-relation
and B is a 5-relation; we suppose further that Biy, y) implies the A-relation corre-
sponding to A. There is no loss of generality, because A implies the 5-relation
corresponding to it. Now Aiy, y) has the form

&{C?(jK¿)r\y),a(y(¿)ny')\lCK)
where C0, Cl have the same possible forms as Ct in (1). We define an ,4-relation A0
of order k by the following specification of C in (1). If C°, C/ are Cm, Cn respectively
we take C, to be Cm+n. If C°, C,1 are Cim, Cn or CÈm, CÊn in some order we
take C to be CÈm+n. If one of C°, C} is identically false we take C, to be identically
false. We shall now prove that

(6) (Ey)R(y, y) <> [A\y) & (Ey)B(y, y)].

From left to right is easy; we have only to note that

CKO n j) u WO n J'') = XO
so that the sum of the cardinalities of y(t) n y and y(t) n y' is equal to the cardi-
nality ofyii). Suppose that the right-hand side holds for valuesy1 = w1,.. .,yk = wk
in £P, and let a» be a member of JSf such that fi(to, oj). For each i we shall define
finite subsets ^„ i/rt of w(t) such that, if o)l = (w — <f>t) u 0„ then C0(w(t) n cut) and
CHw(0 n oO- If CÍ, C1 are Cm, Cn then from A°(u>) we have Cm+n(w(t)). We let if,t
consist of the m least members of w(i) and we let <f>t consist of the n remaining
members. If C,°, C,1 are CSm, Cn respectively then from ^40(w) we have Cgm + n(to(i)).
Also, since B implies the .B-relation corresponding to A and since Ç1 is Cn we have
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8 A. H. LACHLAN [January

from (3) that io(t) n w' is finite. Let <f>t consist of the n least members of w(Y), let
i/il=to(i) n eu' n $. If C°, Ç1 are C„„ Cin respectively then by the same argument
we have Caro+n(w(0) again and to(Y) n w finite. Let i/iL consist of the m least mem-
bers ofu(i), and let </>i=ta(i) n a,. If C°, C} are CSm, C£n respectively then from
A°(bi) we have Cgm+n(w(0). Let «¿, consist of the m+n least members ofw(i), and
let ¡/^ consist of the m least members ofw(t). This completes the definition of </>„
ifj, for all i £ k. We define

«°-(»-U{*l»s*))»-'Ui*l*s«}-
Since all the sets a>(t) are disjoint we have w(i) n w°=co(i) n wt. Hence
C°(to(i.) n cu°) and C^wW n (w0)') for all t£/c, which means that ^((w, oj°). Also,
since a>° only differs finitely from w we have B(tii, co°). Thus the left side of (6) holds
for y =io which is what we had to prove. Ifthe relation 5* of order k+ 1 on if* gives
rise to B, then the elementary relation of order k on if* expressed by (Ez)B*(z, z)
gives rise to the relation of order k on if expressed by (Ey)B(y, y). Therefore we
can find an ^-relation S of order k such that (Ey)R(y, y) is equivalent to S(y).

We have now shown that the class of /li?-relations of order k is effectively closed
under V, &, —, ; and that the application of an existential quantifier maps the class
of ^-relations of order k+1 effectively into the class of ^45-relations of order k.

Let X be any sentence. We now show how to find a sentence X* such that X*
holds in £C* if and only if X holds in 3. From the theory of prenex normal forms
[9, p. 8] we can suppose that A" has the form

(3x2)~(3x3)-ßxk)Y,

where 7 is a predicate containing no quantifiers and only the variables x2, x3,...,
xk. Consider any subpredicate of Y; it is built up from parts Q(xt, xj) by using
A, V, and ~. Now ß(xi5 x¡) defines the ^-relation of order k obtained by taking
C to be C0 when t contains / but not j, and C, to be Cê0 otherwise. Further, if
Fi, Y2 are both subpredicates of Y defining ^ß-relations Rlt R2 of order k re-
spectively, it is easy to see that [Fx V Y2], [Yx A Y2], [~ FJ define the ^.ß-relations
R1V R2, Ri 8c R2, —¡Ri respectively. Thus using the procedures worked out above
we can effectively find from X the ^.ß-relation of order k defined by F; call this
relation R. Further, we can effectively find an ^-relation S of order one such that

S(y) o (Ey2)-^(Ey3)—i-,(Eyk)R(y, y2, y3,..., yk).

From the definition of ^-relation there are ,4-relations A¡ and elementary rela-
tions B? on 3* such that S(y) is equivalent to

(7) VMW & B?({y}) | i = 1,2,...,/»}.
We know that S(y) is independent of y, because Y does not contain xx. Thus X
holds in if just if 5(0) holds. For each i we can effectively decide At(0). Also,
for each i we can effectively find a sentence which holds in =Sf* just if i?*({0})
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1968] ON THE LATTICE OF R.E. SETS 9

holds in SC*. This is because the relation z={0} is elementary on SC*. Thus given
a g.n. of X we can effectively find a g.n. of X* which holds in ¿if* just if X holds
inSf.

This completes the proof of the theorem except for discussion of the modifications
which are necessary when one or both of 0, v are absent from S£. If 0 is absent,
we restrict CK in (1) to be either Cè0 or identically false; if v is absent, we restrict
C0 in (1) to be either Cao or identically false; if both 0, v are absent we make both
restrictions. We make corresponding changes in the definition of A0 in (6). In the
last paragraph we also make the following adjustments if 0 is absent from S£.
If v is present we just read v for 0. If both 0, v are absent, then because of the
restrictions each At in (7) is identically true or identically false. We can still find X*
effectively because X holds in =Sf just if

V {(Ez)Bi*iz) I 1 g i gp & A¡ identically true}
holds in SC*.

The above proof is just a straightforward elimination of quantifiers. Applying
the same technique when we have the additional stipulation that SC is a Boolean
algebra we can prove that the only elementary relations on SC are disjunctions of
^-relations and consequently that SC has solvable decision problem. This explains
why there are no interesting elementary properties of the lattice of recursive sets.

From the theorem we see that in investigating the elementary theory of ai we
can confine attention to M*.

If SC s Jf and SC*<^Jf* we can prove the converse of Theorem 1, i.e., that the
decision problem for SC* is reducible to that for SC, provided that the relation
yi~y2 is an elementary relation on SC. Given a formula X* defining an elementary
relation R* of order k on SC* we can effectively find a formula X defining R on SC,
where Riy) is equivalent to R*i{yx},..., {yk}). The proof is by induction on the
length of X*. For the starting case consider X* of the form Qixh xj) we take X
to be a formula defining the relation R of order k on Si such that Riy) is yt n y¡
~yx. We can find such X, because the relation ~ is elementary on SC by assumption.
The induction step is immediate : corresponding to X* a Y*, X* v Y*, X* => Y*,
~X*, ßxdX*, (Vx¡)Z* we take Xa Y, Xy Y, X=>Y, ~ X, ßxaX, Qtx¿X re-
spectively, where X*, Y* correspond to X, Y respectively. Clearly, for any sen-
tence X* we have X* holding in SC* if and only if the corresponding sentence X
holds in Si.

2. The main theorem, covering numbers, a characterisation of M-simple sets.
We require the notions of M-simple set and maximal set to be relativised with
respect to a given r.e. set in the following way. An r.e. set a is called hh-simple in
its r.e. superset ß if ß—a is infinite and if there is no recursive sequence of disjoint
finite subsets of ß each of which intersects ß — a. Likewise, a is called maximal in its
r.e. superset ß if ß — a is infinite and if there is no r.e. set y such that y-a, ß-y
are both infinite and a£y£ß.
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10 A. H. LACHLAN [January

Theorem 2. Ifa,ß are any r.e. sets with a^ß then either there exists a recursive
set S such that a u 8 = ß or ais not hh-simple in ft

Proof. The method of proof is one which was first used in Friedberg [4] and
later by Yates in [11].

Let R be a ternary recursive predicate. Define the binary function S by

Six, y) = sup {z | (Eu)u£x(v)vSz(Ew)wSyR(u, v, w)}.

Note that for some x, y we may have S(x, y) = oo, and that the relation x>S(y, z)
is recursive as a relation between x, y, z. Supposing R is given we construct from
it a recursive sequence {8¡} of r.e. sets by simultaneous enumeration in steps 0, 1,...
as follows. The sets a, ß are to be effectively enumerated as the construction pro-
ceeds. Let a}, ft, 8¡ ; denote the finite sets of numbers which have been enumerated
in a, ft 8¡ respectively by the end of stepy.

Step 0. Do nothing.
Step j+ 1. Let e be the least i if any such that 8itj — a, is empty and such that ft

contains a number >S(i,j) which is not in a,, u {8xj | x^O}. When e exists,
enumerate the least member of

(ft n {X | X > S(i,j)})-(aj u U {§*.; I x ä P»

in 8e. Otherwise do nothing.
It is clear that this construction generates from any ternary recursive relation R

a recursive sequence {8¡} of disjoint r.e. subsets of ft

Lemma 1. If (Ex)(y)(Ez)R(x, y, z) holds then \J {ox | x^O} is recursive or there
is a recursive subset S ofß such that a u S=ft

Proof. Let e be the least number such that (y)(Ez)R(e, y, z) then from the
definition of S we have lim2 S(e, z) = oo. Also from the definition of S, S(e, x) is
increasing with x and for any y^e we have S(y, x)^S(e, x). It follows that the
set <x=(J {8X | x^e} is recursive, because according to the construction a number
can only enter a after step _/ if it is >S(e,j). If ft- (a u a) is infinite then an infinite
number of members of ß — a become and remain available for enumeration in
S0, Bu..., $„_!. Thus each of 80, 81;..., 8e_! will contain a member of ß — a and
so be finite, which implies that (J {Sx | x^O} is recursive. However, if ß — (a u a)
is finite, setting S=¡ru(^-(aUo-)) we see that 8 is recursive and that a u 8=ft
This completes the proof of the lemma.

Returning to the proof of the theorem we now observe that given any disjoint
recursive sequence {e¡} we can effectively find a ternary recursive relation R such
that

(8) (Ex)(y)(Ez)R(x, y, z) o ß - (a u e0 u et u • • • ) is finite.

To see this we argue as follows. We can pass effectively from {e,} to a strongly r.e.
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double sequence {euj} of finite sets such that {etj} is increasing in j for fixed i and
such that for each i, lim* eix = ei. Now we have

ß—(a u £0 u £j u- ■ •) is finite
-*> iEx)iy)[y g x v y e (a u e0 u 8l u- • •) v y $ß].
o iEx)iy)iz)iEw)[y g x V y e (aw U e0iW u e1>tt u • • • u cBi J v y £ ßz].

Let P, Q be singularly recursive fonctions such that (P(0), 0(0)), (P(l), 0(1)),...
is an enumeration of all ordered pairs of natural numbers. The last proposition
can be written

iEx)iy)iEz)[Piy) gxv P(y) e (a, u eQ,, u «M u • • • u e,J v A*) e &«»>]•

The relation within the square brackets is recursive and so will serve as R(x, y, z).
Combining the two constructions we obtain an effective operation which maps

any recursive disjoint sequence {e¡} into a recursive sequence {S¡} of disjoint subsets
of ß. More precisely, if £is the p.r. function defined by

Fix) = y o xeey

and D is the corresponding p.r. function defined from {8¡} then an index of D can be
found effectively from an index of E. By the recursion theorem [1, p. 176] we can
choose {ef} so that {S¡} = {«,}. For the rest of the proof suppose that {e¡} has been so
chosen. There are now two possibilities. Firstly, we may have (Ex)iy)iEz)Rix, y, z)
in which case from Lemma 1 either the theorem is immediate or we have
(J {8X | x^O} recursive. But from (8) we see that we also have ß — (a u 80 u 8±
u • • • ) finite. Thus whenever (£x)(y)(.£z)/?(x, y, z) there is a recursive subset S of ß
such that a u 8 = ß. Secondly, we may have (x)(£y)(z)[—,/?(x, y, z)\ in which case
it follows from (8) that ß —(a u 80 u 8X u- • •) is infinite. Looking back at the
construction of {8J from R it is easy to see that in this case lim2 Sie, z) exists for
all e. From this it follows that each 8¡ contains a member of ß — a. For suppose 8e
did not intersect ß — a then in the course of the construction we should enumerate
in 8e any member of ß — a which is Mini;, Sie, z) and which is not in some other 8¡.
Thus if 8e does not intersect ß — a we have ß—(a u S0 u 8± u- • •) finite, which is
impossible. This completes the proof of the theorem.

As a first application of the main theorem we prove a result which settles the
first of the two claims of Myhill mentioned in the Introduction.

Corollary 1. If the complement of an r.e. set a has covering number n>0 then a
is the intersection ofn maximal sets pu ..., pn any two of which differ by an infinite
set.

Proof. Suppose a is r.e. and that a' has covering number n. From the definition
of covering number there exist disjoint r.e. sets ku ..., k„ such that each intersects
a' infinitely. Also, a must be /¡/¡-simple otherwise its covering number would be oo.
Taking ß = a u kx u • • • u k„ in the theorem we see that there exists a recursive
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12 A. H. LACHLAN [January

set 8 such that a u 8=ft Thus a u ft = a u 8' is r.e. Enumerate ¿8 and a u ft
simultaneously, and let

y0 = {x \ x is enumerated in ß before a u ft},

y1 = {x | x is enumerated in a u ft before ft.

Since ft a u ft are disjoint in a' we see that for 1^/^m we have k¡ r\ y0 n a'
= Kt n a' and y1 n a =ß'. Thus if ft were infinite we should have n+ 1 disjoint
r.e. sets, namely kx n y0,..., k„ n y0 and y1( which intersect a' infinitely. It follows
that ft is finite, and so we may assume ß=v. For 1 ¿ifín let

/x¡ = a U (J {kx I l^X^H  & X^i}.

It is clear that any two of pu ..., pn differ by an infinite set; we shall show that
Px,..., pn are all maximal. It suffices to consider p.x which is plainly coinfinite.
Now suppose ß (not the same ß as before) is an r.e. set such that ^cjäc,,. We
form 80, Si from a, ftjust as we formed y0, yx above; thus kx n S0,..., Kn n 80 and
Sx are disjoint r.e. sets. Further, since ft2/¿i we know that k2 n 80,..., Kn n 80 all
intersect a' infinitely. Hence either «! n 8, n a' is finite or 8X r> a' is finite. But
ß n Ki n «' = «:! n 80 n a' and ft = Sx n «'. Thus in one case ft—/¿j is finite and in
the other ß' is finite. Hence px is maximal, and similarly so are p2,..., pn. This
completes the proof.

This corollary is just the converse of the result of Yates mentioned in the Intro-
duction. From Yates's theorem we see that when a has covering number n the
maximal sets p.u ..., pn are determined to within finite sets by a.

We can extract slightly more from the argument used to prove the corollary.
Define the partition number of a set x to be

sup {cardinality of 91 | 91 is a class of disjoint recursive sets each intersecting x
infinitely and such that [J 91 = v}.

Suppose that a is AA-simple and note that k^ n y0,..., Kn n y0, yx are recursive
in the first part of the proof since they are disjoint r.e. sets which exhaust v. This
shows that the partition number of a is £: the covering number of a, and so for
/¡^-simple sets the covering number and partition number of the complement are
the same. Now let p be any recursive set such that p n a is infinite where a is still
hh-simpie. Taking p = k1 in the second part of the proof we see that either a n p'
is maximal or we can split p into disjoint recursive sets p n 80, p n 8X each having
infinite intersection with a'. Notice also that if the partition number of p n a is oo
then so is the partition number of either p n 80 n a' or p n 8j n a'. Thus if a is
M-simple and a' has partition number oo we can form two sequences of recursive
sets {pi}, {<7j} such that

po u CTo = v,       p0r\o-0 = 0,
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and for all i: pt — a has covering number oo, at — a is infinite,

Pi + i U o-i + i = Pi, Pi + i n CTi + i =  0-

Now define
T, = (<7,-{0, I,..., ¿-1}) U ({¡}-K U oi U- • -U a,.!»

and we see that {tJ is a sequence of disjoint recursive sets exhausting v and such that
each member of the class intersects a' infinitely.

As a second application of the main theorem we give a characterisation of
M-simple sets.

Theorem 3. An r.e. set a is hh-simple if and only if it is coinfinite and for any r.e.
set ß the set a u ß' is r.e.

Proof. For the only if part we may assume that ß is an r.e. superset of a because
a u ß' = a u (a u ß)'. But if a is /¡/¡-simple then it is /¡/¡-simple in any superset ß.
Thus from Theorem 2 there exists a recursive subset 8 of ß such that a u S=ß.
Since a u 8' = a u ß' we have the result.

For the if part, supposing a is an r.e. coinfinite but non-/¡/¡-simple set we shall
construct an r.e. superset ß of a such that a u ß' is not r.e. Accordingly, let {8¡} be
any recursive sequence of finite sets each of which intersects a, and let {íu¡} be any
recursive enumeration of all r.e. sets. We let ß be

« u U {8X n wx | x è 0}.

If a u ß' is r.e. then it is cue for some e. Now let/be a member of Se n a', then from
the definition of j8

fet»tofeß.
But from the equation aUj8' = cuewe infer the opposite. Thus a u ß' is not r.e.

Corollary. T/'aj, a2 are eo//¡ hh-simple then so is ax O a2.

Proof. From the theorem it is sufficient to show that if ß is any r.e. set then
(ax n a2) u ß' is r.e. But we have a! u ßA a2 u ß' r.e. because au a2 are /¡/¡-simple
respectively, and

(«! u ß') n (a2 u ß') = («! n a2) u ß'.

The set on the left is r.e. being the intersection of two r.e. sets. This completes the
proof.

To complete the section we generalise the method of Theorem 2. R. W. Robinson
has noticed that the use of the recursion theorem in the proof of Theorem 2 can be
eliminated. We use his observation in what follows although we could equally
well use the recursion theorem again. First we give some definitions and lemmas.

A set a is called hh-immune if it is infinite and there is no recursive sequence of
disjoint finite sets each member of which intersects a.
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14 A. H. LACHLAN [January

Let w = (cü1, ..., ojk) be any &-tuple of r.e. sets. The order of to denoted by [to|
is defined to be the number of subsets i of {1, 2,..., k} = K for which to(t) is infinite.
We say that the ordered pair (u°, to1) of ^-tuples of r.e. sets is a splitting of to if
there exist disjoint complementary recursive sets 80, 81 and (1-1) recursive functions
D0, I>i such that D0(v) = 80, D1(v) = 81, and such that wf = D0~1(oj¡), wj = D{1(oji)
for lgigk.

Lemma 2. ■//"to(i) is infinite and non-hh-immune and if (to0, to1) is a splitting of the
k-tuple of r.e. sets to then one o/to°(i), to1^) is both infinite and non-hh-immune.

Proof. It is sufficient to show that one of to(t) n S0, to(i) n 81 is both infinite and
non-AA-immune. This is because to°(i) = D0~ 1((a(i) n S0) andto1(i) = Z)j"1(<«>(0 n &i)-
If one of to(t) n S0, to(i) n 8X is finite there is nothing to prove. Suppose for
reductio ad absurdum that both sets are /¡/¡-immune. From its definition to(i) has
the form ft— a where a is an r.e. subset of the r.e. set ft Since to(i) n 8± is AA-immune
S0 u a is AA-simple in 80 u ft From Theorem 2 we see that 80 u ft is r.e. and so
a u 80 u ft is AA-simple since it is r.e. and has complement to(t) n Sj. Similarly
a u Si u ft is M-simple. Now a u ft = (a u 80 u ft) n (a u Si u ft) is M-simple
by the Corollary of Theorem 3, and so to(i) is AA-immune. This proves the lemma.

Lemma 3. Jfta = (wl,..., <nk) is a k-tuple of r.e. sets and none ofui'b .. .,w'k is
finite andb>(0) is finite then there exists a splitting (to0, to1) o/to such that |to°| < |to|
analto1! <|to|.

Proof. Let A be a subclass of k such that IJ {cu* | x e A} is cofinite and is
minimal with respect to inclusion. Let p be any member of A. We enumerate a>p
and x = U iwx I x e A—{p}} simultaneously, and let

So = {y I y is enumerated in wp before v},

Si = {j I J is enumerated in x before cup}.

Then S0, 8j are disjoint r.e. sets whose union is œp u x and therefore cofinite. We
may suppose since we are only interested in infinite sets that S0 u 81=v. Hence
there exist (1-1) recursive functions D0, Dx such that D0(v) = 80, Z)1(i') = 81. Let
(to0, to1) be the corresponding splitting of to. Nowto°(t), orto1^) can only be infinite
if to(t) is infinite. Alsoto°(t) will not be infinite unless i contains/?, althoughto(i) will
be infinite for some i not containing p because w'v is infinite. Also to1^) will not be
infinite for any i disjoint from A—{p}, although to(t) will be infinite for some such
i because f] {o>'x | x e X-{p}} is infinite. Thus |to°| < |to| and [«o1] < [to] as alleged.

Theorem 4. Let to = (wu ..., wk) be a k-tuple of r.e. sets and let

$f £ {i | i £ k & to(t) is not hh-immune or finite},

then there exists a disjoint recursive sequence {8\\ ie Jf & ¿äO} of finite sets such
that 8\ intersects ia(î)for all i in Jf and all i^O.
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Proof. Take any effective (1-1) map of Jfxv onto v and denote by g the well-
ordering of X x v induced by the natural ordering of v. Without loss of generality
we may suppose that all of at'i,..., w'k are infinite, because if to* comes from to
by removal of a cofinite set then modulo finite sets the infinite sets of the form
to(i) are the same as those of the form<o*(i). If 10(0) is finite we obtain a splitting
(co°, to1) of to such that to0, to1 both have order < the order of to from Lemma 3.
For r=0, 1 define

Jfr = {t | t e Jf" & (or(0 is not /¡/¡-immune or finite}.

From Lemma 2 we have Jf° u Jf1=X and so if the theorem holds for «o° and for
to1 it also holds for to.

Supposing now that w'x,..., w'k are all infinite and thatto(0) is infinite we attempt
to construct the required sequence of disjoint finite sets by simultaneous enumera-
tion in steps 0, 1,.... For t in Jf let 8\j be the finite set of numbers which have been
enumerated in 8l¡ by the end of step j. For 1 g i g k let cu^ be the finite set of numbers
which have been enumerated in co¡ by the end of step j. If 0 is in X then we let to
be an r.e. superset of 10(0)' such that to(0)' u w' is not r.e.; such an œ exists by
the last theorem. Otherwise we let w beto(0)'. We let w¿ be the finite set of numbers
which have been enumerated in a> by the end of step j. For 1 ̂  0 we define w/t) to
be

n {«*.* [x e 1} n n {w'XiJ 1 x e K-t};

we define to/0) to be
<») n D Wx.i \xeK}.

In the course of the construction for each 1 in Jf we define a binary recursive
function SL as follows :

Six, 0) = 0,
Sl(x, j+1) = SixJ) if 8XJ intersects co/i),

= S'(x,j)+1 otherwise.
Step 0. Do nothing.
Stepj+ 1. Let (e, e) be the least member of Jf x v such that 8seJ n w/e) is empty

and such that toi + 1(e) contains a number f> max {S°(x,j) \ (1, x)<(e, e)} which is
not in [J {8xj j t e JT & xäO}. When (e, e) exists enumerate the least such / in
8ee. Otherwise do nothing.

It is easy to check that the construction is effective and also that, if 8\ intersects
<o(t), then 8\ is finite and linij, Si(i, y) exists. It is also easy to see from stepy+1 that
the sequence {8| | te JT & ¡2:0} is disjoint, i.e., 8\ intersects 81 only if i=-r¡ and
i=h. Thus there is nothing to prove unless 8X fails to intersect to(i) for some pair
(t, i). Let (e, e) be the least such pair; then S£(e, y) increases as y increases and has
limit 00. Hence, because of the clause/> max {.S'ix^j') | (t, x) < (e, e)} in stepy+1, we
see that [J {8\ \ (1, i) > (e, e)} is recursive. Also, by choice of (e, e) for (1, i) < (e, e)
we have that 8\ is finite and linij, Si(i, y) exists. If e = 0 then U {8J | (1, /) > (e, e)}
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covers tonto(0) except possibly for a finite number of numbers, otherwise
a member of w 010(0) would eventually be enumerated in 8ee. However, this im-
plies thatto(0)' u a/ is r.e. which is contrary to the choice of co; thus e^ 0. Now
{J {8\ I (t, i) > (e, e)} covers io(e) except possibly for a finite number of numbers,
otherwise a member of ío(e) would eventually be enumerated in 8se. It follows that
there is a recursive set 8 such that to(e) s 8 £ a>. Now take S0 = 8 and 8j, = 8', and let
(to0, to1) be any corresponding splitting of to. We define

Jf° = {t I ieJT & t ^ 0 & w°(0 is not AA-immune or finite},

¿f1 = {i I 1 e Jf & to1^) is not AA-immune or finite}.

If 0 is not in Jf then it is clear that Jf° u Jf1=jT from Lemma 2. If 0 is in Jf
we have co' u (8j n to(0)') not r.e., because

w' u (8i n to(0)') u to(0)' = ai' u to(0)'

and the set on the right is not r.e. by choice of co. Hence in this case to(0) n 81
is not finite or AA-immune, from which it follows that tox(0) is not finite or AA-
immune. Thus in any case we get Jf° u Jf1 = Jf. The theorem will hold for the
pair (Jf, to) if it holds for both the pairs (Jf °, to0), (¿f1, to1). Since to(£) £ 8 = S0 we
have w1(e) empty, and so ¡«to1 [ < |to|. If 0 is not in Jf then from Sscu we have
to°(0) empty, and so |to°| < |to|. If 0 is in ¿f then since 0 is not in JT° the cardi-
nality of Jf° is less than the cardinality of X. The theorem now follows by
induction on

I to I + cardinality of J¡f.

The starting case is that in which the cardinality of X is 1 ; the theorem is obvious
in this case.

3. An AA-simple set with no maximal superset. The construction of this section
settles the second claim of Myhill mentioned in the Introduction.

Let {xi} be a recursive enumeration of all r.e. sets, recursive in the sense that
x e Xv is a binary r.e. relation. Imagine a clerk simultaneously enumerating all the
sets of the sequence. At each step the clerk enumerates a pair (x, v), and the set of
all pairs which he enumerates is {(x, y) \ x e x¡,}. For technical reasons each pair
which is enumerated at all is enumerated at an infinite number of steps.

Let a, i>,..., denote finite strings of O's and l's possibly empty, and denote the
set of all such strings by £. We consider (1-1) functions from £ into v which we
call number trees. The members of a number tree are the members of its range. We
denote by a * b the string formed by concatenating b to the right of a. If T is a
number tree and a is any member of £, then T[a] denotes the number tree defined
by T[a](ï) = J(a * £). We order 2 linearly as follows: 0, 0, 1, 00, 01, 10, 11, 000,
..., that is to say first by length and then lexicographically. When we speak of the
least member of a subset 1) of £ we mean the member of % which occurs earliest
in this sequence ; if a occurs before b we write a<b. Also, the members of a number
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tree T have a linear order -<r (abbreviated to -< whenever there is no doubt
which T is meant) induced by the ordering of £ :

x<yo iEa)iEb)[x = T(a) & y = Tib) & a < &].

The construction which follows consists of steps 0, 1,.... In each step 5 we
define a number tree Ts. Let r¡s consist of those numbers not in the range of 7A,
then {ijj will be an increasing strongly r.e. sequence whose limit is the r.e. set
required.

Let oDyjS be the finite set defined as follows. Firstly, coy,0 = 0 for ally. Secondly,
if (x, y) is the pair which the clerk enumerates at step s we set

<*>z,s+i = w»,s u {x} if z = y and x £ wy¡s,

= a>8>,—{x} if z>y and x$a>ytS,

= cu2S otherwise.

Lemma 4. For all y, \\mz ojy,z=xy-

Proof. Suppose that the lemma holds for all y<e. By inspection aeiiÇye. Let
m be any number in Xe then by the induction hypothesis there exists q such that
for all y<e and all s>q we have m not in wVj,+i—»y... For some s^q we have m
in o)e>s, because the clerk enumerates every pair an infinite number of times if at
all. Also, from the last definition we see that m is in o>e,t — *»e,t + i f°r some t^s
only if there exists y < e such that m is in u)y¡t + x — wy>t which is impossible by choice
of q. Therefore m is in coes for all sufficiently large s and the lemma is proved.

We define an auxiliary function W by

wix, y, s) = 2 w* Ix e w*s & z = y)-
It is clear from Lemma 4 that

lim„ Wix, y,w) = Jt{2«-*\xeXz & zg y}.

Step 0. Define T0 by ro(0) = O, and

r0(ï*0) = 2r0(ï)+l,
T0ii*l) = 2T0ii) + 2.

It is easily verified that T0 is a number tree onto v.
Step s+1. Let (x, y) be the pair which the clerk enumerates at step s. If x is

not a member of 7A or if x=Tsi%) and % has length g y or if x is in wy s then do
nothing. Otherwise let £0 be the string of length y of which j is an extension.
Let ïj. be the least extension of £0 if any such that ix < j and such that Wixx, y, s)
< Wix, y, s+1) where xx = Tiii). Define

Ta+iia) = xif a = ii,

= T$ia * 0) if a is one of j, s * 0, %. * 00,...,
= 7A(a) otherwise.
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We note that the range of Ts + 1 is the range of Ts with Xi removed. If there is no
Ï! satisfying the given conditions or if the step is vacuous anyway, we set
Ts+1 = T,.

The construction which we have described is clearly effective. Given i we can
effectively enumerate t]¡ and can effectively find its cardinality. Further, by inspec-
tion of step s+ 1 we see that -ns^r¡s+1. Hence fo} being a strongly r.e. increasing
sequence has an r.e. limit which we denote by -n.

Lemma 5. lim* Tx exists.

Proof. For reductio ad absurdum let b be the least string such that lim* Tx(b)
does not exist, then there are an infinite number of steps s+1 for which Ts(b)
7¿Ts + 1(b). For all sufficiently large s such that Ts(b)^rs+1(b) we have ïi=b;
this is because at any step s+1 for which TS^TS + 1, ̂  is the least string on which
Ts + 1 disagrees with Ts. At any step s+1 where £i = b the length y of £0 is ^ the
length of b. Also, if ï1 = b at step s+1, then W(Ts(b\ y, s)<W(Ts+1(b), y, s+1).
Let y0 be the least number such that there are infinitely many steps s+1 with ^
= b and y=y0- Then for all sufficiently large s we have W(Ts(b), y0, s)g W(Ts + 1(b),
y0,s+l) either because jx is not defined, or because Jx>b, or because £i=b,
and y^y0- Further, for infinitely many s the inequality is strict because there are in-
finitely many s such that i1=b andj>=j>0 at step s + 1. This contradicts the inequality
W(Ts(b), y0, s) <2y° + 1 which follows directly from the definition of W. This
completes the proof of the lemma.

Let T denote lim* Tx. Let W(x, y) denote limz W(x, y, z).

Lemma 6. Let e be a string of length e. Let b = T(b) where b is an extension of e.
Let t be the greatest number such that the pair enumerated at step t is (b, e) and such
that b is not in a>eit. Then Tt~ 1(b) is an extension oft and W(b, e, t+1)= W(b, e).

Proof. If t does not exist the conclusion is meant to be vacuous. We first notice
that for any member b of T the length of Ts~ x(b) is decreasing. Thus if T~ 1(b) has
length ^ e so does Tf \b) for all s. Therefore there exists some string e* of length e
of which Tf\b) is an extension. Let s+1 be the least step >t if any such that
Ts+i(b) is not an extension of e*. Then we see that iQ in step s+1 has length y < e
and that x—b. Thus the pair (x, v) enumerated by the clerk at step s has x=b and
y<e. Hence b is not in cyes+1 which contradicts the choice of t. Thus no such step
s+1 exists and Tf\b) is therefore an extension of e.

If W(b, e, t+ 1)t¿ W(b, e), this can only be because there exists mge such that
bexm~wm,t + i- It is clear that in fact m<e. Letting s be the least number >t
such that the clerk enumerates (b, m) at step s we have the same contradiction as
before.

Lemma 7. Let e be a string of length e; then there exists w such that for all but a
finite number of extensions %of twe have W(T(i), e) = w.
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Proof. Let e" be the string of length e— 1 of which e is an extension, then we
may assume that there exists w~ such that for all but a finite number of extensions
j of e~ we have W(T(i), e— l) = w~. From the definition of If we see that for all
but a finite number of extensions j of e we have

2w~ g W(T(i),e) g 2w~ + l.

We may suppose that WÇTii), e)=2w~ +1 for infinitely many extensions j of e,
otherwise there is nothing to prove. Let a be any extension of e and let a be such
that for all x la and for all Tçga we have 7A(j) = T(j). There are an infinite number
of members b of 7"[e] for which Wib, e)=2w~ +1. Each such b is in Xe and thus
has associated with it a greatest t such that b is not in a>e¡ and such that (¿>, e) is
enumerated at step t. Since there are infinitely many such b we can find one with
Tf 1ib) = f> > o and t 1 a. From the last lemma 6 is an extension of e and Wib, e, t +1)
= Wib, e)=2w~ + l. Since Ti+1(j) = 7A(j) for all %ga by choice of a, we have
w^ri«), e, f)S ^(¿>, e, *+1)- Hence H-TTia), e)^2vv~ +1. But a is any extension
of e and so W(Tii), e) = 2w~ +1 for all but a finite number of extensions j of e.
This completes the proof.

Lemma 8. For any string e the set n u range iT[e]) is r.e.

Proof. Let e have length e. From Lemma 7 there exist w, e0 such that e0 is an
extension of e and such that for all extensions j of e which are 1 e0 we have
IfTTOO, e) = w. Let j0 be such that Tsi¿) = Ti¿) for all í^j0 and all ige0-

Suppose that for some s^s0 and somep we have

(9) Wip, e,s) = w &pe range (Js[e]) & 77 ^ > e0,

then

(10) WQ>, e,s+l) = w &pe range (Ts + 1[e]) & I£\to > e0 .v. /; e Vs+1.

Suppose the contrary; then we see at once that p is in the range of Ts+i since it is
notinr/s + 1. If x in the statement of step i+1 is not p then Wip, e, s+\)= Wip, e, s)
and so either p is not in the range of rs + 1[e] or T¡~+\(p) > e0. By choice of sQ we
have Ts~+\(p)>e0, therefore/; is not in the range of 7A,+i[e], which is impossible.
Hence x=p in step s+ 1. If y in the statement of step s +1 is > e then W (p, e,s+1)
= W(p, e, s), also £0 and %x if defined are proper extensions of e. This means that p
is in the range of 7A+i[e], because Ts + 1 can only disagree with Ts on extensions of
ïo- Now Tf+\(p) > e0 as before, and so y g e. But we have W(p, e, s) ̂  W(T(t0), e, s)
and so W(T(e0), y, s)< W(p, y,s+1). It follows that %x is defined and ge0. Since
Ts+idO^Tsdi) the choice of s0 is again contradicted. From this contradiction we
infer that (9) does indeed imply (10) when s^s0.

It is now apparent that the r.e. set

(11) {u | (Ez)[z è So & W(u, e, z) = w & ue range (T,[e]) & T;\u) > e0]}
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is a subset of r¡ u range (r[e]). It is also clear that all but a finite number of mem-
bers of T[e] belong to the r.e. set (11). This completes the proof of the lemma.

We can now deduce that r¡ is AA-simple with no maximal superset. Let e be a
string of length e; then from Lemma 7 there exists w such that for all but a finite
number of members x of T[e] we have W(x, e) = w. If w is even then all but a
finite number of members of T[e] are in x'e- If w is odd, then all but a finite number
of members of T[e] are in x'e- Let el5..., em be all the strings of length e for which
the corresponding w's are even, and let em + 1,..., em+n be all the other strings of
length e whose corresponding w's will be odd. Then

Xe n U {range (T[eJ) 11 £ i ¿ m}
and

U {range (TfeJ) | m < i g m+n}-xt

are both finite. Also, the sets

U {range (T[t,]) \ 1 g i g m}       \J {range (T[e¡]) | m < i g m + ri}

are disjoint and exhaust -n'. Therefore -n u x'e is r.e. since it differs only finitely
from

U {n u range (T[et]) \ 1 £ i £ m}.

Since this is true for any e we have r¡ AA-simple by Theorem 3. Further, if r¡ u Xe
is not cofinite then m>0 and so t¡ u range (T[e1 * 0]), -r¡ u range (T[tx * 1]) are
r.e. sets disjoint outside r¡ and both intersecting (r¡ u xe)' infinitely. Hence r¡ u Xe
is not a maximal superset of r¡, and so r¡ has no maximal superset. We have proved:

Theorem 5. There exists an hh-simple set with no maximal superset.

Notice that 3*(r¡) is a countable atomless Boolean algebra ; this determines its
isomorphism type as a Boolean algebra. We shall see in the next section that if *0?)
determines 3(-n), thus there is only one possibility for the lattice of r.e. supersets
of 77.

4. The Boolean algebras of supersets of AA-simple sets. In this section we show
that as a runs through all AA-simple sets, so S£*(a) runs through all possible iso-
morphism types.

Let {xi} be any recursive enumeration of all r.e. sets, and let a be a fixed r.e. set.
Consider the relation R on the natural numbers defined by

R(x, y) o (xx u a) - (Xy u a) is finite.

Defining ¿/={a0, au ...} where

a, = {x I R(x, i) & R(i, x)},
and ^ on si by

a, g a¡ o R(i,j),
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it is easy to see that the map: a¡ goes to x¡ u a, is an isomorphism from {se, g}
onto {SC*ia), £}. Turning the argument round, we may define a Hl-lattice to be
one of the form {se, g} where sé and g are defined from some binary 3V3-relation
R as above, and where there exist binary recursive functions U, I such that for all
x, y we have

ax U ay = ccU(x,v), ax ^ ay = aHx,yy

Since U, I obviously exist above, for any r.e. set a we have SC*(a) isomorphic to a
3V3-lattice.

It is not generally true that given a 3V3-lattice which has a 0 (least element)
and a 1 (greatest element) we can find an r.e. set a such that SC*ia) is isomorphic
to it. For there is a 3V3-lattice with a 0 and 1 and just one other element, and we
have already seen that if SC*ia) is finite then a~v or SC*ia) is a Boolean algebra
and thus has as order some power of 2. However, by modifying the construction
in the last section we can prove :

Theorem 6. Let sé be a 3V3-lattice which is a Boolean algebra, then there is an
hh-simple set a such that\SC*(a) is isomorphic to sé.

Proof. Let % be a string of length x; we henceforth identify £ with the finite
function defined by :

l(n) — (n + l)th member of string j if « < x,
undefined otherwise.

Let sé be a countable Boolean algebra. A sequence {a0, a1;...} of members of sé
is said to generate sé if every member of sé can be obtained from members of the
sequence by the operations of union, intersection, and complementation. A mapping
F of S into {0, 1} is said to be an associate of sé if there is a sequence {a0, ax,...}
which generates sé such that

Fit) = i o [fl K I sOO = 0} n H K IIÜ0 - 1} - 0].
Note that every member of sé can be expressed in the form

U (H K I i(y) = 0} n n K I -ay) = 1} I s e 3£}
where 3£ is a finite set of strings. Call this set a(j£). Suppose that every string in 36
has length g n and that 3E0 is the set

{j | i e £ & j has length n & (£'tt)[t) e H & i) £ j]},

it is easy to see that a(3£) = a(3£0). Let s2) be another finite set of strings all of length
gn and define D0 from s2) as 3£0 was defined from X. We see that

(12) a(3i) £ «(D) o a(X0) £ «fj0) O (#[* 6 £0- ?)0 -> F(S) =  1].

It is now apparent that if sé0, sé1 are two countable Boolean algebras with a com-
mon associate, then sé0, sé1 are isomorphic. For let the common associate be F
and {a0}, {a}} be the corresponding generating sequences of sé0, sé1 respectively.
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For each finite set of strings 3£ we map a°(£) into a1(X). It follows from (12) firstly
that this constitutes a good definition and secondly that the mapping is an
isomorphism.

Let si be any 3V3-Boolean algebra defined as above, and let a0, als... be its
natural enumeration. From the recursive functions U, I giving effective union and
intersection in sá it is clear that we can define recursive functions V, J such that

««a = D KI i(y) = o}.     «v«, = U KI i(y) = U-
Now we have the equivalences :

E(l) =  1 o «ja) C\ a'va} =  0 o ccm) g aV(ï).

Thus given j we can effectively find a ternary recursive relation Sj such that

E(i) = lo(Ex)(y)(Ez)Sl(x,y,z).
Define

fc,« = {« | (ßi)[« Sx & (y)[y á « -* (Ez)Sl(u, y, z)]]}.

Call a a segment ofv if it satisfies

(x)(_y)[x < y & y e a .-> x £ a].

Now i/>ï>x is r.e. uniformly in j, x. Also, for fixed j the sequence </iji0, <Aj,i, ... is an
increasing sequence of segments of v. Further, it is easy to see that

F(i) = lo(Ex)(y)[y £ *->&,, - v].

The string t) is a segment of the string j, written t) s j, if j is the same as or a proper
extension of t). We let L(j) denote the length of i and define

<Aï = U {h.v I t) is a segment of j & j> = L(z)-L(t))}.

Now i/ij is r.e. uniformly in j and is a segment of v. There are two properties of the
sequence {i/iE}. which we shall need below :

(13) F(j) = 1 o [i/it, = v for all but a finite number of extensions t) of jç],

(14) i/ij finite -»■ [if\ is finite for every segment to of j].

To prove (13) we note that if F(i) = 1 then for some/? we have i/iÏjP, </>j,p + i,... all
equal to v. But if rj is an extension of jr such that Z,(j)+/>aL(i)), then one of i/>ï>p,
i/iï>p + 1,... is a summand of 09 and so *f\ = v. Also, if F(i) = 0, then from above
i/rs,o, 0j,i, ■ •. are all finite. By the definition of associate F(j) = 0 implies F(t))=0
for every segment n of j ; therefore Fíj) = 0 implies that every summand of i/ij is
finite and hence that t/tr is finite. Thus (13) is proved when we observe from the
definition of associate that F(j)=0 implies either F(i * 0)=0 or F(j * 1)=0, be-
cause then F(t))=0 for an infinite number of extensions t) of j. Now (14) is clearly
true, because we have shown that F(j) = 0 implies both i/ij finite and F(t))=0 for
every segment t) of j.
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We now carry out a construction like that of the last section of an r.e. set v
such that SC*(r¡) has F as an associate. This will clearly be sufficient to establish
the theorem. Let {xt} be a recursive enumeration of all r.e. sets as before. In this
construction at each step the clerk enumerates either a pair in v x v or a member of
fl but not both. The set of all pairs of v x v which he enumerates is {(x, y) | x e xy)
and each member of this set is enumerated at an infinite number of steps. Each
member j of £ is enumerated at k steps where k is the cardinality of </rE.

As before in each step j of the construction we define a number tree Ts ana we
let vs consist of those numbers not in the range of Ts. We define ouy¡s just as before,
likewise the auxiliary function W. We shall also define in step s the function Cs
mapping fl x v into v. The role of Cs in the construction is roughly as follows. Say
that m enters n-state x at step s if W(m, n, s)^x= W(m, n, s+1). For any j of
length n, Cs(l, x) counts the numbers m which before step s have entered n-state
x+1 through m entering wn and which have been "used" in the construction. We
require £ to be arranged in an effective sequence fl0, Si,_The construction ofr¡
is now specified.

Step 0. Define T0 as before. Let C0(n, w)=0 for each pair (n, n).
Step s+l. There are two cases according as the clerk enumerates at step s a

member of v x v or a member of fl.
Case 1. Let (x, y) be the pair which the clerk enumerates at step s. If x is not a

member of Ts, or if j = 7A_1(x) has length gy, or if x is in wys, or if lg%0 * £z
where j0 is the segment of j of length y and where z = Cs(£o, W(x, y, s)), then define
TS+X = TS and CS + X = CS. Otherwise, define

Cs+1(n, n) = Cs(n, n) +1    if n = £0 and n = W(x, y, s),

= Cs(n, n)        otherwise.

Also, let ji be the least string if any such that £0£ïi££o * £a> and such that
W(xi, y, s)< W(x, y, s+ 1) where x1 = Ts(%1). If there is no such %i let TS + 1 = TS
again, but if ix is defined we set

Ts + i(a) = x if« »Si.

= 7A(a * 0)   if a is one of j, j * 0, j * 00,...,

= Ts(a) otherwise.

Notice that this definition of Ts+i gives i},+i=ij, u {x^, and that TS + X = TS gives
Vs + l=Vs-

Case 2. Let j be the string which the clerk enumerates at step s then we define

Ts+1(a) = 7A(a * 0)   if a is one of %, i * 0, j * 00,...,

= Ts(a) otherwise.

If x=Ts(i) we have vs+i=vs u {x}.
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The construction which we have described is clearly effective. Given i we can
effectively enumerate -n¡ and find its cardinality. Further, by inspection of step s+1
we see t/s£tjs + 1. Hence {^¡} is a strongly r.e. increasing sequence and so has r.e.
limit -n.

We now prove Lemmas 9-12 corresponding to Lemmas 5-8 for the easier
construction.

Lemma 9. lim* Tx(i) exists if and only if<fil is finite.

Proof. If ¡/«j is infinite then the clerk enumerates i at an infinite number of steps.
If % is enumerated at step s then T^-^^TJij) from Case 2. Hence lim* Tx(i)
does not exist when fa is infinite.

If i/ij is finite, then tf\ is finite for every segment t) of j. This is immediate from
(14). Let vjb be finite, then for induction on £ we may suppose that lim* T*(rj)
exists for every proper segment t) of b. Further, for only finitely many s do we have
Ts+1(b)^Ts(b) through Case 2 at step s+1. For reductio ad absurdum suppose
that rs+i(b)/Fs(b) for infinitely many s. By the induction hypothesis for all
sufficiently large such s we have b = j or b = i1 at step s+1. Let b=L(b) and let e
be the greatest number such that there is an infinite set a of values of s for which
Ts+i(b)^Fs(b) and W(Ts(b\ b, s+l) = <?. Since W(a, b, c)<2» + \ e is well defined.
For any sufficiently large s in a we cannot have b = jx at step s+1, because this
would mean that WiTs+ i(b), A, s + 1 ) > e which would contradict the definition of e.
Thus for all sufficiently large s in a we have b = j. Hence there is a number y such
that for all sufficiently large s in a the clerk enumerates (Fs(b), v) at step s and such
that Ts(b) is not in aty%s. The number v depends only on b, e and we have y<b.
Hence for each sufficiently large s in a we have Cs+i(ï0, 2y~be) = Cs(ïo, 2y~"e)+l.
Therefore as s increases Cs(j0, 2"~ be) takes every value, and so there is an infinite
set r for each member s of which

Cs + 1(io,2y-"e) = Cs(i0,2y-"e)+l = z+1,

where £0 * fl22b. For all sufficiently large s in t we have Ts+1(tf) = Ts(t)) for all
segments to of b, whence if jx is defined in step s +1 then b £ r^. Since j0 £ & £ So * £s
at each step s+1 such that s is in t, for all sufficiently large s in t we have

W(Ts+1(b),y,s+l) ^ W(Ts(l),y,s+l) - 2»-»e+l.

Hence for all sufficiently large s in t we have W(Ts+1(b), b, s+\)^e+2b~y. This
contradicts the choice of e and so the lemma is proved.

Let T(i) be equal to lim* F*(j) when this is defined and be undefined otherwise,
let Wix, y) denote lims W(x, y, z).

Lemma 10. Let e be a string of length e. Let b = T(b) where b is an extension oft.
Let t be the greatest number such that the clerk enumerates (b, e) at step t and such
that b is not in <ue>(. Then Ft_1(è) is an extension oft and W(b, e, t+l)= W(b, e).
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Proof. The proof of Lemma 6 will serve.

Lemma 11. Let e be a string of length e, then there exists w such that for all but a
finite number of extensions r. oft either T(i) is undefined or W(T(i), e) = w, and such
that lim-c Cx(t, u) exists whenever u^w.

Proof. Let e" be the string of length e— 1 of which e is an extension, then we
may assume there exists w~ such that for all but a finite number of extensions £
of e" we have T(i) undefined or WiTii), e—l) = w~. From the definition of W
we see that for all but a finite number of extensions % of e we have T(i) undefined
or

2w- g WiTii), é) g 2w' + \.

We may suppose that WiTii), e) = 2w~ + \ for infinitely many extensions j of e
such that Tii) is defined ; otherwise there is nothing to prove. Let a be any extension
of e such that T(a) is defined, then from Lemma 9 T(ty) is defined for every segment
t) of a. Thus there exists a such that for all xè a and all r)£o we have Tx(i)) = T(i)).
There are an infinite number of members b of T[e] for which Wip, e) = 2w~ +1.
Each such b is in xe and thus has associated with it a greatest t such that b is not in
wet and such that (b, e) is enumerated at step t. Since there are infinitely many such
b we can find one with T~i(b)> any given member of fl. Since Tf^Qj^T'1^) for
all t, and since t^T^l(b) by the last lemma, and since W(b, e, t+ 1) = 2h'~ +1, it
follows that Cs(e, 2w~) takes all values as s increases. Thus there exist infinitely
many steps s+l suchthat Cs + 1(e, 2w~) = Cs(e, 2h'") + 1=z+1 where e£a£e * £2.
Choose any such s^a, then since tçx in step s+1 is not a segment of o we have

W(T(a), e, s) ä W(x, e, s+1) = 2w~ +1.

Hence for any extension a of e such that T(a) is defined we have W(T(a), e)
12h>~ + 1. Since for all but a finite number of extensions £ of e either T(i) is un-
defined or W(T(i), e)g2w~ + 1, the first part of the lemma is proved. Also, the
latter part of the argument shows that, if limxCx(e,u) = co, then W(T(a), e)
ä u+1 for any extension o of e such that T(a) is defined. Thus either there are only
finitely many extensions a of e such that T(a) is defined in which case w is arbitrary
and may certainly be chosen to satisfy the second part of the theorem, or w is
fixed by the first part of the theorem and lim* Cx(e, u) exists for every u^w.

Lemma 12. For any string e the set r¡ u range (T[e\) is r.e.

Proof. Let e have length e. From Lemma 11 there exist w, e0 such that e0 is
an extension of e and such that for all extensions £ of e which are 1 e0 we have
T(i) undefined or W(T(i), e) = w. Let s0 be such that for all %ge0 we have T(i)
undefined or Ts(i) = T(i) for all s^s0. Let tr consist of the set of pairs (p, s) with
s'a So which satisfy

(15) W(p, e,s) = w&perange (Ts[e]) & Tr\p) > e„,
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but for which

(16) W(p, e,s+l) = w & pe range (Fs+1[e]) & Ts~+\(p) > t0 .v. p e r,

is false. Suppose (p, s) is in n. If Case 2 occurs at step s+1, then T¡~\p) is one of ï,
j * 0, i * 00,..., where j is the member of fl enumerated by the clerk at step s.
Since (16) fails, we have pÇ-n and so Tf1(p)^Tç. From (15), Fs_1(/?)2e and
T» 1(p) > e02 e. Hence Fs_1(/?) is a proper extension of e and so p is in the range of
Ts+1[e]. Also, W(p, e, s+l)= W(p, e, s) whence for (16) to fail we must have
T¡~+\(p)úto- But by choice of s0 we know that T(T¡~+\(p)) is not defined, and we
can prove by induction that T(T¿~ 1(p)) is not defined for any t > s. This is a contra-
diction and so Case 1 obtains at step s+1. We can see again that p $ r¡ and hence
that Ts~ 1(p) is one of i, % * 0, r, * 00,_Now Tf+\(p) > t0 for the same reason as
before; it follows that Tf1(p) cannot be any of j * 0, j * 00,..., because (16)
fails. Thus T~\p) = % and either W(p, e,s+l)¥=w or Ts-+\(p)=li Í Ts+1[e]. We
conclude that at step s the clerk enumerates a pair (p, y) with yge.

We may regard -n as a function of (e0, s0) where this pair ranges through all those
satisfying the conditions imposed on (e0, s0) above. If -n contains (p, s) such that the
clerk enumerates (p, y) at step s, then we say that (e0, s0) corresponds to y. We say
that e0 corresponds to y if (e0, s0) corresponds to y for infinitely many values of s0.
Since y ̂  e, either n is empty for some pair (e0, s0), or there exists y to which infinitely
many values of e0 correspond. Suppose the latter. Let ex be the segment of e of
length y, and let wx be the value of W(y, p, s) corresponding to W(p, e, s) = w.
If Cs(tly Wx) is bounded as s increases, let lim* Cx(tu wx) = z and suppose that
Cs(tx, w¡)=z for all s^sx. Since infinitely many e0 correspond to v we can find
(e0, s0) corresponding to y such that e0^ ex * £2, such that L(e0) >y, and such that
s0^S!. Now take (p, s) in n such that the clerk enumerates (p, y) at step s. Clearly,
we have Cs + 1(t1,w1) = Cs(t1,w1)+l which contradicts s^s^s^ Hence lim*
Cx(tu w1) = co. It now follows from the last lemma that for all but a finite number
of extensions £ of t1 we have F(j) undefined or W(T(i), v) > w^ But W-T/Xs), v) > wt
implies W(T(i), e)>w; and so from the last lemma T(%) is defined for only a
finite number of extensions £ of e. If this case the conclusion of the theorem is
immediate.

There remains the case in which n is empty for some pair (e0, s0). Fix on any
such pair, then since (15) implies (16) for s^s0, the r.e. set

(17) {u | (Ez)[z ^ s0 & W(e, u, z) = w & u e range (T2[t]) & T¿\u) > e0]}

is a subset of r¡ u range (F[e]). However, it is also clear that all but a finite number of
members of J[e] belong to the r.e. set (17). This completes the proof of the lemma.

We can repeat the argument following the proof of Lemma 8 to prove -n u x'e
is r.e., and that there are strings em+1,..., em+n of length e, where n may be zero,
such that

■q u xe ^ V v U {range (F[e,]) | m < i g m+n}.
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Let v u range (T[e]) be denoted by p(e). We have now shown that the equivalence
classes of the form {o(e)} generate the whole of SC*(rf). For ¡^0, let

Pi = U Ms * 0) | L(i) = i}.
Let e be a string of length e, and define a¡ for ¡< e by

a, = Pi   if e(z) = 0,
= Pi   if e(/) = 1.

It is clear that p(c) = C[{ai \ i<e}. Thus the sequence {p0}, {pi},..-, generates
SC*ir¡). Let G be the corresponding associate of SC*i-n), then we have

Git) = lo[fl {{Py} | e(y) = 0} n H U) I e(y) = 1} = {,}].
The condition on the right is the same as p(e)~ij, which is the same as: J(j) is
defined for only finitely many extensions j of e. From Lemma 9 this is the same as:
^j is finite for only finitely many extensions j of e. From (13) this is the same as:
F(e) = 1. Thus SC*{n) and sé are isomorphic since they have a common associate.
This completes the proof of the theorem.

D. A. Martin has „shown that the degrees of /¡/¡-simple sets are just those r.e.
degrees a which satisfy a'=0", and also that any of these degrees is the degree of
some maximal set. His theorem can be combined with that just proved to yield :
given any r.e. degree a such that a' = 0" and any 3V3-Boolean algebra sé we can
find an /¡/¡-simple set r¡ of degree a such that sé^SC*i-n). Further, -n can also be
chosen so that all coinfinite supersets of -q have degree a. Recently R. W. Robin-
son has proved that if a'=0' then any r.e. set of degree a has a maximal superset.
For "maximal superset" we can read "/¡/¡-simple set -q with SC*ir¡)^sé".

One interesting consequence of Theorem 6 is the existence of a set of natural
numbers £ such that the lattice of sets r.e. in £ is not isomorphic to the lattice of
r.e. sets. With each ordinal n we associate a Boolean algebra SCn as follows: SCn
is to have all the ordinals <n as generators, and its inclusion is defined by the
relations «j£«2 for all pairs of ordinals 0tx, n2) such that nxgn2. An ordinal p
is said to be imbeddable in a lattice SC if there is a (1-1) strictly monotonie map
from the set of ordinals <p into SC.

Consider the Boolean algebra SCn as a lattice. Every element of the lattice can
be expressed uniquely in one of the five forms :

0,
U{"2l + 2-«2i + l  |  I  =  0,  1, .. .,j-l},n0\J (J{«2i + 2-«2i + l  |  i = 0,  1, ...,j-l},
U{"2i + 2-«2í + l \i = o, i,...,y-i}u(«2i + 1),
«o u U{«2i + 2-«2i + i | i = 0, l,...,y-l}u(n2y+1),
1,

where/ is a natural number, n0, «i.»a/+i is a strictly increasing sequence of
ordinals < n, and 1 is the universe. We say that an element a of SCn contains the
ordinal m<n if a is of the second or third forms with mgn2¡, or is of the fourth
or fifth forms.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



28 A. H. LACHLAN [January

Lemma 13. If m is an ordinal imbeddable in SCn then mg2n+1.

Proof. We prove this by induction on n. For « finite we leave it to the reader.
Let k be an infinite ordinal; then SCk is isomorphic to SCk + 1. For we can map the
generator/? of SCk+1 into (p+l) — 0 in SCk ifp is finite, pin SCk + 1 intop — 0inSCk
if p is infinite and <k, and k into 0'. Thus, if the lemma holds for n = k, it holds
for n=k+ 1. Now suppose that k is a limit ordinal, and that the lemma holds for
all n<k. Let a0, a1;..., be a strictly increasing sequence in SCk of order type m.
Let a be the least ordinal if any such that a, complements a generator of SCk.
If g is undefined then any proper segment of a0, au..., omits or has last
member as for some s<m and so can be imbedded in SC' where t is the greatest
ordinal contained in as. Thus in this case from the induction hypothesis mg
sup{2n+1 | n<k}g2k. If g is defined then either a, is 1 or a„ is a member of SCk
expressible in either the second or third form. If a„ = 1 then q + 1 = m and deleting
a, from the sequence gives one for which q is not defined. Thus by the previous
argument qg2k, and so mg2k+1. Suppose finally that aqj= 1 and that it comple-
ments the generator r of Sfk. Consider the sequences {ax \ x<q} and {ax | x^g}
separately. The first has order type g2k from the same reasoning as before, and
the second can be imbedded in SC and so has order type g 2k by the induction
hypothesis. Thus the order type of the whole sequence is again á2k+1. This
completes the proof of the lemma.

Although it is a matter of no importance for the present paper, we are curious to
know whether mg2n+1 can be replaced by m<2n as the conclusion of this lemma
for n infinite.

Consider the Boolean algebras SC*ia) with a /¡/¡-simple. Let P be the set of count-
able ordinals m such that there is an /¡/¡-simple set a with SC*ia) isomorphic to
SCm. From the last lemma it follows that a fixed /¡/¡-simple set a can only give rise
to a countable number of members of P. Hence P is countable and there is a least
ordinal p not in P. For no /¡/¡-simple set a is SC*(a) isomorphic to SC", but since p is
countable there is a well-ordering of the natural numbers of order type^. The order
relation of this ordering is recursive in some set £ and SCP is a 3V3-algebra relative
to £, i.e., when we replace the notion of recursiveness by that of recursiveness in £.
Thus for some set a r.e. in £ we have SC*(a)^SCp and so the lattice of sets r.e. in £
is not isomorphic to the lattice of r.e. sets.

By characterising the lattices SC*(a) with a /¡/¡-simple we have characterised the
lattices SC(a); this follows from:

Lemma 14. Let Sfu SC2 be countable sublattices of Jf such that SC*, SC\ are
isomorphic sublattices of Jf*. If

[0 e SCi o 0 e SC2] & [v e SCX o v e SC2],

thenSCi^SC2.
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Proof. If a is a member of Jf let a* denote the corresponding member of AT*.
Let 0 be an isomorphism from S£\ onto if*. Choose any enumerations of &u
32 and suppose first of all that neither 0 nor v is in 31 or 32. We construct
sequences {ft1}, {ft2} enumerating 3X, S£2 respectively. Suppose that ft1, ft2 have
already been defined for all / < k and that m steps of the construction have been
performed. Suppose further that {ft1 | i<k}, {ft2 | i<k} are sublattices of ifi, 32
respectively, and that for all i<k andy<fc we have 0(ft1*)=ft2* and

( 18) cardinality (ft1 - ft1) = cardinality (ft2 - ft2).

If m is even, let ft be the first member of &x which is not in {ft1 | i< k}. Since $
is an isomorphism we have

fl {ft1 I i < k}-ßk finite o <P(ft*) 2 H {ft2* I i < k},
ßk-ö{ßl \i<k} finite o U {ft2* I i < k} 2 <D(ft*),

and for /', j both < k

ft n (ft1 -ft1) finite o 4>(ft*) n ft2* £ ft2*,
(ft1-ft1)-ft finite o ft2* £ <D(ft*) u ft2*.

Considering v as the union of (IJ {ft1 | i<k})', f] {ft1 | i<k}, and the minimal
nonempty sets of the form ft1—ft1 with i, j both <k, we see that there exists a
representative ft of ^(ft*) such that (21) is satisfied for all /',/' both Sk. Now let
ft + !,..., ft be the remaining members of 3X obtainable from ft,..., ft by taking
unions and intersections, and let ft+i,..., ft be respectively the corresponding
members of 32. This completes step m, and the induction hypothesis for step
m+\ will be satisfied. If m is odd we interchange the superscripts 1, 2 and the
subscripts 1, 2 which appear above. It is clear from (18) that mapping ft1 into ft
for all / gives an isomorphism from 3X onto 32.

If 0 is in both of 3U 32 we let ft=ft= 0 ; if v is in both of ifj, 32 we let
ß\ = ßa = v, unless 0 is also present in which case let ft = ft = v. Otherwise we pro-
ceed as before. This completes the proof of the lemma.

To see from this lemma that if *(a) fixes 3(a) for a AA-simple, we simply observe
that there is an isomorphism between jV and the lattice of all supersets of a.

5. Some results concerning non-AA-simple r.e. sets. In this section we give some
examples to show that the method for constructing AA-simple sets developed above,
which may be regarded as an extension of Friedberg's maximal set construction, is
also fruitful in certain other contexts.

Let a be an r.e. set, an r.e. subset ß of a is called a major subset of a if a—ß is
infinite and if for any r.e. set y a u y = v implies ß u y~v.

Theorem 7. Every nonrecursive r.e. set has a major subset.

Proof. Let a be any nonrecursive r.e. set, and let {at} be a strongly r.e. increasing
sequence of finite sets whose limit is a. Let a clerk simultaneously enumerate all
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r.e. sets in the sequence {x¡} as in §3 above, and let {xi>s} be the set of numbers
enumerated in {x¡} by the end of step s. Define F by

F(i, s) = min a^ n v¿,.

Notice that F(i, s) is increasing in s for fixed ¡, and that lim* F(i, x) = oo if and only
if a U Xi = v-

We enumerate a major subset ß of a as the clerk enumerates the sets xi ; let &
be the finite set of numbers which have been enumerated in ß by the end of step s.
Define Wby

(19) Wix, y,s) = Jt{2>-*\xe Xz,s & zgy & x< F(z, s)}.

Define the protected sequence 5(0, s), 5(1, s), ... of as—ßs by

5(0, s) = min {x | x e as-ßs & Wix, 0, s) = max {Wiy, 0, s) \ y e as-ßs}}

and for i > 0

B(i, s) = min {x | x g as — ßs & x > !?(/— 1, s)
(20)

& Wix, i, s) = max {Wiy, i,s)\yeas-ßs & y > BQ- 1, s)}}.

Because as — ßs is finite, BQ, s) will only be defined for finitely many i for a given s.
The construction is now very simple. At step 0 we do nothing, at step s+1 we
enumerate in ß all the members of as—ßs which are not in its protected sequence.

Lemma 15. Let i be fixed then 5(¡, s) is defined for all sufficiently large s and
lim* BQ, x) exists.

Proof. By induction on i. Suppose the lemma is true for all i < e, then there exist
/and numbers b0, bx,..., be_x such that for all s^f and all i<e we have B(i, s)
defined and equal to bt. If s >f and as—ßs contains a number >6e_i then B(e, s) is
defined by inspection of (20). (The adjustments for e=0 are left to the reader.)
Such steps s exist, because a is infinite and because ßs£as_x for all s>0. Further,
if B(e,s) is defined for some s>/then as + 1—ßs+1 contains a number >6e-i,
namely B(e, s), and so B(e, s+l) is also defined. Thus B(e,s) is defined for all
sufficiently large s.

If B(e, s+ 1), B(e, s) are both defined and different for some i>/then from (20)

W(B(e, s+ 1), e, s+l) > W(B(e, s), e, s+ 1) .V. W(B(e, s+ 1), e, s+\)
= W(B(e, s), e, s+1) & B(e, s+1) < B(e, s).

Because W(x, y, s) is increasing in s, we can replace W(B(e, s), e, s+\) by
W(B(e, s), e, s). Thus W(B(e, s), e, s) increases with s, and since W(x, y, s)<2y + 1,
lim* W(B(e, x), e, x) exists. Once this limit is attained B(e, s+l)^B(e, s) only
when B(e, s+ \)<B(e, s). Therefore lim* B(e, x) exists and the lemma is proved.

The lemma shows that a — ß is infinite. We complete the proof of the theorem
by showing that any r.e. complement of a is almost a complement of ß. For reductio
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ad absurdum let Xe be the first of xo> Xi> • ■ • such that a u xe = v and ß u Xe is
coinfinite. Let y = {x | x<e & aUx* = v}. Let W(x,y) denote lim3 W(x,y,z).
Let b0, bx,... be the enumeration of a — ß in order of magnitude. Letting s tend to
oo in (20) we have

(x)[x^i-+W(bx,i)ú W^i)].

Also, from (19) for any numbers m, n, i we have

(x)[x è i-* [W(m, i) ^ W(n, i) -*• W(m, x) ^ W(n, x)]].

Thus it follows that

W(bhi)^ W(bi + 1,i)^ W(bi+2,i)^---

and so lim* W(bx, i) exists for all i. If x is in y then a - (ft u x*) is finite and so for
all but a finite number of b in a—ß

(21) b e xx & x < e & b g lim F(x, v).
y

If x < e and x is not in y then only a finite number of values of b satisfy (21), because
lim¡, F(x, y) exists. If x = «? then a — (ft u x*) is infinite and so there are an infinite
number of members b of a-ß which do not satisfy (21). Hence by comparing (19)
and (21) we see that

(22) W(A,e) = 2{2e-*|*ey}

for infinitely many b in a-ft Since for all but a finite number of. values of b in
a—ß the value W(b, e) is the same we see that (22) holds for all but finitely many b
in a—ft Let A be the r.e. set consisting of those numbers which are enumerated in
P) {x* | x e y v x = e} before they are enumerated in ft that is

A = {x | (Ey)(z)[z ey y z = e.-^.xe Xz,y & x £ ft]}.

Clearly A2a, and so A n a must be infinite since a is not recursive. Let b; be the
least member of a — ß with f> e such that b = b, satisfies (22), and let g be such that
B(x, s)=bx for all x^/and s^g. Since A n a is infinite, there exist m, s such that
m>bf, s>g, m<F(z, s) if z ey or z=e, and

m e (ocs-ft) n P| {Xa,s | z e y V z = e}.

This implies that

W(m, e, s) = 2 i2'-21 z e 7 V z = <?} > 2 {2e_ï | z e y} = ^(A,, e).

Hence W(m,f s) > W(bs,f) and so by the definition of B(f s) we have B(f, s) > bf,
which contradicts the definition of bf. This contradiction completes the proof of
the theorem.

We can easily obtain from this theorem a coinfinite r.e. set ß which has no AA-
simple superset. (Martin showed in [4] that we can find such ß including any given
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nonhypersimple set, and further ß can be made nonhypersimple or hypersimple.
These stronger results we do not obtain.) Let a be any nonrecursive set and ß be
any major subset of a. Let F be a (1-1) recursive function mapping v onto a, then
F_1(ß) has no /¡/¡-simple superset. To prove this it is sufficient to show that neither
ß nor any r.e. set between ß and a is /¡/¡-simple in a. It follows from Theorem 2
that either ß is not /¡/¡-simple in a or there exists a recursive set 8 such that ß u 8 = a.
In the latter case 8' is an r.e. complement of a such that 8' u ß is coinfinite, and so
we have ß non-/¡/¡-simple in a. If y is any r.e. set satisfying ß£y£a and a —y
infinite, then y is a major subset of a and so is also non-/¡/¡-simple in a.

There is one minor question left open in Martin's paper which can be resolved
very easily, using the last theorem. Given a non-/¡/¡-simple set ß it is not always
possible to find a coinfinite r.e. superset a of ß such that a has no /¡/¡-simple superset.
For let a be a maximal r.e. set and ß be a major subset of it, then ß is not /¡/¡-simple
because it is not /¡/¡-simple in a. Further, if y is any r.e. superset of ß, then either y
is confinite or y — a is finite. Thus there is no coinfinite r.e. superset of ß which has
no /¡/¡-simple superset.

For the next theorem we need a result of Martin [5, p. 273] which states that
if there is a recursive function Fand an r.e. set a such that

cardinality (a n{x\ x g F(y)}) ^ y

for infinitely many y, then a is not /¡/¡-simple. Thus c is not /¡/¡-simple if there exists
a strongly r.e. sequence {aj of disjoint finite sets such that

cardinality (a n ay) ä y

for infinitely many y. There is also an easy proof of this last result via Theorem 3
of the present paper.

A set is called r-maximal if it is r.e. and if no recursive set splits its complement
nontrivially. It is easy to show that every /--maximal set is /¡-simple and that on the
other hand there are /¡-simple sets which are neither /¡/¡-simple nor /--maximal (for
example, every nonrecursive r.e. set with a retraceable complement is such a set
using a theorem in [11]). Also, it follows from Theorem 3 of the present paper that
an r-maximal set can have at most one /¡/¡-simple superset (modulo finite sets)
and that must be maximal. It follows easily that a set is a nonmaximal, /--maximal
set with an /¡/¡-simple superset if and only if it is a major subset of a maximal set.
The following theorem which was proved independently by R. W. Robinson
shows that there are r-maximal sets which are not even subsets of maximal sets.

Theorem 8. There is an r-maximal set which has no hh-simple superset.

Proof. Let x¡, X¡,s be just as in the proof of the last theorem. Let {a¡} be an r.e.
sequence of disjoint finite sets such that a¡ has cardinality 2¡¡ and such that
U {a¡ | ¡>0}=v. In step s we define a strictly increasing sequence of numbers
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Po,s,Pi,s, - - -, and a strongly r.e. sequence ft,s, ft>s,... of disjoint finite sets. We
define an auxiliary function W by

W(x, y, s) = 2 {2V"2 I ft.s £ Xz,s & z g v}.

Let 77s denote the set {piiS | i'^0}.
We say that n requires attention at step s+1 if n e -ns and there exists m<n such

that
2(cardinality ft,s n Xm,s) ̂  cardinality ft,s

and such that ft,s^ Xm.s- The construction is now as follows.
Step 0. Define fti0 = «¡ and pi¡0 = i for all i.
S7e/? s+1. The step consists of two parts:
Part 1. Let n be the least number if any which requires attention at step s+1

and let the corresponding m be chosen as small as possible. We set ft,s+i=ft,s
n Xm.s and say that n receives attention through m at step s+1. For i^n, or for all
i if n is undefined, we set ft>s+i=ftjS.

Part 2. Define the sequencep0,s+i,Pi,s+i, ■ ■ -, by

Po,s+i = min {x | x e 7TS & W(x, 0, s) = max {W(y, 0, s) | v e tts}}

and for all />0,

Pt,s+1 = min{x | xens & x > #_!,,+!

& W(x, /', s) = max {IH>, i,s)\yew, & y > Pi-x,s+1}}.

This completes the construction. It is easy to see that it is effective in the sense
that ptt, is a recursive function of i, s and {fts} is a strongly r.e. double sequence
of finite sets. We need only recall that [J {x¡,s | i^O} has cardinality ás+1 and
notice that {i | ftjS ̂  a¡} has cardinality ^ s. Thus for fixed s there are only a finite
number of pairs (x, v) such that W(x, v, s)^0 and we can find which they are.

We note from Part 1 of step s+1 that ft,s +1 £ft,s for all i; denote lim* ft,* by ft.
It follows that for fixed x, y we have W(x, y, s) nondecreasing with s. Further, it is
immediate from the definition of W that W(x, v, s)<2v + 1. Hence lim2 W(x, y, z)
exists and we denote it by W(x, y).

It is easy to prove by induction on i that lim*/>¡* exists, call it/?(. It follows that
lim* 77* exists, call it v. Again by induction on i, lim* W(px, i) exists. These in-
ductions are similar to and somewhat easier than several occurring earlier in the
paper and so we leave them to the reader.

Consider the sequence of sets ft,0, ft,i, — If ft.s^ft.s+i then there exists m<i
such that i receives attention through m at step s+1. When this happens we see
thatft>scÉXm,s.

2(cardinality ft,s n xm,s) è cardinality ft,s,

and ft,s+i=ft,s n xm,s. Observe that the cardinality of ft,s+1 is not less than half
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that ofßiiS, and that ßiji£xm,( for all t>s. It follows that i receives attention through
m at most one step. Hence

(23) cardinality ft è i-2*-'■£ i,
where

j = cardinality {x \ x < i & i receives attention through x}.

We now show that -n = (1J {/3* [ x e n})' has all the required properties. First of
all, r¡ is r.e. because w' is r.e. and because for each i the sequence ßii0, ßlA,... is
decreasing. Let m be fixed, then since lim* W(px, m) exists we have W(p, m)
constant for all sufficiently large p in -n. Suppose W(p, m) is odd for all sufficiently
large p in tr, then ßp £ xm for all sufficiently large p in n. Thus in this case ij u xm
is cofinite. Suppose W(p, m) is even for all sufficiently large p in n, then for all
sufficiently large p in -n there is no step at which p receives attention through m
and also ßp^Xm- It follows in this case that for any sufficiently large p in w and all
sufficiently large s (depending on the choice of p) we have/? e ws, m <p, ßp,s<$; Xm,s and
yet p does not require attention through m at step s+l. Hence for p sufficiently
large in it we have

2(cardinality ßp,s n xm,s) < cardinality ß„,s

for all sufficiently large s. It follows that

(24) 2(cardinality ßp - Xm) > cardinality ß„.

But from the first half of (23) the right-hand side is easily seen to be ä 2p. Thus for
all sufficiently large/? in n, ap-(-nVJ xm) has cardinality >p. From the result quoted
just before the statement of the theorem we have -n(J xm not /¡/¡-simple.

Finally, suppose Xm, Xn are disjoint recursive sets with union v which split the
complement of r¡ nontrivially. We see at once that W(p, m) and W(p, n) are both
even for all sufficiently large p in n. Otherwise, we should have r¡ u Xm or t; u x„
cofinite. From (24), ßp~Xm and ßp — x„ both have cardinality exceeding half the
cardinality of ßp for all sufficiently large p in -n. Hence (xm u xJ' is nonempty;
contradiction. This completes the proof of the theorem.

One obvious component of the above construction is the maximal set construction
of Friedberg. For, if we use only Part 2 of step s+l and redefine W by

W(x, y, s) = J {2""" I x 6 x2,s & zg y},

then it' is a maximal r.e. set. For any r.e. set -n let SCr(r¡) be the lattice of sets of the
form i? u p where p is recursive. It is easy to see that SC*(-rj) is a 3V3-Boolean
algebra. Replacing the maximal set construction by that of the last section the
following generalisation of the last theorem can be obtained : let sé be any 3V3-
Boolean algebra there exists an r.e. set a with no hh-simple superset such that
SC*(a)^sé.
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6. Conclusion^). The problem which motivated this paper, that of classifying
the decision problem of ^, is still far from solution. We now discuss how the
programme begun in this paper may be continued. We shall also mention some
recent theorems concerning other elementary theories which arise in recursive
function theory.

One of the most interesting questions suggested by the present work is : what
conditions must a distributive 3V3-lattice si satisfy for there to exist an r.e. set a
such that 3*(a)^si1 Part of the answer is clearly contained in Theorem 4, but
not the whole answer, as is illustrated by two theorems obtained by the author
since this paper was written :

Tl. Given r.e. sets a, ß with a£ß anda U ft not r.e. we can effectively find r.e. sets
ft., ft such that ft u ft=ft ft n ft = a, and such that ß1 — a,ß2 — a are both infinite.

T2. Let a, ß be r.e. sets such that a^ß and a u ft is not r.e. From a, ß can be
effectively found an r.e. set y such that y 2 a and y is a major subset ofß.

A stronger theorem than Tl whose conclusion has the additional stipulation that
o: u ß'x, a u ft be non-r.e. has been obtained independently by Owings. His theorem
can be easily deduced from Tl and T2. At present we have no conjecture as to the
extent of the requirements that si must satisfy to be isomorphic to if *(a) for some
r.e. a. It seems to the author that the next step is to attempt to construct an r.e.
set a with no AA-simple superset such that if*(a) is known independently. However,
we expect that to achieve this the technique of Friedberg's maximal set construction
will have to be replaced by one with a more complex structure.

The author's own more recent work has been directed towards building up piece-
meal a decision procedure for 3t*. For this purpose it is convenient to replace the
sole relative symbol ß( , ) used here by the following set: function symbols for
union, intersection, and complement together with two unary relative symbols
R, E. In the interpretation the quantifiers range over Si*; Riz), E(z) mean z e !%*,
z={0} respectively. Using the methods of ihis paper we have obtained a decision
procedure for the V3-sentences of this new language in l%*. The three quantifier
class can be approached in the same way and a systematic treatment of it would
give us a much deeper insight into the structure of £%* than we have at present.

A problem left over from §4 is that of determining for which sets p. the lattice
•Jf" of sets AA-simple relative to p is isomorphic to Jf*. In particular, is ¿fH
isomorphic to 3ß"" for every arithmetic set p ?

Another and quite different line which might be fruitful is the investigation of the
lattice of r.e. sets modulo simple sets. We write axß just if (a—ft u (ß—a) is
immune. It is easy to check that X is a congruence relation on ¿%. The lattice formed

C) In making corrections to the paper this section was entirely rewritten to bring it up to
date, November 10, 1966.
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by the congruence classes into which X divides 3# is called the lattice of r.e. sets
modulo simple sets. Can any interesting structure results be obtained for this
lattice?

One specific question about maximal sets is: are there any elementary classes of
maximal sets other than the empty class and the class of all maximal sets ?

It is natural to ask the same kind of questions about the elementary theories of
other structures which are studied in recursive function theory. The cases that we
know something about are the following three:

(i) The elementary theory of many-one degrees has been shown nonaxiomatisable
by the author. This is proved by showing that any countable distributive lattice
with greatest and least elements is isomorphic to an initial segment of the many-one
degrees. The method can be refined to show that the elementary theory of r.e.
many-one degrees is also nonaxiomatisable.

(ii) For Turing degrees D. F. Hugill has shown that there is an initial segment
isomorphic to any countable linearly ordered set with least member. His method
extends Spector's construction of a minimal degree, and will probably also work
in the case where "distributive lattice" replaces "linearly ordered set". If this
turns out to be the case, it will follow as for the many-one degrees that the elemen-
tary theory is nonaxiomatisable.

(iii) Let {i/ij}, {xi} be two standard enumerations of the class of r.e. sets, and let
F, G be the corresponding binary relations, i.e., F(x, y) o x e ipy and G(x,y)
o x e x¡/. It can be shown that there is a recursive permutation -n such that F(x, y)
is equivalent to G(tt(x), -¡r(y)). We conclude that the elementary theory of F is
independent of which standard enumeration we choose. This elementary theory
which we denote by SE can also be shown to be nonaxiomatisable.

Added April 10, 1967. I am grateful to C. Jockusch and A. Manaster for
noticing an error in my proof that Jf* the lattice of cofinite and /¡/¡-simple sets
modulo finite sets is decidable. That proof has been deleted from the paper. How-
ever, Ershov [2] has described all complete extensions of the elementary theory RD
of relatively complemented distributive lattices and shown them all to be decidable.
Thus the decidability of Jf * is a corollary of Theorem 3. From Theorem 6 one
can deduce exactly which complete extension of RD is the elementary theory of
Jf* ; it turns out to be the one which is richest in structure.
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