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1 Introduction

To explain our interest in the question discussed in this paper we recall several
facts and concepts from the foundations of stochastic finance. The fundamental
point of this theory is that there are basic securities with prices evolving as random
processes; the randomness is inherited by the investors portfolios. In the simplest
one-period model where we havet ∈ {0, T} (the terminal dateT may be denoted
by 1), the nuḿeraire is a traded asset, the price increments ofd basic securities are
described simply by a randomd-dimensional vectorξ. The portfolio strategy is just
a (deterministic) vectorh ∈ Rd and the portfolio increment is the scalar product
hξ. One says that the market is arbitrage free (briefly: satisfies the NA property)
if the inequalityhξ ≥ 0 may hold only ifhξ = 0. This property plays a key role
for the pricing of derivative securities. In the case of finiteΩ it is an easy exercise
on the use of the separation theorem to check that the NA property is equivalent
to the existence of a (scalar) random variableZ which is strictly positive (a.s.),
EZ = 1, and the vectorEZξ is zero. In the economic literature the probability
space(Ω,F , P̃ ) with P̃ = ZP is called the “risk-neutral world”. Rather remark-
ably, this simple exercise happened to be the germ of an important development
in mathematical finance. The first steps of this development are now classical.
The Harrison–Pliska theorem gives an extension to the multi-period model (with
finite Ω) claiming that NA holds iff there exists a strictly positive (a.s.) martin-
galeZ = (Zt) such thatEZtξt = 0 for all t. The Dalang–Morton–Willinger
theorem, a result which is mathematically much more delicate, extends this asser-
tion to an arbitraryΩ, adding also that one can always choose a bounded density
processZ. At the moment, no-arbitrage criteria are obtained for numerous models
(continuous-time models, models with transaction costs, models with constraints),
see the handbook [2].

However, the NA property is not a single one isolated in the economic liter-
ature. A weaker property, called the law of one price (we shall use the abbrevi-
ation L1P), for the one-period model can be formulated as follows: the identity
x + hξ = x′ + h′ξ whereh, h′ ∈ Rd implies thatx = x′, see, e.g. [7]. In other
words, if a contingent claim has a price, namely, the replication price, this price
is unique. Clearly, this property is always fulfilled if NA holds. Again, in this el-
ementary case, it is an easy exercise on a finite-dimensional separation theorem
to check that L1P holds iff there exists a random variableZ (not necessary pos-
itive) with EZ = 1 such that the vectorEZξ is zero. Similarly, an extension to
the multi-period model with a finite number of states of nature (i.e. to the setting
of the Harrison–Pliska theorem) does not pose new mathematical difficulties. Our
aim here is to analyze the law of one price for the multi-period model with a gen-
eral probability space in the same spirit as it was done in the recent note [5]. It
is worthy to mention that similarly to NA criteria, there are several strategies of
proof. We opt that of the mentioned note.

At last, we introduce the notion of normalized excess expected return of a strat-
egy and show that such a week condition as LPT1 implies already the existence of
amarket portfolio.
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2 The law of one price

Let (Ω,F , P ) be a probability space equipped with a finite discrete-time filtration
(Ft), t = 0, ..., T , FT = F , and letS = (St) be an adaptedd-dimensional
process. LetRT := {ξ : ξ = H · ST , H ∈ P} whereP is the set of all
predictabled-dimensional processes (i.e.Ht is Ft−1-measurable) and let

H · ST :=
T∑

t=1

Ht∆St, ∆St := St − St−1.

Wedenote byL0(Ft) the set of finiteFt-measurable random variables.
The linear subspaceRT is closed inL0(FT ). This fact, fundamental in the

sequel, was established in [5].
We say that the model satisfies the law of one price (L1P) at the datet = 0 if

the equalityζ + H · ST = ζ ′ + H ′ · ST whereH, H ′ ∈ P andζ, ζ ′ ∈ L0(F0),
implies thatζ = ζ ′ (a.s).

It is easily seen that this condition, L1P, att = 0, can be written as follows:
RT ∩ L0(F0) = {0}.

Theorem 1 The following conditions are equivalent:
(a) RT ∩ L0(F0) = {0};
(b) there is a bounded martingale Z = (Zt)t≤T with EZT = 1 and Z0 > 0

such that the process ZS is a martingale.

Proof.(a) ⇒ (b) Takean arbitrary non-nullF0-measurable setA. By the assump-
tion IA /∈ RT . Choose a probability measurẽP ∼ P with the bounded density
ρ := dP̃ /dP and such that allSt are integrable with respect tõP . SinceRT is
closed in probability, the setR1

T := RT ∩L1(P̃ ) is a closed linear space inL1(P̃ ).
Thus, there exists a bounded random variableZ̃A

T such thatẼZ̃A
T η = 0 for all

η ∈ R1
T but ẼZ̃A

T IA > 0. PuttingZA
T := ρZ̃A

T and normalizing, if necessarily, we
can rephrase this as follows: there existsZA

T with |ZA
T | ≤ 1 such thatEZA

T η = 0
for all η ∈ R1

T but EZA
T IA > 0. The setR1

T is stable under multiplication by the
indicator functions ofF0-measurable sets. It follows that the above properties re-
main valid if we replaceZA

T by IAI{E(ZA
T |F0)>0}. Hence, we may assume without

loss of generality thatE(ZA
T |F0) ≥ 0.

The usual exhaustion arguments ensure that there is a bounded random variable
ZT with E(ZT |F0) > 0 such thatEZT η = 0 for all η ∈ R1

T . For the reader’s
convenience we recall them. LetC be the family formed by all sets of the form
{E(ZA

T |F0) > 0}, A ∈ F0. Let a := supΓ∈C P (Γ ). The supremum here is
attained: it is sufficient to consider the setA = ∪nAn and the bounded random
variableZA

T :=
∑

n 2−nZAn

T whereAn ∈ F0 are such thatP (An) → a. It
remains to notice thatP (A) = 1 (otherwise we could increase the supremum with
ZAc

).
Weconclude by puttingZt := E(ZT |Ft) and by observing that the martingale

property ofZS holds becauseξ∆St ∈ R1
T for every boundedFt−1-measurable

random variableξ.
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(b) ⇒ (a) This claim is obvious. Indeed, we should check thatξ = 0 whenever
ξ+H ·ST = 0. For the processM := Z(ξ+H ·S) we haveMt−1 = E(Mt|Ft−1)
for t ≥ 1. As M is zero at the terminal dateT , it is zero identically. In particular,
its initial valueZ0ξ = 0. SinceZ0 > 0, this implies thatξ = 0. �

3 Ramifications and comments

1. It is quite natural to have a look at the situation where the portfolio strategies
are subjects some trading constrains. For instance, shortselling may be prohibited.
To be specific, suppose that we are given a closed convex coneK ⊆ Rd and at
each datet the vector of holdings in risky assetsHt belongs toL0(K,Ft−1), i.e.
H is a predictabled-dimensional process taking values inK. Let us denote the set
of such processes byPK and the corresponding set of “results”RK

T .
The law of one price (at time zero), abbreviated in this model as L1PK , means

that the equalityζ +H ·ST = ζ ′ +H ′ ·ST whereH, h′ ∈ PK andζ, ζ ′ ∈ L0(F0)
may hold only ifζ = ζ ′ (a.s).

This property can be expressed by the relation(RK
T − RK

T ) ∩ L0(F0) = {0}.
Notice that

L0(K,Ft) − L0(K,Ft) = L0(K − K,Ft)

(to check the non-trivial implication⊇ it is sufficient to fix a basis{vi} in K −K
and consider an arbitrary representationvi = v′i − v′′i with v′i, v

′′
i ∈ K).

Recall thatK−K = Rd if and only if intK �= ∅. Consequently, ifintK �= ∅,
thenRT = RK

T − RK
T and we arrive at the following theorem which covers, in

particular, the model where shortselling is not allowed.

Theorem 2 Assume that intK �= ∅. Then the following conditions are equivalent:
(a) L1PK;
(b) there is a bounded martingale Z = (Zt)t≤T with EZT = 1 and Z0 > 0

such that the process ZS is a martingale.

Without difficulties this result can be extended to the case whereKt areFt−1-
measurable (as usual, this needs a bit of set-valued analysis).

2. It is economically reasonable that the law of one price holds globally, i.e.
if a contingent claim is replicable when the trading starts at the dateτ , then the
replication price is unique. Formally, we can isolate the following GL1P property:

the equalityζ+H · τST = ζ ′+H ′ · τST whereτ is a stopping time,H, H ′ ∈ P,
andζ, ζ ′ ∈ L0(Fτ ) may hold only ifζ = ζ ′ (a.s).

Here we use the abbreviationτSt := I]τ,T ] · S.
The following assertion is a corollary of Theorem 1 (cf. with the formulation

of Th. 4.5 in [6]).

Theorem 3 The following conditions are equivalent:
(a) GL1PK;
(b) for every stopping time τ there exists a bounded martingale Z(τ) with

EZ
(τ)
T = 1 and Z

(τ)
τ > 0 such that the process Z(τ) τS is a martingale.
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Note that replacing in the formulation of GL1P property the words “whereτ
is a stopping time” by “whereτ

Note that using in the formulation of GL1P property only deterministic times
gives an equivalent definition.

3. As usual, one can find in the literature on linear inequalities related results
corresponding to the one-step model and formulated as alternative theorems. As
an example, we give a relevant one: either the equationAy = b has a solution
or there is a vectorz �= 0 such thatzb = 1 and zA = 0. In the case where
Ω := {ω1, ..., ωN}, theN×d-matrixA is formed by the elementsaij := ∆Sj(ωi)
andb = (1, ..., 1)T.

4. Unfortunately, the above results have no natural counterparts for continuous-
time models. “Natural” here means “for the standard concept of admissibility”.
The latter requires that the value process is bounded from below. To see this,
consider the model whereS is just a Wiener process,T = ∞. The process
V = eS− 1

2 〈S〉 is a value process (corresponding to the admissible strategyH = V
and the initial valuex = 1) with V∞ = 0. Thus, we have that1 + H · S = 0 · S
violating the law of one price. Of course, an appropriate modification of this model
provides an example whereT is finite.

4 The law of one price and CAPM

The law of one price implies an interesting and important consequence: the exis-
tence of a market portfolio.

To show this we make an extra assumption that allSt ∈ L2 and define, in the
Hilbert spaceL2, the closed linear subspaceR2

T = RT ∩ L2 (recall thatRT is
closed inL0). It contains all terminal values of portfolios with bounded strategies
and starting from zero. The random variablex + H · ST is the terminal value
(expressed in the units of the numéraire assumed to be a traded security) of a
portfolio with the initial endowmentx. Henceξ := H · ST is the surplus of this
strategy with respect to holdingx in the nuḿeraire; it does not depend of the initial
endowment, but forx = 1 it is usually referred in the economic literature as the
excess return of the portfolio. We define as the (normalized)excess expected return
of the strategyH the ratiorH := Eξ

σ(ξ) whereσ is the standard deviation;rH is

called the Sharpe ratio. By convention,0
0 = 0. SincerλH = rH for λ > 0,

this normalization allows us to compare “quality” of the portfolio composition
independently of its “size”. We say that a strategyG with η := G · ST ∈ R2

T

defines amarket portfolio if for every strategy with the terminal valueξ := H ·ST

in R2
T we have the equality

rH = βGHrG (1)

whereβGH is the correlation coefficientρ(ξ, η). Notice that (1) looks like the usual
CAPM relation, see, e.g., [4].

For the case whereP is a martingale measure the identity is trivial. We exclude
this situation in the formulation below.
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Proposition 4 Suppose that P is not a martingale measure and L1P holds. Then
the market portfolio does exist.

Proof.The requirement is met by the strategyG corresponding to the projectionη
of the unit onto the subspaceR2

T . Indeed, by definition,E(1 − η)ξ = 0 for each
ξ ∈ R2

T . In particular,E(1 − η)η = 0 and, therefore,Eη = Eη2 ≥ 0. In fact,
the inequality here is strict: otherwiseη is zero andEξ = 0 for eachξ ∈ R2

T

implying thatP is a martingale measure. The caseEη2 = 1 is also impossible:
sinceEη2 + E(1 − η)2 = 1 we would have thatη = 1 violating L1P. Thus,
0 < Eη < 1. Now we write the relationE(1 − η)ξ = 0 in a different way:

Eξ = Eξη = Cov (ξ, η) + EξEη

whereCov (ξ, η) is the covariance ofξ andη.
Wededuce from here taking into account the equalityEη = Eη2 that

Eξ =
Cov (ξ, η)
1 − Eη

=
Cov (ξ, η)Eη

Eη − (Eη)2
=

Cov (ξ, η)Eη

σ2(η)
.

Hence,
Eξ

σ(ξ)
=

Cov (ξ, η)
σ(ξ)σ(η)

Eη

σ(η)
and we obtain the required relation (1).�

Remark.In fact, the above proof is not needed: simple geometric considerations
replace the above arguments. Indeed,rH , rG, βGH are the cosines of angles be-
tweenξ and1, η and1, ξ andη. This observation shows that (1) means that the
projection of the vector1 onto ξ can be obtained in two steps: first we project1
onto the plane of the vectorsξ andη and then project the result ontoξ. A picture
makes this obvious.
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