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ON THE LAW OF THE ITERATED LOGARITHM FOR
INDEPENDENT BANACH SPACE VALUED
RANDOM VARIABLES'

By Xi1a CHEN

Chengdu University of Science and Technology

In this paper we establish some general forms of the law of the iterated
logarithm for independent random variables (X,) with Banach space val-
ues, where (X,) is not necessarily identically distributed. Our results
include the Kolmogorov law of the iterated logarithm (LIL) in both finite
and infinite dimensional cases, and they improve the Wittmann LIL as well
as extend it to the vector setting. The Ledoux-Talagrand LIL for an i.i.d.
sequence is also a simple corollary of our results.

1. Introduction. Let B denote a separable Banach space with topological
dual B* and the norm || - |l. For a B-valued random variable X, we write
X e WMZ if for all fe B* we have Ef(X)=0 and Ef*X)< +o.
Throughout, {X,} are independent random variables with values in B and as
usual S, =X, + -+ +X,(n = 1). Write

n 1/2
(1.1) s, = sup { Y Efz(Xj)} , n>=1,
reBy \j=1

where B¥ is the unit ball of B*. By Lemma 2.1 of Goodman, Kuelbs and Zinn
(1981), we have s, < + if X, € WM for each n. We write L,x to denote
the function

log max{e, log x}, x> 0.

When B = R, the almost sure limit behavior of {S,/ \/23,2LL23,2L }o>1 has
been studied extensively. It is known, under some assumptions, that

S
1.2 lim sup ———— =1 a.s.
( ) n—o \/28,2LL23,2L

This is the “law of the iterated logarithm” (LIL).
In his famous paper, Wittmann (1985) established a generalization of the
LIL. Based on the convergence estimate in the central limit theorem,
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Wittmann’s theorem states that (1.2) holds if the following conditions are
fulfilled:
(1.3)  EX,=0 and EX?< +», n=x1l,
(1.4) i —an'F— < 4o forsome2 <p <3,
no1 (252 Lys2)™”

[or EX3 =0, n > 1, and (1.4) holds for some 3 < p < 4],

Sn+1

(1.5) lims, =+ and limsup < +oo,

n—oo h-»>o Sn

According to Wittmann, the classical result of Hartman and Wintner (1941) is
just a simple corollary of his theorem. That is, if {X, X, ; n > 1} is a sequence
of i.i.d. random variables, then

1/2

(1.6) lim sup = {EX?} a.s.,

S,
now y2nLyn
holds if and only if

EX=0 and EX?< +w.

Now, turn to the infinite-dimensional case. Some nice results in this subject
were achieved by Ledoux and Talagrand (1988, 1990, 1991). Ledoux and
Talagrand (1988) gave a characterization for ii.d. random variables satisfying
the LIL that led to the complete extension of the Hartman-Wintner LIL to
Banach space valued random variables. In their remarkable book, Ledoux and
Talagrand [(1991), page 197. Theorem 8.2] established an LIL result of
Kolmogorov type, which states that

, IS,
(1.7 1 < limsup —F———
n-—>o \/283[/285

if the following conditions are fulfilled:

1.8 X e WMZ and |IX,|l <n,V/s%/L,s? a.s. for each n,
n 0 n

for some sequence {7,} of positive numbers tending to 0,

<TI' a.s.forsomel >0,

(1.9) lims, = +«,
S
1.10 — is bounded in probability.
(1.10) {\/23314233 }n>1

Furthermore,
IS,

1.11 limsuyp ———= =1 as,,
( ) n-»o V 23,21L28,%



THE LIL IN BANACH SPACE 1993

whenever the condition (1.10) is strengthened to

S,
(1.12) ———=——— — 0 in probability.

V 28311233

However, three important problems remained unanswered.

1. Does Wittmann’s theorem also hold when p > 4?

2. Even on the real line, the Kolmogorov LIL is not, according to Wittmann,
contained in Wittmann’s theorem. Can the Kolmogorov LIL be contained in
the LIL of Wittmann type by weakening the conditions in the theorem?

3. Can we obtain, in Banach spaces, some results which include the
Ledoux-Talagrand LIL for i.i.d. random variables?

In another paper, Wittmann (1987) solved, on the real line, Problems 1 and
2 by giving some theorems of a different type. Concerning Problem 3,
de Acosta (1983) gave a new proof for a Hartman-Wintner LIL as an applica-
tion of the Kolmogorov LIL, where a clever truncation technique was used.
However, hjs arguments do not work for Banach space valued random vari-
ables. It seems that the LIL of Kolmogrov type does not contain the
Ledoux—Talagrand characterization for i.i.d. Banach space random variables
satisfying the LIL.

In this article we try to solve these problems in Banach spaces. We now
state the main results.

THEOREM 1.1. Let {X,} be a sequence of independent random variables
with values in B such that X, € WM¢Z, n > 1. Assume for every &€ > 0 there
exists p = 2 such that

E<”Xn”p15\/s,2,/Lzsi <X, = 2s,%Lzsﬁ)}

1.13) < 4o
( nz=:1 (ZsﬁLzsﬁ)p/z
and ‘
(1.14) lims, = +o,
(1.15) 5 is bounded in probabilit
. ————— is bounded in probability.
V2siLaysi | |
Then,
' IS, Il ‘
(1.16) limsup —=——===—= <T a.s. forsomelI > 0.
n-—o 'v 23,211123,2,’
Further, ’

IS,

1.17 limsup ———<1 a.s,,
( ) n-»o \/28%14283
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whenever the condition (1.15) is strengthened to
S,

1.18 —_—
( ) V2s2L,s?

By strengthening the condition (1.13) we can give the lower bound in the
conclusion.

— 0 in probability.

THEOREM 1.2. Let {X,} be a sequence of independent random variables
with values in B such that X, € WMZ. Assume (1.15) holds,

sn
(1.19) lims, = +» and limsup—+1 < oo,

n-»o h—o S,

and for every € > 0 there exists p > 2 such that

E{”Xn”pl(nxnun si/Lzs?ﬁ}

(120) ngl (282L282)p/2 < +,
Then,
) 1S,
1.21 1< limsup ——=——= <1 a.s. forsomel > 0.
now /252L,s2
Further,
) IS,
(1.22) limsup ———=——==1 a.s.,

n—w \/28,2114283
whenever (1.15) is strengthened to (1.18).

Now let us make the following comments. The condition (1.15) is of course
necessary for (1.16). Hypotheses (1.15) and (1.18) are typical in the context of
almost sure limit theorems for infinite-dimensional random variables, and hold
automatically if B is a finite-dimensional space. The boundedness condition
(1.8) in the Kolmogorov LIL implies lim sup,, ., ,,,1/5, = 1. Therefore, The-
orem 1.2 can be viewed as a connection between Kolmogorov’s and Wittmann’s
LIL. It is easily seen how Theorem 1.2 improves Wittmann’s theorem as well
as extends it to the vector setting.

We now try to show that our results contain all previous known results on
the LIL for i.i.d. Banach space valued random variables (and therefore the
Hartman-Wintner LIL on the real line). If {X, X,; n > 1} is a sequence of
i.i.d. Banach space valued random variables we say X satisfies the bounded
LIL (and write X € BLIL) if

(1.23) lim su M
' n_mp V2nL,n

< +% a.s.
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and, we say X satisfies the compact LIL (and write X € CLIL) if there exists a
nonrandom compact set K < B such that

S
1.24 limd| ——=——,K| =0 as.,
(1.24) Jm (m ) as

where d(x, A) = inf,_ 4llx — yll. Ledoux and Talagrand (1988) have proven
that X € BLIL if and only if

(1.25) X e WM¢,
(1.26) E{(IXIP/LNIXIP} < +o,
S
(1.27) —_— is bounded in probability.
v2nLyn .

As a simple corollary of the above result on the BLIL, a characterization for
the CLIL was given in Ledoux and Talagrand (1988), which states that
X e CLIL if and only if the conditions (1.25) and (1.26),

(1.28) {f%X); fe B}; fe Bt} isuniformly integrable
and
Sh
(1.29) —=—= — 0 in probability.
v2nLgn
hold.

Further, Ledoux and Talagrand (1990) point out that

1S,
(1.30) lim sup = sup {(Ef¥(X)}"* as.

n—oow \/2nL2n feB}

whenever (1.25), (1.26) and (1.27) hold.

The proof of the necessity parts of both the BLIL and CLIL is easy. [The
arguments [Ledoux and Talagrand (1988)] rely partially on the
Hartman-Wintner LIL which also is, as we will see in what follows, a simple
corollary of our results.] We need only to show the sufficiency parts. If we
observe that (1.26) implies

3
E{”Xn” I(anus\/Zann)}
" (2nLyn)™*

(1.31) < 4o,

it is easily seen, by Theorem 1.1, how the upper bound of the LIL can be well
controlled. That is, if the conditions (1.25), (1.26) and (1.27) hold, we have
X < BLIL. (Therefore, as a simple corollary via the closed graph theorem
[Ledoux and Talagrand (1988)], we have X € CLIL if the conditions (1.25),
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(1.26), (1.28) and (1.29) are fulfilled.) Further, if (1.27) is strengthened to
(1.29), then

, 1S, 2 1/2
(1.32) lim sup —;”/__L_—_rz fsug {(EFA(X)} " as.
n—o 2 - feB¥

Before getting the lower bound, let us show how Theorem 1.2 cofitains the
Hartman-Wintner LIL. If B = R and X satisfies

(1.33) E(X)=0 and EX2< +w,

IA

we write

Y, = XnI(|Xn|s 2nLyn} E(XnI(|X,,|s 2nL2n))7
Z, = XnI(|X,,|>,/2nL2n) - E(XnI(|Xn|> z_ann))’

= Y EY?, n=12..

Jj=1

It is easily seen from (1.33) that

(1.34) B, ~ nEX?,
(1.35) '}1_13:0 m 2:: (Xj1(||xj||> 2nL2n)) =0,
(1.36) Y P{IXI > y2nLon } < +eo.
By the Borel-Cantelli lemma and (1.36),
(1.37) ’}T:OWZZ—O a.s.
By (1.31) and (1.34) we have
Y ____E_I_YL <+

n (2BnL2Bn)3/2
Applying Theorem 1.2, we have

(1.38) limsup———l——— zn: = {IZ'XZ}I/2 a.s
| n-ow y2nrLyn ;24 Y o

By (1.37) and (1.38), (1.6) is valid. Now, we can say that we have proven the
Hartman-Wintner LIL, as the necessary part is just a simple corollary of the

relation (1.6). (Indeed, the right-hand side of (1.6) is infinite whenever (1.33) is
not true. See Stout [(1974), Theorem 5.35, page 2971.)
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Return to the vector setting. In order to obtain the lower bound, simply
note that for every f € B}, f(X) obeys the Hartman-Wintner LIL. Therefore

lim sup —“Sn” > limsu —!f(Sn)l
(1.39) n—ow '\/2”L2n -

,,_,wp v2nLgyn
= {Efz(x)}l/2 a.s. for every f € B¥.

Hence, (1.30) follows from (1.32) and (1.39).

The plan of our paper is as follows. In Section 2, we introduce the isoperi-
metric technique and the Hoffmann-Jgrgensen inequality to prove Proposition
2.2, which is fundamental for the proof of Theorem 1.1, and also of indepen-
dent interest. In Section 3 we deal with the proof of Theorem 1.1. The method
we follow in this section relies on the randomization and isoperimetric tech-
nique, Sudakov minorization and Kolmogorov exponential estimation. In Sec-
tion 4, we prove Theorem 1.2 by establishing the lower bound. In order to
avoid some difficulties caused by the truncations, we apply the Lévy decompo-
sition to our proof.

The following notation will be kept throughout the article. For a sequence
{X,} of independent random variables, { X} will always denote an independent
copy of {X,}. We will also need a Rademacher sequence {¢,}, and we make
{X,),{X},{e,}} an independent system. We will therefore use the notation
EL(Py), Ex{Py) and E_(P,) to denote conditional expectations (probabilities)
with respect to {X,}, {X;} and {e,}, respectively. For any family {a,} of
numbers indexed by a subset U of B*, we let

lafly = suplajl.
feU

2. Some results on the upper bound. The isoperimetric technique
plays an important role in the present article. The following lemma is a simple
corollary of Ledoux and Talagrand [(1990), Proposition 1.1].

Lemma 2.1. Let {X;},_, be independent and symmetric random variables
with values in B, U be a subset of B¥, m, q be integers with m > q and s > 0,
t > 0. Assume

S
1 X< — i=1,2,...,n.
(2.1) 1 X1l < ] n
Then
n
P{ Y (X)) >t+2s+8Mq}
Jj=1 U
Ko \™ . ¢2 . mt®
<|{—| + - =+ )
=17q P\~ 4q0? P\~ 768qMs
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where K, is a universal constant, M = EIIZ;?:lXJ-II and o? =

SUPf ey L EfAX).

Proor. Egquation (2.1) implies

m
2: ”;K}”* <s,

j=1

where {|| X;|*}; ., is the nonincreasing rearrangement of {|| X;[l}; . ,. Therefore,
our conclusmn follows from Ledoux and Talagrand [(1990) Proposition 1.1]
(with U instead of B}). O

Now, consider a sequence {a,} of positive numbers such that ¢, T + «. By
Wittmann [(1985), Lemma 3.3], for any A > 1, there exists a sequence {n,} C N
with
(2.2) ra, <a, <Xa, ..

ng — T hp41
ProposiTION 2.2. Let {X,} be a sequence of independent random variables

with values in B such that X, € WME, {a,} be a sequence of positive numbers
such thata, 1 + », and {n,} be integers satisfying (2.2) for some A > 1. Write

LT
of=sup ), Ef¥X;), k=Ll

feBYf j=nz+1

Assume
> EIIX g
(2.3) Z < 4o forsomep = 2.
Then,
_ IS,
(2.4) lim sup <T a.s. forsomel >0,

n—® an

whenever the following two conditions are fulfilled:

o Ma?1
(2.5) Z exp{ ———+}) < +x forsomeM >0,
= i
Su L
(2.6) P is bounded in probability
n/n=1

In addition,

=0 a.s.,

A
(2.7) lim

n-ox a,
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whenever the following two conditions are fulfilled:

© da?
(2.8) Y exp{ ———) < +x forevery 5 >0,
k=1 O
S,
(2.9) P 0 in probability.

n

Proposition 2.2 will be applied to the proof of Theorem 1.1. It appears to be
of independent interest in the study of strong limit behaviour. The classical
law of large numbers of Kolmogorov states that if {X,} are real independent
random variables with mean 0, then S,/n — 0 almost surely whenever

EX?
Y n2” < +o,

n

In Banach space [Hoffman-Jgrgensen (1976) and Kuelbs and Zinn (1979)], if

EIX,I?

Yy >— < +oo,

n n

then S,/n — 0 almost surely if and only if S, /n — 0 in probability. To
establish these results, simply note the following facts:

1. Conditions (2.6) and (2.9) are necessary for (2.4) and (2.7), respectively, and
hold automatically in the finite dimensional setting.

2. Conditions (2.5) and (2.8) follow from (2.3) when p = 2, and are the best
possible for our conclusion. For example, (2.5) and (2.8) become necessary
if a,=n and {X,) satisfies some boundedness conditions [Ledoux and
Talagrand (1990), Corollary 3.3].

Proor oF ProPOSITION 2.2. We only give the proof of (2.7), as the proof of
(2.4) is analogous. Our arguments are based on the truncation method, the
isoperimetric technique and the Hoffmann-Jgrgensen inequality. By Ledoux
and Talagrand [(1990), Lemma 2.1], it suffices to prove (2.7) under the
assumption that {X,} is symmetric, so we do this. We write I(%) to denote the
set {n, + 1,...,n, ). By standard methods and symmetry, (2.7) follows if

/ank+1 =0 as.

Let 6k = ZJEI(k)E”XJ“p/af, k = 1,2... and bj = 6}];/21’(1‘1-, j S I(k), k =
1,2.... Define

r X

Jjelk)

koo

(2.10) lim

Yy =Xilyxy<py and Z;=Xlyxy>sy J=1,2....
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To show (2.10), it is enough to prove

(2.11) 131_1)130 Z Z; /ank+1=0 a.s
jel(k)

and

(2.12) kh_r)r:o Z Y; /ank+1=0 a.s.
jel(k)

By the Hoffmann-Jgrgensen inequality [Hoffmann-Jé¢rgensen (1974)], in order
to establish (2.11), it is enough to show that

(2.18) ZP{ max | Z,]| > ea,, 1} < +o foreverye >0
7 \jelk) *

and

(2.14) Y (P{

k

< +o forevery £ > 0.

Lz

Jjel(k)

> 8a"’k+1}

It is easily seen how (2.3) implies (2.13). Note that (2.3) implies
(2.15) Y8, < 4o
k

d

and

Y Zj“ > sanm}

jel(k)
< P{ max | Xl > a;ﬂpankH} <8;V%%,, ¥ EIX,|”
jel(k) jel(k)
<A77 Y EIX|P/a? = 2732, k=1,2....
JjEI(k)

Therefore, (2.14) follows from (2.15).
Turn to the proof of (2.12). In order to apply Lemma 2.1, for each %k and
& > 0, we take m; = [(1/4)ed; '/?’], t =s = (¢/4a,,, ¢ = 2K, and U = Bf.
Then
jel(k)

P{
1)\ £%a? . em,a
<|=] +4dexp{-———2t 1} 4 gexp| - Rari__
(2) eXp{ 16 x 128Koa,3} eXp{ 4x 1536K0Mk}
where M, = E|Z; c ;Y| By standard arguments we can easily show that
(2.9) implies

LY

4 LT

3e
> —a + 16K0Mk}

lim M, /a = 0.

n
b —oo k+1
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Therefore, for sufficient large %,

P{ ' XIEk)Yj > sankH}

JE

(2.16) . L
<[=) +dexplo—— V4 gexp{—m,}).
= (2) eXp{ 16 ¥ 128Koa,3} exp{ =m,)

It is easily seen how (2.15) implies
Z((%)mk + 4 exp( —mk}} < 4o,
k

By assumption (2.8)

E"a

2,2
zexp{_—_L} <t
k

16 X 128K ,07
Hence (2.16) implies

LY

jel(k)

ze|

k

> sankﬂ} < +oo,

Therefore (2.12) holds. O

3. Proor oF THEOREM 1.1. Throughout this section, the assumptions of
Theorem 1.1 will be assumed to hold, and we will use the notation in Section

1. Write
a,=y2s2Lys2, t,=+y2Lysi, n=1.

We only prove (1.17), as the proof of (1.16) is analogous. Before the technical
details, we outline the main idea of the proof. First note that assumption
(1.13) implies

(3.1) C=YPX,l>a,} < +o.

/an =0 a.s.

1 n
= — sup ZEf D. €Y I
a, feBY =1 ( JHIX 1> j})

1 n 9 1/2
w1 E oo s> )

Therefore,

lim
n-—o0

Z XJ'I{IIXJ'II >a;}
j=1
Observe that

Z E(XJI{IIXjII > aj))

j=1

a

n

1/2

IA

S
<oVt 5
a

, n — o,

n
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Hence

lim

n-—oo

/an =0 as.
/an <1 as.

To this aim, the usual truncation technique is used. That is, we write
Yy =X Iyx<as,/tp ~ E(X Iyx, ||<as,/t,))
Zj=X;lus, /e, <1xp1<0p E(XjI{as,/t,<||X,-||sa,-})’ J=12...,

where « > 0 is constant and to be specified. In order to prove (3.2), we need

only to prove that
Z; /an =0 as.

holds for every a > 0; and for every & > 0, we can make « > 0 so small that
ZYJ /ans 1+6 aus.
=1

We will see in what follows that (3.4) is a direct corollary of Proposition 2.2,
and the proof of (3.5) relies on the Kolmogorov exponential estimate, Sudakov
minorization and the isoperimetric inequality.

By assumption (1.13), there exists p > 2 such that

E|Z,IIP
< 4o

D
an

n
_;1 (XjI{||XJ||>aj} - E(XJ'I<||X,||>a,}))
Thus, to prove Theorem 1.1, it suffices to show that

(3.2) lim sup

n—ow

n
21 (XjI{Hlel <ap ~ B(X;yx, sa,}))
P

(3.3)

(3.4) lim

n—ow

(3.5) lim sup

n—w

(3.6) )

It is easily seen, by standard arguments, that (1.18) implies
n
Y. Z;,/a, — 0 inprobability.
j=1

Let {n,} satisfy (2.2) for some A > 1. To prove (3.4), by Proposition 2.2, we
need only to verify that

(3.7) Zexp{—sank 1/ sup ), Ef*(Z )} < +o foreverys > 0.
feBf Jjel(k)

Let

zZ,|1®
{keN Y “a st;fﬁ}.

jeI(k) J
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It follows from (3.6) that
(3.8) Y ;%P < 4o,

LS|

EEN\N,

For each £ € N,, we have

1
r—sup L Ef*(Z)

Snpr1 FEBY jel(k)

2p-1 t,\"" g%l
(39 =<—5— Y Enzjnp(—’) < —— t"2 ) ElZlI/a?
Snpe1 jel(k) @s; a JeI®)
22r-1 1
- . _ 0
< — 2 )
a? z tnk+1

It is easily seen that (3.9) implies

Y exp{—aaikﬂ sup Y, Efz(Zj)} < 4o,

keN, feBt jel(r)
For each £ € N\ N;,
exp{—.saik+1 sup Ef2(Zj)} < exp{—st?lkﬂ}.
feBY jel(r)

Therefore, (3.8) implies that

Yy exp{—eaikﬂ/ sup Y, Ef2(ZJ-)} < 4o,

EeN\N, feBY jeI(k)

Hence, (3.7) is valid.

Now we prove (3.5). By a standard procedure it suffices to show that for any
8 > 0 we can make o > 0 sufficiently small that for any A > 1 and {n,}
satisfying (2.2),

> (1+ 6)ank} < +oo,

(3.10) 2:13{ §f Y,
k j=1

The idea of the proof can be found in Ledoux and Talagrand [(1991), page 197,
Theorem 8.2]. We now make some observations. For each n we define a
pseudometric d,(f, g) on BF: '

1/( 172
dn(f9g)=s_(21E(f—g)2(Yl)) » f,gEBik,
n\j=

and write N(e, Bf, d,), for every n and & > 0, to denote the minimal number
of open balls of radius ¢ > 0 in the pseudometric d, which are necessary to
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cover BF, that is,
N(e, Bf,d,) = min{m; there exist f,,..., f,, € Bf
such that _Iiriigdn( fi, f) <eforevery f € B;"}

Let V,(e) be the &-net of the pseudometric space (Bf, d, ) such that
(3.11) Card(V,(e)) = N(e, Bf,d,,)

and
n, 82
U,(e) = { f e BY; 'ZlEfz(Yj) < Zsrzu .
j=

It is easily seen that for each %,
llxll < I F(x)llvyey + 20 F () luycey-
Therefore, it suffices to show that:

(A) For every £ > 0 and sufficiently small a« > 0,

> (1+ B)ank} < +o,

(3.12) ZP{
k

% £(¥)

Vk(s)

(B) For sufficiently small ¢ > 0 and a > 0,

T (%)

j=1

> 6ank} < 4o,

(3.13) Y. P
k Uk(E)

First note that (3.11) implies

P{ ;jyj

Jj=1
Naturally, in order to prove (3.12), we hope that N(e, Bf,d,) can be well
controlled. We claim that

> (1+ 6)ank}

(3.14) Vi)

< N(e, Bf,d,,) sup P >(1+8)a,,).
feB¥

1

% £(1)

1 .
(3.15) lim =z log N(e, Bf,d,) =0 foreverye > 0.

The proof of (3.15) is based on arguments using an entropy estimate. Note
that

S
(3.16) 1Y;ll < zat—{, j=1,2..
J
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It is easily seen that assumption (1.18) implies

n
Y Y|l /a,=0.
j=1

By the triangle and Jensen inequalities we have

(3.17) lim E

n-—o

B| % r4(%)| 2 E) L e( (%) - £4(5)
“E| T (F4(%) - (%)
>E Z::l( 2Y) - EfX(Y))) .

Note (3.16) and (3.17). By standard arguments via a comparison theorem
[Ledoux and Talagrand (1989), Theorem 5] we can easily show that

lim — Z f3(Y)|| =o.
n—ow S _ B
Therefore,
(3.18) lim —2 Z (£2(Y;) - Ef¥(Y)| =o.
i— B}

Now we apply, conditionally on the Y)’s, the Sudakov type minorization of

Ledoux and Talagrand [(1991), page 114, Proposition 4.13]. Observe that, with
high probability, for example, larger than 3/4,

g2 g2 1

< —f < —"
4K "7 4K max;_,lIY;/s,l|

1
—E,
s

for large n,

n
) &Y,

Jj=1

n

where the last inequality follows from (3.16) with « < 1. By (3.18), with
probability larger than 3 /4,
2

€
< 6 for large n.

n

Y (F3(Y;) - Ef¥(Y;))

Jj=1

— sup
Sn feBt Bf

By Ledoux and Talagrand [(1991), page 114, Proposition 4.13], with probability
larger than 1/2,

—E,| Y &Y, = — (log N(¢, Bf, d,)))"">.
~ 4K
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Therefore,
1

“ € 1/2
snE j§1€jY} zﬁ(logN(s,Bf,dn)) .

Thus, (3.15) follows from (3.17).

[I thank M. Ledoux for showing me the recent result on the minorization
inequality for the Rademacher sequence that led to the simplification of the
original proof for (3.15).]

We now prove (3.12). By the standard exponential estimate due to
Kolmogorov, we can make « > 0 so small that there exists u > 0 such that

(1+ 2u) .
sup P >(1+3d)a,, < exp{———z———tnk for large %.

feBf

L (1)

By (3.15) we have
u
N(e, Bf,d}) < exp{gt,ztk} for large %.

It follows from (3.14) that

u
P t,zlk} for large .

¥ £(¥)
=1

>(1+ 8)ank} < exp{— 3

Vk(s)

Therefore, (3.12) is valid.
The proof of (3.13) is based on the isoperimetric inequality (Lemma 2.1). By
Giné and Zinn [(1984), Lemma 2.5], we need only to show

ng
(3.19) Z{ &; f(Y;) > Bank} < +o.
k f=1 Uy(e)
First note that
ny 2
Y EFY)| < sk
f=1 Up(e)

To apply Lemma 2.1, for given § > 0, we make o« < 3/8 and ¢ < 6/64%.
For each k,let m = [t2 ],t =5 = (8/4a,, q = 2K, and U = U(e). By (3.16)
and Lemma 2.1,

36
> ‘Zank + 16K0Mk

Uple)

1 [¢2,1 ) [t?zk]ank
S(E) +4exp{—tnk}+4exp _m , k=1,
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where M, = EIIZ’;’;lerjII. By (3.17) we have
ny
P{ Z sjf(Y;) > 5ank}
j=1
1
E

This implies (3.19). O

Uk(s)

(2,1

IA

+ 4exp{—t3k} + 4exp{— [t,zlk]} for large k.

4. Proof of Theorem 1.2. Since (1.20) implies (1.13), by Theorem 1.1 we
need only to show that the lower bound holds, that is,

, 1Sl
(4.1) limsup ——=—=—=—===>1 as.

n—o \/ ZSiLzsi

Let p> D =limsup, . S,+1/S, and for each k%, let n, be the smallest
integer such that s, > p*. It is easily seen that

s
(4.2) s,, ~p* and % ~p.

ng
We write I(k) to denote the set {n, + 1,...,n,,,} and

B,= sup )} Ef¥X)), k=1
feBY jelk)

By the same arguments as the proof for the lower bound in Ledoux and
Talagrand [(1989), Theorem 10], we need only to show that

P{ Y X;|>(1-38¢)y/2B,L,B, i.o.} =1 foreverye > 0.
jelk)

This is equivalent to

ZP{ Y X ' > (1- 33)‘/2BkL2Bk} = +o0 for every &£ > 0.

k jel(k)
To do this, it suffices to show that

In our proof, we use the exponential estimate of Kolmogorov for the lower
bound. To do this, we do some truncations at the usual level 8y/B,/L,B, for
each X;, j € I(k), where & >0 is a constant and to be specified. However,
instead of the complicated control for the random variables above the trunca-
tion level, which is the usual treatment in the literature, we write {X;}; < 7, in
terms of a Lévy decomposition. That is, for each %, if {{;,n;,Y}, Z}; c ;s are
independent random variables such that {{}; c ;x, and {n;}; < 4, are Bernoulli

(4.3) Y sup P{ Y A(X)

k feBy jelk)
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with
E(¢) = E(n;) = P{IX,I < 8/B,/L;B,}, jel(k),
Z(Y,)(A) = P(IX,| < 3/B,/L,B; , X; € A} /P{IX,ll < 8B, /L, By ),

and
£(2;)(A) = P{IX,ll > 5/B,/L;B,, X, « A} /P(I X, > 8/B,/L,B, },
then
J(XJI(uxjuss\/E/_LzB—k)) =Z(n,;Y;),
L(X;Iyx1>syB7ma80) =2 (1 — £)Z;),
(XY =L (Y + (1 - §)Z; + (4 — )Y).

Further {¢;}; c 1y (M3} e 12y (Y3} € 1y {Zj}; e b =1 18 an independent sys-
tem.
We now prove that

Y (G-m)f(Y)

(4.4) Y. sup P{ > s‘/ZBkLsz} < +oo,

k feBf JEI(R)
First note that for each %,
(4.5) IY;l| < 6y/B,/LyB,, JjEI(k)
and
o= sup L E((4 ) FA(Y))
feBY jel(k)
< sup ¥ 2P{IX;|>8/B,/L,B, }Ef*(Z;)

fEBY jeI(k)

< 2 max P{IX, > 6/B,/L;B, } - B,.

jel(k)

By the Kolmogorov exponential estimate, there exists a > 0 such that

sup P{ T (- m)f(%)|> eJZBkLsz}
feBY Jjel(k)
{ 2BkL2Bk}
<exp{-a ———5——
14

@

k
< CP( 2B,L,B,

p .
<C(L,B,)"" max P{|X;|| > &
) p( 2By) jfgl(k) {” J” L,B,

< C,07P(B,L:B,) ™" ¥ E{IX;1 Lyxyss JBE) forlarge k,
jeI(k)
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where p > 2 and C, are constants. By (4.2) we have
2.2
(4.6) By~ (p - 1)%2,.
It is easily seen by assumption (1.20) that we can find p = p(8) = 2 such that
(4.7) Y (B,LyB) ™" ¥ E{“Xj”pImX,-u»\/m)} < 4o

k JjeIk)

Therefore (4.4) follows from (4.7). Thus, we need only to prove

£ awp{| T fny+0-5)z)
(4.8) k feBf jelk)
>(1- 28)‘/2BkLsz} ——
Let

Y, = nY; - E(n;Y)),
Z;=(1-¢)Z;,-E((1-¢)Z), Jj=12....
By the independence of {Y, Z.}, for each % and f € B,

J> I

P{ r (Y +(Q-§)Z)|>0- ZE)VZBkLsz}
jelk)
> P{ Y f(Z)| < «/2B,L;B, }P{ Y f(Y'J) > (1- g)\/szLsz}
Jjel(k) jel(k)

> (1 - ¢)y2B,L,B, }

r (%)

JjeIk)

1oL )p
=\" "2 2L,B,

Therefore, we need only to prove

(4.9) ¥ sup P{ r f(¥)>a ~e)m} = +o.
k feBt \ljerm
Let
B,= sup Y Efz(f'j), E=1,2,....
feBY jelk)
We have )
(4.10) B,<B,, k=12,....
Assume for the moment that \;v'e could sharpen (4.10) to
(4.11) B, ~ B,.

The proof of (4.9) would be easy via the standard exponential estimate of
Kolmogorov for the lower bound (the arguments will be seen in what follows).
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Unfortunately (4.11) need not be true, but we shall show that this relation
becomes true if 2 — « omitting a set of integers that is so sparse as not to
affect what we prove. In fact, we can follow, by (4.7), the arguments in the
proof of (3.8) and (3.9) to construct a subset N; of N such that

1
(4.12) Y < 4w
keN\N; (Lsz)p
and
1 ,
(4.13) - s L Ef%Z;) -0, keN, k-

k fEBY jeI(k)

It is easily seen from (4.13) that (4.11) holds if 2 € N;. So, for large £ € N,
and every f € B¥, we have

of| £ 1(3)
jeI(k)
4 ~ -
ZP{ > (1— 5)\/2BkL2Bk}.
For each % € N, take f, € B such that
)» Esz(Yj) = Bk'
jelr)

Note (4.5) and (4.10). By Wittmann [(1987), Lemma 2.1], we can make 8 > 0 so
small that there exists « > 0 such that

P{ r A(G)> (1 - %)\/ﬂ?kLsz}
jelk)

> exp{—(1 — @)L,B,} > exp{— (1 — a)L,B,}

X f(%)

jellk)

> (log B,) '™ forlarge k € N,.
Therefore,

x (%)

JjEI(k)

> (1 - s),/szLsz}

sup P{
(4.14) feBf

> (log B,) """ ~ (log s,%k)—lw for‘large k€N,.
It is easily seen how (4.9) follows from (4.2), (4.12) and (4.14). O
Acknowledgment. I would like to thank the referee for his many useful

comments and suggestions which led to a substantial improvement in the
presentation of these results.
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