
\  
 

 

 

 

 

Ramesh, K.  (2020) On the leading-edge suction and stagnation point 

location in unsteady flows past thin aerofoils. Journal of Fluid Mechanics, 

886, A13. (doi: 10.1017/jfm.2019.1070) 

 

The material cannot be used for any other purpose without further 

permission of the publisher and is for private use only. 

 

There may be differences between this version and the published version. 

You are advised to consult the publisher’s version if you wish to cite from 
it.  

 

 

http://eprints.gla.ac.uk/206131/  
 

 

 

 

 

 

   Deposited on  19 December 2019 

 
 

 
 
 

Enlighten – Research publications by members of the University of       

           Glasgow 

http://eprints.gla.ac.uk  

 

http://dx.doi.org/10.1017/jfm.2019.1070
http://eprints.gla.ac.uk/206131/
http://eprints.gla.ac.uk/


This draft was prepared using the LaTeX style file belonging to the Journal of Fluid Mechanics 1

On the Leading-Edge Suction and
Stagnation Point Location in Unsteady

Flows Past Thin Aerofoils

Kiran Ramesh1†
1Aerospace Sciences Division, School of Engineering, University of Glasgow, Glasgow, G12

8QQ, UK

(Received xx; revised xx; accepted xx)

Unsteady thin-aerofoil theory is a low-order method for calculating the forces and moment
developed on a camber-line undergoing arbitrary motion, based on potential flow theory.
The vorticity distribution is approximated by a Fourier series, with a special “A0” term
that is infinite at the leading edge representing the “suction peak”. Though the integrated
loads are finite, the pressure and velocity at the leading edge in this method are singular
owing to the A0 term. In this article, the principle of Matched Asymptotic Expansions
(MAE) is used to resolve the singularity and obtain a uniformly valid first-order solution.
This is performed by considering the unsteady thin-aerofoil theory as an outer solution,
unsteady potential flow past a parabola as an inner solution, and by matching them in
an intermediate region where both are asymptotically valid. Resolution of the leading-
edge singularity allows for derivation of the velocity at the leading-edge and location of
the stagnation point, which are of physical and theoretical interest. These quantities are
seen to depend on only the A0 term in the unsteady vorticity distribution, which may
be interpreted as an “effective unsteady angle of attack”. The leading-edge velocity is
proportional to A0 and inversely proportional to the square root of leading-edge radius,
while the chord-wise stagnation point location is proportional to the square of A0 and
independent of the leading-edge radius. Closed-form expressions for these in simplified
scenarios such as quasi-steady flow and small-amplitude harmonic oscillations are derived.

1. Introduction

Research in the fields of aeronautics and fluids dynamics is increasingly concerned with
unsteady aerodynamics in the 21st century. Unsteady flow phenomena are present in a
wide range of problems and in diverse fields. The study of biological high-lift flight based
on flapping wings and large-scale vortex shedding, for example, is of interest to both
biologists and engineers (Eldredge & Jones 2019). Unsteady flows exhibit rapid changes
in circulation around the lifting surface, apparent-mass effects, flow separation and vortex
shedding (Leishman 2002, chap. 8) .
Theoretical formulations and low-order models for unsteady flows are typically based

on the Boundary-Element-Method (BEM) approach. These solve the unsteady poten-
tial flow equations with farfield boundary conditions being naturally enforced, and
require calculations only on the modelled surface(s) and wake(s). Since unsteady flows
involve changing circulation and shedding of vorticity from surfaces, inviscid vortex
elements/sheets are used to model these phenomena (Darakananda & Eldredge 2019).
The ease of setup/use and rapid solution times offered by these methods has made them
widely useful for initial design and analysis. Panel methods are a type of BEM derived
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by discretising the surface into geometric panels. Thin-aerofoil theory is derived from
further simplifications where the aerofoil is assumed to be thin (consisting only of a
camber-line), and the boundary condition is transferred from the camber line to the
chord line. The vorticity distribution on the chord line is modelled by a general Fourier
series, with a special “A0” term that is infinite at the leading edge. This term represents
the “suction peak” caused by the flow having to turn around the aerofoil leading edge
when the stagnation point moves away from the leading edge. Despite the limiting
assumptions in comparison with panel methods, thin-aerofoil theory has the advantage
of providing closed-form expressions for forces and moment on the aerofoil, and physical
interpretations for the Fourier coefficients. It may also be more accurate than panel
methods for thin sections as it has no errors associated with geometric discretisation.

Originally developed for steady flows about an aerofoil at a constant angle of at-
tack, thin-aerofoil theory has also been extended to unsteady flows (Katz & Plotkin
2000). Ramesh et al. (2013) have derived such a theory valid for arbitrarily large
amplitudes and non-planar wakes. Though the need to model free vorticity interaction in
the wake makes this method semi-numerical in comparison with completely closed-form
theory like Theodorsen (1935), it is applicable to a wider range of scenarios occurring in
nature and engineering. This method has been used in studies on diverse topics including
design of efficient flapping aerofoils through morphing (Willis & Persson 2014), and power
generation by self-sustained oscillation of an aeroelastic aerofoil (Ramesh et al. 2015).
The “A0” term in this method is of particular interest and has been used to develop a
new aerodynamic entity called the Leading-Edge Suction Parameter (LESP) in Ramesh
et al. (2014). It has been shown through experimental and numerical verification that the
process of leading-edge vortex (LEV) formation is strongly correlated to the local suction
at the leading edge and hence the LESP (Ramesh et al. 2018; Deparday & Mulleners
2018, 2019). This parameter has been used to predict and control the occurrence of LEV
formation, and in discrete-vortex methods for modelling intermittent LEV shedding on
aerofoils/wings where the LESP is used to both predict LEV formation and modulate
the strength of discrete vortices shed from the leading edge (Ramesh et al. 2014, 2017;
Hirato et al. 2019).
Despite these successful applications listed above, unsteady thin-aerofoil theory

(UTAT) suffers from the defining limitation of having a singularity at the leading edge.
Since the vorticity at this location is infinite, the pressure and velocity are also infinite.
Forces and moments can still be obtained through integration of these quantities as the
singularity is integrable. However, resolving the primitive variables near the leading edge
is not only of academic interest, but also important for studying the properties of the
boundary layer. The inviscid velocity/pressure over the aerofoil is also the edge velocity
of the boundary layer and the unsteady boundary layer equations may be solved in field
or integral form to predict events such as transition to turbulence and separation. In
steady flows, this approach is used in the well known Stratford criterion for predicting
flow separation (Stratford 1959) and in the design/analysis software XFOIL (Drela
1989), for example. The solution at the leading-edge also contains information about
the stagnation point which is related to the circulatory effects and lift for an unsteady
aerofoil, and has potential as a flow control parameter (Suryakumar et al. 2016; Saini &
Gopalarathnam 2018).
In steady flows, the leading-edge singularity in thin-aerofoil theory was first resolved

by Lighthill (1951) and later formalised by van Dyke (1964) through the method of
Matched Asymptotic Expansions (MAE). In this approach, the exact potential-flow
solution for the flow past a parabolic curve is “matched” with the thin-aerofoil solution
that is singular at the leading edge, to produce a composite uniformly-valid solution.
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MAE has been further developed by Rusak (1994) and Rusak (1993) for the subsonic
and transonic flow regimes respectively, and by Morris & Rusak (2013) for the problem
of leading-edge stall on thin aerofoils. James (1983) has used this method to resolve the
singularity for a thin aerofoil undergoing small amplitude oscillations in pitch and heave,
and having a planar wake (assumptions in Theodorsen (1935)). In this article, we apply
the principle of MAE to obtain a uniformly-valid first-order solution for general unsteady
thin-aerofoil theory which allows for arbitrarily large amplitudes and non-planar wakes.
The theory is presented in sec. 2. The magnitude of flow velocity at the leading edge and
location of the unsteady stagnation point which have important practical applications
are derived in sec. 3, and closed-form expressions for these quantities in some simplified
scenarios are presented.

2. Theory

The problem is formulated with two components: an “inner solution” (sec. 2.1) based
on unsteady flow past a parabolic curve representing the leading edge, and an “outer
solution” (sec. 2.2) derived from unsteady thin-aerofoil theory (which is singular at the
leading edge). Composite solutions are derived by applying the principle of MAE in
sec. 2.3.

2.1. Inner Solution - unsteady flow past a parabola

The inviscid inner solution is the flow about the rounded nose of a thin aerofoil which
may be represented by a parabola. Similar to James (1983), the flow near the nose may
be considered to be comprised of a stagnation-point point flow and a parallel (lifting)
flow which results from the stagnation point moving away from the leading edge. The
geometry is described in a coordinate system (x, y) with the parabola nose (leading edge)
coinciding with the origin, and the parabola axis (chord direction) with the x-axis. This
problem may be elegantly solved by conformal mapping to the complex plane, shown in
figure 1

z = rc

(

κ− κ2

2

)

(2.1)

where z = x + iy, κ = ǫ + iη and r is the leading-edge radius nondimensionalised with
respect to aerofoil chord. This transformation maps the flow field in the physical z plane
to the left half of the κ-plane. The parabola y = ±

√
2rcx is mapped to the ǫ = 0 line.

The coordinates in the two planes are related as

y = rcη, x = rc
η2

2
(2.2)

For the stagnation-point flow, complex velocity in the κ-plane is

~v = Us(−ǫ+ iη) (2.3)

and the velocity potential and stream function are

φs = Us
η2 − ǫ2

2
, ψs = −Usǫη (2.4)

Similarly for the parallel flow,

φp = Upη, ψp = −Upǫ (2.5)
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(a) (b)

Figure 1. (a) Unsteady flow around a parabolic curve when the stagnation point has moved
away from the leading edge, (b) transformed flow in the κ-plane decomposed as stagnation flow
and parallel flow.

The total complex potential of the flow is given by

F = φ+ iψ =

(

Us
η2 − ǫ2

2
+ Upη

)

− i (Usǫη + Upǫ) (2.6)

On the aerofoil surface given by ǫ = 0, the complex potential

F = Us
η2

2
+ Upη (2.7)

and turns out to be real and the same as the velocity potential.
The pressure difference across the parabola upper and lower surfaces is calculated from

the unsteady Bernoulli equation

∆p(x)

ρ
=
pl − pu
ρ

=
1

2
(q2u − q2l ) +

(

∂φ

∂t

)

u

−
(

∂φ

∂t

)

l

(2.8)

where qu and ql are total flow velocities over the aerofoil upper and lower surfaces,
evaluated from |dF/dz|.
From the complex velocity potential derived above in eqn. 2.6, using ǫ = 0 for the

aerofoil surface,

∂φ

∂t (ǫ=0)
=
U̇s

2
η2 + U̇pη (2.9)

∣

∣

∣

∣

dF

dz

∣

∣

∣

∣

(ǫ=0)

=
Up + Usη

rc
√

1 + η2
(2.10)

In the z-plane, η = ±
√

2x/rc on the aerofoil upper and lower surface, and

∂φ

∂t u/l
= U̇s

x

rc
± U̇p

√

2x

rc
(2.11)

Expressing velocities as positive going from leading edge to trailing edge on both upper
and lower surfaces of the aerofoil,

qu/l = ±
∣

∣

∣

∣

dF

dz

∣

∣

∣

∣

(ǫ=0)

=
Us

√
2x± Up

√
rc

rc
√
2x+ rc

(2.12)
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(a) (b)

u

Uz

Ux

X

Figure 2. (a) Illustration of unsteady thin-aerofoil theory and the time-stepping method, (b)
aerofoil and external velocities (positive as shown) and pitch-axis location.

The pressure difference variation over the parabola is

∆p(x)

ρ
=

2
√
2xUsUp

rc
√
rc(2x+ rc)

+ 2U̇p

√

2x

rc
(2.13)

2.2. Outer solution - unsteady thin-aerofoil theory

The inviscid outer solution is from an unsteady thin-aerofoil formulation based on
a time-stepping approach. The method is valid for arbitrary variations in freestream
velocity and aerofoil kinematics, and contains no assumptions of small motion amplitudes
or planar wakes (which are necessary in fully closed-form theories). Figure 2(a) illustrates
the method, with the inertial reference frame given by OXY Z and the body frame
(attached to the moving aerofoil) by Bxyz. The two frames coincide at time t = 0 and
at each time step, a discrete trailing-edge vortex (TEV) is shed from the trailing-edge.

The vorticity distribution over the aerofoil γ(x) is taken as a Fourier series,

γ(θ, t) = 2Uref

[

A0(t)
1 + cos θ

sin θ
+

∞
∑

n=1

An(t) sin(nθ)

]

(2.14)

where θ is a variable of transformation related to the chord-wise coordinate as

x =
c

2
(1− cos θ) (2.15)

and A0(t), A1(t), ..., An(t) are time-dependent Fourier coefficients, c is the aerofoil
chord, and Uref is a reference velocity for nondimensionalisation chosen according to the
problem. The Kutta condition (zero vorticity at the trailing-edge) is enforced implicitly
through the form of the Fourier series. The Fourier coefficients are determined from
the instantaneous local downwash, W (x, t), by enforcing the zero-normal-flow boundary
condition on the aerofoil camber line,

A0(t) = − 1

π

∫ π

0

W (x, t)

Uref
dθ, An(t) =

2

π

∫ π

0

W (x, t)

Uref
cosnθdθ. (2.16)

The normal downwash on the aerofoil camber line transferred to the chord line is
determined from the aerofoil and freestream velocities shown in figure 2(b)
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W (x, t) =
∂ηc
∂x

(

(UX + u) cosα+ (ḣ− UZ) sinα+
∂φw
∂x

)

− (UX + u) sinα− α̇(x− ac) + (ḣ− UZ) cosα− ∂φw
∂z

(2.17)

where ηc(x) is the camber variation on the aerofoil, a is the nondimensional location of
the pitch axis from 0−−1, and ∂φw

∂x and ∂φw

∂z are velocities induced on the camber-line
in directions tangential and normal to chord by discrete vortices in the wake. Arbitrary
motion kinematics of the aerofoil in the 2D plane are represented by the time-varying
parameters - plunge velocity in the Z direction ḣ(t), horizontal velocity in the −X
direction u(t), and pitch angle α(t). The velocities UX(t) and UZ(t) are horizontal
and vertical components of external flow which may also result from gusts or other
perturbations. The strengths of trailing-edge vortices (TEVs) shed at every time-step
are solved for such that Kelvin’s circulation condition is enforced.

ΓB(t) +
∑

ΓTEV s = 0 (2.18)

where ΓB is the bound circulation, calculated by integrating the vorticity distribution
(eqn. 2.14) over the aerofoil chord.

ΓB(t) = Urefcπ

(

A0(t) +
A1(t)

2

)

(2.19)

Detailed description of this approach and its implementation may be found in Ramesh
et al. (2013) and Ramesh et al. (2014). For further discussion in this article, we assume
that the aerofoil travels at a constant horizontal velocity and that there are no external
disturbances. The reference velocity is taken as the horizontal velocity.

u(t) = Uref = u, UX = UZ = 0 (2.20)

The variation of pressure difference between the upper and lower surfaces over the
aerofoil (∆p = pl − pu) is again derived from the unsteady Bernoulli equation (eqn. 2.8)
as

∆p(x)

ρ
=

(

u cosα+ ḣ sinα+
∂φw
∂x

)

γ(x) +
∂

∂t

∫ x

0

γ(x)dx (2.21)

where the second term may be evaluated from eqn. 2.14 as

∂

∂t

∫ x

0

γ(x)dx = uc

(

Ȧ0(θ + sin θ) + Ȧ1

(

θ

2
− sin 2θ

4

))

+ uc
∑

2,3,...n

Ȧn

2

(

sin(n− 1)θ

n− 1
− sin(n+ 1)θ

n+ 1

)

(2.22)

2.3. Asymptotic matching and uniformly-valid solution

Asymptotic matching of the inner and outer solutions is performed by equating them
in an intermediate region where both are asymptotically valid. In this region, the value
of the chord-wise coordinate x is small for the outer solution and large for the inner
solution.
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Taking the limit as x and θ tending to zero in the outer solution (eqn. 2.21) and
expressing the result in x,

∆p(x)

ρ
= 2uA0

√

c

x

(

u cosα+ ḣ sinα+
∂φw
∂x

)

+ 4uȦ0

√
cx (2.23)

Taking the limit as x tends to infinity in the inner solution (eqn. 2.13),

∆p(x)

ρ
=

√
2UsUp

rc
√
rcx

+ 2U̇p

√

2x

rc
(2.24)

Equating the expressions for pressure difference in the intermediate region from the
inner and outer solutions, we obtain expressions for the stagnation flow and parallel flow
velocities in terms of unsteady thin-aerofoil theory variables.

Us = rc

(

u cosα+ ḣ sinα+
∂φw
∂x

)

, Up =
√
2rucA0 (2.25)

Hence the exact solutions for pressure difference and velocity near the aerofoil leading
edge (derived from the parabola) are

∆p(x)

ρ
=

8u
√
cxA0

rc+ 2x

(

u cosα+ ḣ sinα+
∂φw
∂x

)

+ 4u
√
cxȦ0 (2.26)

q =

√
x
(

u cosα+ ḣ sinα+ ∂φw

∂x

)

±√
cuA0

√

x+ rc
2

(2.27)

We note that these expressions are not singular at the leading edge, and that the
values of pressure and velocity at the leading edge are associated with only the first
Fourier term, A0.

A uniformly-valid composite solution for pressure difference across the unsteady aero-
foil is obtained from van Dyke’s principle of MAE as : “outer solution (eqn. 2.21)” +
“inner solution (eqn. 2.13)” - “common part (eqn. 2.24 or 2.23)”.

∆p

ρ
= 2u

(

u cosα+ ḣ sinα+
∂φw
∂x

)

[

A0

(

4c sin(θ/2)

rc+ 2c sin2(θ/2)
− tan(θ/4)

)

+

n
∑

1,2,...n

An sinnθ

]

+ uc

[

Ȧ0(θ + sin θ) + Ȧ1

(

θ

2
− sin 2θ

4

)

+
∑

2,3,...n

Ȧn

2

(

sin(n− 1)θ

n− 1
− sin(n+ 1)θ

n+ 1

)

]

(2.28)

Following the same procedure as for pressure difference, a uniformly valid solution for
the tangential velocity q can be derived as
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qu/l = ∓uA0 tan(θ/4)± u
∑

1,2,...n

An sinnθ

+

√

x

x+ rc
2

(

u cosα+ ḣ sinα+
∂φw
∂x

± uA0

√

c

x

)

(2.29)

The forces and pitching moment on the aerofoil, obtained by integrating the pressure
difference eqn. 2.28 are unchanged from those obtained from the singular expression
eqn. 2.21. The solution for the unsteady thin-aerofoil problem is still of first order, but
now uniformly valid with no singularities in the primitive variables.

3. Results and Validation

3.1. Velocity at leading edge and location of stagnation point

The velocity in the vicinity of an unsteady aerofoil’s leading edge is given by eqn. 2.27.
This expression is seen to have a similar form to that derived for steady flow (van Dyke
1956), with A0 replacing a parameter that is related to the steady angle of attack. This
is consistent with the fact that in previous research (Ramesh et al. 2013, 2014), the A0

term in unsteady thin-aerofoil theory has been shown to be an “effective unsteady angle
of attack” consisting of contributions from the geometric angle of attack, aerofoil camber,
plunge velocity and induced velocities by the wake.

The velocity at the unsteady aerofoil’s leading edge is derived from eqn. 2.27 (or 2.29)

qLE =

√

2

r
uA0 (3.1)

The leading-edge velocity being proportional to A0 is well established in unsteady
thin-aerofoil theory and has previously been derived through a limit process applied at
the leading edge. From Garrick (1937) and von Kármán & Burgers (1963), the form of
the theoretically infinite velocity is given by

qLE = lim
x→0

S√
x

(3.2)

where S is a measure of leading-edge suction

S = lim
x→0

1

2
γ(x, t)

√
x (3.3)

which is finite and proportional to A0 (Ramesh et al. 2014) when evaluated using the
current thin-aerofoil formulation. This was the theoretical basis for defining the Leading
Edge Suction Parameter (LESP) equal to A0 in Ramesh et al. (2014). Asymptotic
matching in this article provides a finite value of the leading-edge velocity and further
reveals that it is inversely proportional to square root of the aerofoil leading-edge radius.

The location of the stagnation point may be determined by applying the condition
q = 0. The sign of A0 indicates the stagnation point as lying on the lower surface (if
positive) or on the upper surface (if negative). If the value of A0 (effective unsteady angle
of attack) is small, the stagnation point is close to the leading edge and well approximated
by a simple expression from the parabola solution eqn. 2.27.
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√

xs
c

=
u

u cosα+ ḣ sinα+ ∂φw

∂x

A0 (3.4)

Closed-form expressions for the leading edge velocity and stagnation point in some
simplified scenarios may be derived from eqns. 3.1 and 3.4.

3.1.1. Steady aerofoil

Considering steady flow around a thin aerofoil without camber at constant angle of
attack,

ηc = 0, ḣ = 0,
∂φw
∂x

=
∂φw
∂z

= 0 (3.5)

A0 = sinα (3.6)

qLE =

√

2

r
u sinα (3.7)

xs = c tan2 α (3.8)

3.1.2. Quasi-steady theory of unsteady aerofoil

Considering an unsteady aerofoil without camber and applying the quasi-steady as-
sumption (induced velocities by wake are neglected),

ηc = 0,
∂φw
∂x

=
∂φw
∂z

= 0 (3.9)

A0 = sinα− ḣ

u
cosα+

α̇c

u

(

1

2
− a

)

(3.10)

qLE =

√

2

r

(

u sinα− ḣ cosα+ α̇c

(

1

2
− a

))

(3.11)

xs = c

(

u sinα− ḣ cosα+ α̇c
(

1
2 − a

)

u cosα+ ḣ sinα

)2

(3.12)

3.1.3. Theodorsen’s theory of unsteady aerofoil

In Theodorsen (1935), an unsteady aerofoil without camber undergoes small harmonic
oscillations in pitch and plunge at a reduced frequency k = ωc/2u, and small-angle
simplifications are applied (sinα ≈ α, cosα ≈ 1). The wake is assumed to be planar and
extending to infinity, on the basis of which closed-form expressions are derived for the
velocities induced by the wake on the aerofoil. The vorticity distribution on the aerofoil
in Theodorsen’s theory is derived in Epps & Roesler (2018). The vorticity is partitioned
into a non-circulatory part γn, a circulatory part associated with the motion γc0 (the
quasi-steady part), and a circulatory part associated with the wake γw.
Expressing these vorticity components from Epps & Roesler (2018) in terms of the

chord-wise transformation variable θ, we have
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γn =
2

sin θ

(

W3qc cos θ −
α̇c

4
(cos θ + cos 2θ)

)

(3.13)

γc0 =
2W3qc

sin θ
(3.14)

γw = −2ikW3qcS(k)

(

Q0(k)
1 + cos θ

sin θ
+

∞
∑

n=1

Qn(k) sinnθ

)

(3.15)

where W3qc is the normal downwash at the aerofoil three-quarter chord location,

W3qc = uα− ḣ− α̇c

(

a− 3

4

)

(3.16)

S(k) is the Sears function

S(k) =
1/ik

K1(ik) +K0(ik)
(3.17)

and the wake coefficients are defined as

Qn(k) =

∫

∞

0

e−ik cosh ζe−nζdζ (3.18)

The first two wake coefficients may be evaluated analytically (Epps & Roesler 2018)
as

Q0 = K0(ik), Q1(k) = K1(ik)−
1

ik
e−ik (3.19)

while the remaining terms must be calculated numerically. In the equations above,Kn(ik)
is the modified Bessel function of the second kind of order n.

Equating the vorticity formulation in unsteady thin-aerofoil theory (eqn. 2.14) with
these expressions, the equivalent Fourier coefficients are derived as

A0 = C(k)
W3qc

u
− α̇c

4u

A1 =
α̇c

2u
− 2

W3qc

u
(C(k)− e−ikS(k))

A2...n = (−1)n2ikS(k)
W3qc

u
Qn (3.20)

where C(k) is Theodorsen’s function, a complex number dependent on reduced frequency.
This function models the induced velocity of the wake, and effects an amplitude reduction
and phase shift.

C(k) =
K1(ik)

K1(ik) +K0(ik)
(3.21)

The Fourier coefficients corresponding to Theodorsen’s theory may also be directly
derived from UTAT eqns. 2.16 and 2.17 by applying small-angle approximations, equating
chord-wise wake induced velocity ∂φw/∂x to zero (due to planar wake assumption) and
calculating the chord-normal wake induced velocity from the thin-aerofoil result Katz &
Plotkin (2000),
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∂φw
∂z

=
1

2π

∫ π

0

γw
sin θ0dθ0

cos θ0 − cos θ
(3.22)

The leading edge velocity from Theodorsen’s theory may be derived from eqn. 3.1.

qLE =

√

2

r

(

C(k)

(

uα− ḣ− α̇c

(

a− 3

4

))

− α̇c

4

)

(3.23)

The stagnation point is derived from eqn. 3.4. The chord-wise wake induced velocity
is zero owing to the planar wake assumption, and the second-order term ḣα can be
neglected for small amplitudes, giving the stagnation point expression

xs = cA0
2 = c

(

C(k)

(

α− ḣ

u
− α̇c

u

(

a− 3

4

)

)

− α̇c

4u

)2

(3.24)

The composite pressure distribution for Theodorsen’s theory is obtained from eqn. 2.28,
with the Fourier coefficients given by eqns. 3.20.
For very low reduced frequencies, we note that k ≈ 0, C(k) = 1+0i, and all the results

for Theodorsen’s method derived above become the same as those for quasi-steady theory
with small-angle approximations applied.

3.2. Verification with Computational Fluid Dynamics

Numerical verification of the results derived above is carried out using the open-source
CFD toolbox OpenFOAM. A body-fitted computational mesh is moved in accordance
with prescribed rate laws, and the time-dependent governing equations are solved using a
finite volume method. A second-order backward implicit scheme is adopted to discretise
the transient terms, and second-order Gaussian integration schemes with linear interpo-
lation for the face-centred values of the variables are used for the gradient, divergence
and Laplacian terms. The pressure implicit with splitting of operators (PISO) algorithm
is employed to achieve pressure-velocity coupling. This setup has been previously used to
implement the incompressible Navier-Stokes equations and study limit-cycle oscillation
of a 2-degree-of-freedom aerofoil (Wang et al. 2018), and leading-edge vortex shedding
on finite wings of different aspect ratios (Bird & Ramesh 2018; Bird et al. 2019). In this
research, the incompressible Euler equations are implemented in order to best match the
conditions under which the theory (potential flow) is derived. This is done by considering
laminar flow, with viscosity set to zero, and using a slip boundary condition for the
moving aerodynamic surface. A NACA0004 section is considered, again in order to best
match the thin-aerofoil assumption in theory. An O-mesh is constructed with 360 cells
around the aerofoil (with a very fine resolution near the leading edge to accurately resolve
the stagnation point location), 252 cells in the wall-normal direction, and with the farfield
extending to 25 chord lengths in all directions from the aerofoil. The stagnation point
from CFD is identified as the location on the aerofoil which is at maximum (stagnation)
pressure.

3.2.1. Harmonic plunge and pitch

The expressions for stagnation point and composite pressure difference in Theodorsen’s
theory derived earlier are validated against Euler CFD for a NACA0004 aerofoil using
small-amplitude, harmonic, pitch and plunge kinematics.
First, a sine function of plunge is considered by taking the imaginary part of the

complex motion, h = h0e
iωt, with h0/c = 0.03 and k = 1.0. Figure 3 shows the lift
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Figure 3. Lift coefficient (left) and stagnation-point location (right) comparison for a pure
plunge case with h0 = 0.03 and k = 1.0. Plunge history is shown on the right axis of each plot.

coefficient and stagnation location variations from CFD, Theodorsen’s theory and quasi-
steady theory for this case. The right axis in both plots show the plunge variation over
the cycle. The quasi-steady result is shown along with Theodorsen’s to demonstrate the
influence of the wake on the lift and stagnation point locations. An excellent match
between the predictions from Theodorsen and CFD is observed. We note that the lift
coefficient is not affected by resolution of the leading-edge singularity and is only shown
to illustrate the effect of unsteadiness (between quasi-steady and Theodorsen’s theory)
and to provide a reference for the pressure distributions shown later.

The leading-edge radius is ≈ 0.0018c for a NACA0004 aerofoil. Pressure difference
coefficient over the aerofoil chord from CFD is compared against the inner, outer and
composite solutions from Theodorsen in figure 4. Equally spaced time instants t/T = 0.25
and 0.5 are shown, noting that the curves for t/T = 0.75 and 1.0 are the exact negatives
of these owing to the symmetry in this case. The insets in these plots show the zoomed-in
pressure difference near the leading edge. We observe that the composite solution is the
same as the inner solution very close to the leading edge, and merges into the outer
solution aft of the leading-edge radius region. The outer solution matches best with the
CFD result after about 0.5%c, but goes to infinity as the leading edge is approached. The
composite solution introduces a small error but correctly goes to zero at the leading-edge,
following the same trend as CFD. The composite solution also correctly predicts the local
maxima/minima which is reflected in the accurate prediction of stagnation point location
in fig. 3.
Next, a sine pitch case is considered using the imaginary part of α = α0e

iωt with
α0 = 3o, k = 0.4 and pitch-axis at the leading edge. Figure 5 shows the lift coefficient
and stagnation location variations from CFD, Theodorsen’s theory and quasi-steady
theory. Excellent agreement between CFD and Theodorsen’s theory is observed. Pressure
difference coefficient over the aerofoil chord from CFD is compared against the inner,
outer and composite solutions from Theodorsen in figure 6, again only for the first half
of the cycle owing to symmetry. Similar trends as for the plunge case are seen. The
difference between CFD and the composite solution is most visible for t/T = 0.5 (and
1.0) where the value of A0 is close to zero.

3.2.2. Ramp-up pitch manoeuvre

Next, the general unsteady thin-aerofoil theory with leading-edge correction is vali-
dated by considering a non-harmonic pitch manoeuvre. The pitch variation is defined
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Figure 4. Pressure difference coefficient over the aerofoil chord for the pure plunge case from
CFD and inner, outer and composite solutions from Theodorsen, at t/T = 0.25 (left) and 0.5
(right). Insets show zoomed-in values at leading edge up to 1% of chord.
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Figure 5. Lift coefficient (left) and stagnation-point location (right) comparison for a pure
pitch case with α0 = 3o and k = 0.4. Pitch history is shown on the right axis of each plot.
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Figure 6. Pressure difference coefficient over the aerofoil chord for the pure pitch case from
CFD and inner, outer and composite solutions from Theodorsen, at t/T = 0.25 (left) and 0.5
(right). Insets show zoomed-in pressure difference at leading edge up to 1% of chord.
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Figure 7. Lift coefficient (left) and stagnation-point location (right) comparison for the
ramp-up manoeuvre. Pitch history is shown on the right axis of each plot.

using the Eldredge function which produces a ramp motion with smoothed corner (El-
dredge et al. 2009; Granlund et al. 2013).

α =
K

as

[

cosh(as(t
∗ − t∗1))

cosh(as(t∗ − t∗2))

]

+
α0

2
(3.25)

where as is a smoothing parameter defined as:

as =
π2K

2α0(1− σ)
(3.26)

and,

t∗2 = t∗1 +
α0

2K
(3.27)

Here, t∗1 denotes the nondimensional time (t∗ = tu/c) at start of ramp, taken as 1.0. The
parameter σ is a nondimensional measure of smoothing, set to 0.8. α0 is the amplitude
of the ramp, equal to 3 deg. K is the reduced frequency of pitch taken as 0.026 so that
the nondimensional ramp duration is approximately equal to 1.0. Pitch-axis is located
at the leading edge. The pitch history is shown on the right axis of the plots in fig. 7.
In this figure, lift coefficient and stagnation-point location from quasi-steady theory,
unsteady thin-aerofoil theory and Euler CFD are compared. In this case, the stagnation-
point x−location is nearly equal to the leading-edge radius of the NACA0004 aerofoil
( 0.0018) during the top of the ramp. Despite this, the stagnation points from unsteady
thin-aerofoil theory calculated from both the inner solution and the full matched solution
shown in fig. 7 are seen to be identical. The large difference between the quasi-steady and
unsteady prediction demonstrates the importance of wake-induced velocity for this case.
Unlike in the previous examples, the Cl from unsteady theory is seen to differ mildly
from CFD during the ramp. There is still a very good agreement in stagnation point
prediction.
Pressure difference coefficient over the aerofoil chord from CFD and the inner, outer

and composite solutions from UTAT are compared in figure 8. These plots show dif-
ferences between CFD and UTAT near the trailing-edge (that results in the difference
in lift coefficient observed earlier) which could be related to deviations from the Kutta
condition imposed in UTAT (Xia & Mohseni 2017). Apart from this, there is very good
agreement between the two methods, including near the leading edge.

While the validations performed above were for small amplitude kinematics, the
derivations for unsteady thin-aerofoil theory are valid for arbitrarily large amplitudes
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Figure 8. Pressure difference coefficient over the aerofoil chord for the ramp-up case from CFD
and inner, outer and composite solutions from UTAT, at t∗ = 1.0 (top left), 1.25 (top right),
1.75 (bottom left) and 2.0 (bottom right). Insets show zoomed-in pressure difference at leading
edge up to 1% of chord.

and nonplanar wakes. However, for physically meaningful results, the theory must be
supplemented with models/corrections to account for flow separation and vortex shedding
that would occur for such kinematics, as in Ramesh et al. (2014) and Narsipur et al.

(2018), for example. CFD validation must also be performed with the full Navier-Stokes
equations accounting for viscous effects.

4. Conclusions

The leading-edge singularity in unsteady thin-aerofoil theory is resolved by consid-
ering an inner solution of unsteady flow past a parabola and applying the principle of
MAE. Composite expressions for pressure difference and velocity distributions, that are
uniformly valid over the entire aerofoil are derived. The expression for velocity in the
vicinity of the leading edge is seen to be of a similar form to the steady equivalent, with
A0 playing the role of an effective unsteady angle of attack that consists of contributions
from the geometric angle of attack, aerofoil camber, plunge velocity and induced velocities
by wake vorticity.
The velocity/suction at the leading edge and location of the stagnation point which

are quantities of practical interest, are derived from the composite solution. These
quantities are functions of the A0 term in the unsteady vorticity distribution. Closed
form expressions for these quantities in the special case of an aerofoil undergoing small-
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amplitude harmonic oscillations in pitch and plunge are also obtained using Theodorsen’s
function (by deriving the full equivalence between Theodorsen’s theory and unsteady
thin-aerofoil theory), adding to the classical literature in unsteady aerodynamics. All
results and expressions presented are comprehensively validated against high-fidelity
numerical simulations.
In addition to the expressions derived for pressure difference, surface velocity and

stagnation point location, this research paves the way for investigating boundary-layer
properties in unsteady problems, and for developing simple criteria for unsteady flow
separation analogous to the Stratford criterion in steady flows.
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