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Quantum neural network (QNN), or equiv-8

alently, the variational quantum circuits with9

a gradient-based classical optimizer, has been10

broadly applied to many experimental proposals11

for noisy intermediate scale quantum (NISQ) de-12

vices. However, the learning capability of QNN13

remains largely unknown due to the non-convex14

optimization landscape, the measurement error,15

and the unavoidable gate noise introduced by16

NISQ machines. In this study, we theoretically17

explore the learnability of QNN from the perspec-18

tive of the trainability and generalization. Partic-19

ularly, we derive the convergence performance of20

QNN under the NISQ setting, and identify classes21

of computationally hard concepts that can be effi-22

ciently learned by QNN. Our results demonstrate23

that large gate noise, few quantum measurements,24

and deep circuit depth will lead to poor conver-25

gence rates of QNN towards the empirical risk26

minimization. Moreover, we prove that any con-27

cept class, which is efficiently learnable by a re-28

stricted quantum statistical query (QSQ) learning29

model, can also be efficiently learned by QNN.30

Since the restricted QSQ learning model can31

tackle certain problems such as parity learning32

with a runtime speedup, our result suggests that33

QNN established on NISQ devices will retain the34

quantum advantage. Our work provides the the-35

oretical guidance for developing advanced QNNs36

and opens up avenues for exploring quantum ad-37

vantages using NISQ devices.38

∗ Corresponding authors
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Deep neural network (DNN) has substantially impacted39

the field of artificial intelligence in the past decade [1]40

because numerous real-world applications, such as object41

detection [2], question answering [3], and social recommen-42

dation [4], could be accomplished by DNN-based learning43

algorithms with state-of-the-art performance. The success44

of DNN is mainly attributed to its versatile architecture,45

which is best understood by the following multi-layer46

scheme. As shown in Figure 1(a), the inputs are processed47

through the feature embedding layers Fx(·), followed by48

the fully-connected layers
∏

ℓWℓ(·), where the choice of49

each layer and the combination rule can be tailor-made50

for various learning tasks. Training DNN is a process to51

uncover the intrinsic relation between the input and the52

output of the given dataset. However, theoretical results53

to explain how DNN discovers such a relation are largely54

unknown, hurdled by its flexible architectures and the55

non-convex optimization landscape. To this end, a huge56

amount of effort has been dedicated to understanding the57

learnability of DNN. Concretely, based on the formula58

‘learnability = trainability + generalization’ [5], there are59

two pipelines to explore the learnability of DNN. For the60

trainability, several studies [6–9] illustrated that DNN61

with specific structures can converge to the global min-62

ima of the training objective function in polynomial time.63

The generalization concerns whether DNN can effectively64

output a hypothesis that well approximates the target65

concept for a certain learning problem. For instance,66

the study [5] proved that over-parameterized DNN can67

learn important concept classes, including the two and68

three-layer DNN with fewer parameters, in polynomial69

samples; while the study [10] proved that two-layer DNN70

can effectively learn polynomial functions.71

Quantum machine learning has emerged as a central72

application of quantum computing [11]. With the aim of73

solving real-world problems beyond the reach of classical74

computers, firm and steady progress has been developed75

during the past decade [12–14]. In addition, a quantum ex-76

tension of DNN, i.e., the quantum neural network (QNN),77

which is separately proposed in [15–20], received great78

attention due to the huge success of DNN and the superior79

computational power of quantum devices [21]. As shown80

in Figure 1(b), QNN also adopts the multi-layer architec-81

ture: the inputs were converted into quantum states by82

the encoding quantum circuit Ux, followed by the train-83

able quantum circuits U(θ) =
∏L

l=1 Ul(θ), where θ are84

adjustable parameters of quantum gates, and a classical85

optimizer. There is a close correspondence between DNN86

and QNN: the feature embedding layer ‘Fx’ of DNN coin-87

cides with the encoding quantum circuit Ux of QNN, while88

the fully-connected layer Wl(·) of DNN coincides with the89

trainable quantum circuit Ul(θ) of QNN. Celebrated by90

the strong power of quantum circuits to prepare classi-91

cal distributions [22, 23], QNN could possess a stronger92

expressive power than its classical counterparts [24] and93

advance a wide range of machine learning problems.94

Despite the promising prospects, the learning capabil-95

ities of QNNs, i.e., their trainability and generalization,96

remain largely unknown. Firstly, even though empirical97

studies have shown that QNN can accomplish various98

supervised learning tasks, e.g., classification [17, 19, 25]99

and regression [18, 26], a rigorous analysis of the learning100

performance is lacking. The obstruction that impedes101

the theoretic progress origins from the combination of102

the following factors, including the versatile structures of103

QNN, the non-convex optimization landscapes, the un-104

avoidable gate noise and measurement errors. Classically,105

the empirical risk minimization (ERM) principle [27, 28]106

is employed as a universal framework to benchmark the107

training performance of the supervised learning algorithms108

without prior knowledge of the data distributions. To109

be more specific, ERM measures how fast the objective110

function used in the learning algorithm converges to the111

stationary point in terms of the input size and feature112

dimensions. Following the same routine, it is natural to113

ask: what is the convergence rate of QNN towards ERM?114

Answering this question not only enables the theoretical115

evaluation of the performance of various QNN based su-116

pervised learning algorithms, but more importantly, it117

also provides guidelines to the design of better quantum118

supervised learning protocols. Particularly, we believe119

that the achieved convergence rates can guide us to devise120

more advanced quantum learning protocols to avoid the121

barren plateau (i.e., the vanishing gradients) phenomenon122

in training QNN [29]. More discussion will come after we123

formally introduce Theorem 1.124

Secondly, understanding the generalization of QNN can125

facilitate the exploration of its applicability with provable126

advantages; however, theoretical analysis of the gener-127

alization property of QNN remains largely open. The128

difficulty mainly comes from the universality of the gener-129

alization, which concerns an entire concept class instead130

of a specific training dataset. Note that the investiga-131

tion of the generalization for certain concept classes also132

lies in the center of the probably approximately correct133

(PAC) learning, as a building block of learning theory134

[30]. Analogous to the QNN’s generalization, learning135

theory also concerns whether the learning model can ef-136

ficiently output a hypothesis that can well approximate137

a target concept. Due to such a similarity, theoretical138

results from PAC learning have been broadly exploited to139

study the generalization of DNN [5, 10]. Unfortunately,140

quantum PAC (QPAC) learning [31–34], that is built on141

the noiseless assumption, is not suitable for studying the142

generalization of QNN because QNN is always associated143

with the unavoidable gate and measurement noise [21, 35].144

A potential alternative is the recently proposed quantum145

statistical query (QSQ) learning model [36], and QSQ146

learning models can use exponentially fewer samples than147

their classical counterparts to learn certain concepts. If148

we could connect QNN with QSQ learning models, we149

can answer affirmatively whether there exists any class of150

concepts that can be efficiently learned by (noisy) QNN151

but are computationally hard for the classical learning152

models. Moreover, it enables us to employ QNN imple-153

mented on NISQ devices to accomplish certain tasks with154
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FIG. 1: Illustration of DNN and QNN. The left and right panel shows DNN and QNN, respectively. For DNN, the
feature embedding layers Fx(·), which contains a sequence of operations with the arbitrary combination such as
convolution and attention, maps the input ‘0’ to the feature space. Wl(·) is the l-th fully-connected layer. For QNN,
an encoding quantum circuit Ux maps the classical input ‘0’ to the quantum feature space. Ul(θ) is the l-th trainable
quantum circuit. Classical information for optimization is extracted by quantum measurements.

theoretical advantages.155

Results156

Trainability of QNN towards ERM. Before elaborat-157

ing our theoretical results, we first formulate ERM and158

the mechanism of QNN. Let z = {zj}nj=1 ∈ Z be the159

given dataset with Z being the sample domain, where160

the j-th sample zj = (xj , yj) includes a feature vector161

xj ∈ R
Dc and a label yj ∈ R. ERM aims to find the162

optimal θ∗ ∈ R
d by minimizing the objective function L163

within the constraint set C ⊆ R
d, i.e.,164

θ
∗ = argmin

θ∈C
L(θ, z) := 1

n

n
∑

j=1

ℓ(yi, ŷi) + r(θ) , (1)

where ŷi is the predicted label that is determined by θ165

and xi, ℓ is the loss function that measures the dispar-166

ity between true labels {yj}nj=1 and the predicted labels167

{ŷi}ni=1, and r(·) is a regularizer. To ease the discussion,168

throughout the paper, we consider the mean square error169

loss ℓ with ℓ(yi, ŷi) = (ŷi − yi)2, and use r(θ) = λ‖θ‖22/2170

with λ ≥ 0. Note that our analysis can be easily gener-171

alized to other loss functions that satisfy S-smooth and172

G-Lipschitz properties [37].173

The common optimization rule to tackle ERM is the174

batch gradient descent method [1]. Depending on the175

available resources, the sample indices are divided into176

B disjoint batches {Bi}Bi=1 with equal size Bs, namely,177

z = ∪j∈{Bi}B
i=1

zj . The optimization rule at the t-th178

iteration is θ(t+1) = θ(t) − η
B

∑B
i=1∇L(θ(t),Bi), where η179

is the learning rate, the gradient ∇L(·) is180

∇L(θ(t),Bi) =
(

Ŷ
(t)
i − Yi

) ∂Ŷ
(t)
i

∂θ(t)
+ λθ(t) , (2)

Yi =
1
Bs

∑

j∈Bi
yj and Ŷ

(t)
i = 1

Bs

∑

j∈Bi
ŷ
(t)
j are the sum181

average of the true labels and the predicted labels for182

the i-th batch Bi, respectively. When no confusion will183

occur, we use L(θ(t)) and Li(θ
(t)) instead of L(θ(t), z)184

and L(θ(t),Bi) in the rest of study.185

The general workflow of QNN is summarized in Fig-186

ure 1(b). Specifically, QNN first employs a state prepa-187

ration unitary Ux to encode classical inputs {xj |j ∈ Bi}188

into quantum states, followed by the quantum circuit189

U(θ) with tunable parameter θ to produce the state190

γBi
∈ C

D×D. Note that some quantum kernel encoding191

methods may lead to the varied feature dimensions, i.e.,192

Dc 6= D. We refer the interested reader to Appendix193

B for implementation details of Ux and U(θ). Finally,194

a quantum measurement, e.g., a two-outcome positive195

operator valued measure (POVM) {Π, I −Π}, is applied196

to the state γBi
and produces the outcome Vi that can be197

viewed as a binary random variable with the Bernoulli198

distribution Ber(Ŷi), where Ŷi := Tr(ΠγBi
). Note that,199

for a random variable X that follows the Bernoulli dis-200

tribution with X ∼ Ber(p), we have Pr(X = 1) = p and201

Pr(X = 0) = 1− p. Denote the obtained statistics, i.e.,202

the sample mean, by Ȳi =
1
K

∑K
k=1 Vk after repeating the203

above procedure K times. The law of quantum mechan-204

ics ensures Ȳi → Ŷi when K → ∞. However, in reality,205

only a finite number of measurements is allowed, and this206

results in the sample error (measurement error).207

In addition, the quantum gates in NISQ machines,208

which are used to implement Ux and U(θ), are prone to209

having errors [35]. The gate noise can be simulated by ap-210

plying certain quantum channels to each quantum circuit211

layer, and this can be done by considering the worst-case212

scenario, i.e., modeling the gate noise at each circuit depth213

by a quantum depolarization channel [38]. Specifically,214

given a quantum state ρ ∈ C
D×D, the depolarization215

channel Np acts on a D-dimensional Hilbert space is de-216

fined as Np(ρ) = (1−p)ρ+pI/D, where I/D refers to the217

maximally mixed state [38]. After applying Np to QNN,218

the quantum state before measurement is γ̃Bi
= Np(γBi

).219

When the measurement is applied to the state γ̃Bi
, the220

obtained outcome Vi follows the Bernoulli distribution221

Ber(Ỹi) with Ỹi := Tr(Πγ̃Bi
) instead of Ber(Ŷi). We re-222

mark that all results presented in the main text assuming223

the depolarization noise; however, they can be easily ex-224

tended to a more general noisy channel. Confer Appendix225
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G for details.226

The optimization of QNN towards ERM is similar to227

that of DNN. In particular, QNN also generates a sum228

average of the predicted labels, based on θ and Bi, after229

the measurement component in Figure 1(b). However, the230

main difference between the gradient-based optimization231

of QNN and DNN is as follows. In DNN, the gradient in232

Eqn. (2) can be easily obtained via backpropagation [1].233

However, due to the nature of quantum mechanics, the234

gradient of a quantum unitary operator (e.g., trainable235

quantum circuit layer Ul(θ)) is, in general, not a legiti-236

mate quantum operator anymore [39]. To overcome this237

shortcoming, the parameter shift rule [18, 39] is proposed238

to estimate the gradients of a quantum unitary operator239

using K measurements. We will elaborate this step in the240

Methods section.241

Now we quantify the convergence of QNN towards ERM.242

Paricularly, analyzing the convergence of QNN amounts243

to checking the following two standard utility metrics:244

R1

(

θ
(T )
)

:= E

[

∥

∥

∥∇L(θ(T ))
∥

∥

∥

2
]

,

R2

(

θ
(T )
)

:= E[L(θ(T ))]− L(θ∗), (3)

where the expectation is taken over the randomness of245

QNN resulted from the measurement error and gate noise,246

θ(T ) is the output of QNN after T iterations and ∇L(·)247

denotes the gradient of the objective function L(·) defined248

in Eqn. (1). The metric R1 evaluates how far QNN is249

away from the stationary point, ‖∇L(θ(T ), z)‖2 = 0, in250

expectation [40, 41]. The utility metric R2 evaluates the251

expected excess empirical risk [42, 43].252

The utility bounds of noisy QNN are summarized in253

the following theorem, where the full proof is provided in254

Appendix E.255

Theorem 1. Let K be the number of measurements, LQ256

be the circuit depth, p be the gate noise, and B be the257

batch size. QNN outputs θ(T ) ∈ R
d after T iterations with258

the utility bound259

R1 ≤ Õ
(

poly

(

d

T (1− p)LQ
,

d

BK(1− p)LQ
,

d

(1− p)LQ

))

.

When λ satisfies a technical assumption, QNN outputs260

θ(T ) ∈ R
d after T = Õ( d3

(1−p)LQ
) with the utility bound261

R2 ≤ Õ
(

poly

(

d

K2B(1− p)LQ
+

d

(1− p)LQ

))

.

Our result shows that a larger amount of measurements262

K, a lager batch size B, a smaller depolarizing error p,263

a smaller parameter space d, and a shallower quantum264

circuit depth LQ, can yield better utility bounds R1 and265

R2. In addition, the achieved utility bound R1 explains266

how the unavoidable gate noise affects the convergence267

behavior of QNN. Specifically, no matter how large T or268

K would become, QNN could still diverge for large d, p,269

and LQ because of the term d/(1−p)LQ in R1. This obser-270

vation coincides with the classical ERM results, where a271

sufficiently large perturbation noise imposed on the gradi-272

ent may result in the optimization of ERM to diverge [37].273

Moreover, the dependence of gate and measurement noise274

in R1 and R2 accords with the empirical observations275

[44] that certain quantum learning models, which achieve276

the promising performances under the ideal setting, may277

not be applicable to experiments. For example, when the278

quantum approximate optimization algorithm (QAOA)279

[20] is applied to accomplish maximum cut problem on280

3-regular graphs, the success probability drops to zero281

once the gate error level is larger than 0.1.282

We note that the achieved utility bounds R1 and R2 are283

very general, and cover various types of encoding quan-284

tum circuits Ux and trainable quantum circuits U(θ).285

Specifically, our results cover all typical encoding circuits,286

e.g., amplitude encoding [45–47], kernel mapping [17–19],287

the dimension reduction methods [48], basis encoding288

methods [16], and diverse architectures of the trainable289

quantum circuits, as long as it is composed of the pa-290

rameterized single qubit gates and two qubits gates [49].291

Theorem 1 provides theoretical guidances to design QNN-292

based learning algorithms on NISQ devices, considering293

that the gate and measurement noise are ubiquitous in294

these devices. Lastly, the convergence towards the global295

optima as shown in R2 provides an insight about how296

to employ regularization techniques to avoid the barren297

plateau encountered in training QNN [29]. Particularly,298

the barren plateau phenomenon stated that, despite the299

gate noise, the optimization may be terminated at a point300

that is far away from the global minimum, since the gradi-301

ent will vanish exponentially with respect to the increased302

number of qubits and the circuit depth. By contrast, the303

achieved utility bound R2 shows that with the increas-304

ing number of measurements, QNN will converge to the305

global optima (at least in the noiseless setting). This306

observation suggests that the regularization techniques307

allow the optimization of QNN to be relieved from the308

barren plateau dilemma. Moreover, our result enlightens309

the path to apply QNN to accomplish large-scale quantum310

machine learning tasks that require the deep circuit depth311

and the huge number of qubits.312

We also make the following technical contributions313

along the way to prove Theorem 1. In order to make use314

of a well-known result in optimization theory [50], namely315

the stationary point of a smooth function can be efficiently316

located by a simple analytic gradient-based algorithm,317

to prove the utility bound R1, we have to analytically318

derive the gradient of QNN. However, it is impossible319

to obtain an exact gradient of QNN because of the in-320

evitable gate noise and measurement error. To overcome321

this difficulty, we proved a bounded discrepancy between322

the estimated and analytic gradient of QNN (confer The-323

orem 3 in Method for details). This result, accompanied324

with the smooth property of L, enables us to establish325

the utility bound R1. Secondly, due to the hardness of326

finding the global optima L(θ∗) in the non-convex land-327
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scape, R2 can only be applied to some special non-convex328

objective functions, i.e., the objective functions satisfy the329

Polyak-Lojasiewicz (PL) condition [51, 52]. In particular,330

the study [51] indicates that, if a non-convex function331

satisfies the PL condition, then every stationary point332

is the global minimum. In other words, PL enables us333

to leverage the convergence rate to a stationary point334

to evaluate R2. Therefore, through proving that the ob-335

jective function L also meets the PL condition under a336

technical assumption, we achieve the utility bounds of R2.337

Note that the employed technical assumption allowed to338

bypass the barren plateau phenomenon surprisingly.339

Generalization of QNN. Next we examine the gen-340

eralization property of QNN by leveraging the results341

from quantum learning theory [31]. To achieve this342

goal, we establish an explicit connection between QNN343

and QSQ learning models [36], which differs from QPAC344

learning model via its noise-tolerant feature. Let us345

first recall the definition of QSQ learning model. Let346

C ⊆ {c : {0, 1}N → {0, 1}} be a concept class and347

D : {0, 1}N → [0, 1] be an unknown distribution. De-348

fine a QSQ oracle which takes a tolerance parameter τ349

and an observable M ∈ C
2N+1×2N+1

and returns a number350

α satisfying351

|α− 〈ψc∗ |M|ψc∗〉 | ≤ τ , (4)

where |ψc∗〉 =
∑

x∈{0,1}N

√

D(x) |x, c∗(x)〉 refers to a352

quantum example. The QSQ learning algorithm adap-353

tively feeds a sequence of {Mi, τi}i into a QSQ oracle,354

and exploits the responses of {αi}i to output a hypothesis355

h : {0, 1}N → {0, 1}. The goal of the learner is to achieve356

Prx∼D(h(x) 6= c∗(x)) ≤ ε for all possible D and c∗.357

Intuitively, QSQ model can only obtain the estimates358

of measurement statistics of quantum examples instead359

of directly accessing them. Notably, the QSQ oracle for-360

mulated in Eqn. (4) yields a similar behavior of the vari-361

ational quantum circuit used in QNN. In particular, we362

show that QNN can efficiently simulate any QSQ learning363

algorithms with a restricted set of inputs; namely, when364

the distribution D is fixed to be uniform and the observ-365

ables M can be implemented by at most poly(n) single366

and two-qubit gates. By leveraging such an observation,367

we reach the following theorem whose proof is given in368

Appendix F.369

Theorem 2. A QSQ learning algorithm, where the dis-370

tribution over the quantum example |ψc∗〉 is fixed to be371

uniform and the observable M can be implemented by at372

most poly(n) single and two-qubit gates, can be efficiently373

simulated by noisy QNN using polynomial samples.374

The result of Theorem 2 indicates that a noisy QNN375

can effectively simulate a restricted QSQ learning model.376

Notably, the restricted QSQ learning model can efficiently377

tackle parity learning, juntas learning, and DNF (disjunc-378

tive normal form) learning problems, which are computa-379

tional hard for the classical SQ model [36]. As a result, we380

attain a positive answer about the generalization of QNN.381

Namely, any learning concept class that can be solved382

by the restricted QSQ learning model with quantum ad-383

vantages, e.g., parity learning, can also be tackled by a384

noisy QNN with preserved advantages. Furthermore, the385

efficacy to simulate the restricted QSQ model by noisy386

QNN paves a novel way to seeking diverse learning tasks387

that possess quantum merits, motivated by the fact that388

SQ learning algorithms have been broadly applied to sup-389

port vector machines, linear and convex optimization,390

simulated annealing, matrix decomposition, and so on391

[53, 54]. In particular, we can first examine whether the392

restricted QSQ learning models can tackle these tasks393

that outperform their classical counterparts. If the an-394

swer is positive, we can leverage the result in Theorem395

2 to design a noisy QNN that accomplishes these tasks396

with quantum advantages.397

Numerical simulations. We employ the UCI ML hand-398

written digits datasets [55] to exhibit the correctness of399

utility bounds R1 and R2 of QNN, as achieved in Theorem400

1. The employed dataset includes in total 1797 hand-401

written digits images with 10 class labels, where each402

label refers to a digit and each image has 64 attributes.403

The data preprocessing has three steps. First, we clean404

the dataset and only collect images with labels 0 and405

1. After cleaning, the total number of images is 360,406

where the number of examples with label 0 (label 1) is407

178 (172). In other words, our simulation focuses on408

the binary classification task. Some collected examples409

are shown in the lower left panel of Figure 2. Second,410

we utilize a feature reduction technique, i.e., principal411

component analysis (PCA) [56], to reduce the feature412

dimension of each data example from 64 to 3. The lower413

left panel of Figure 2, highlighted by the gray region,414

exhibits the reconstructed hand-written digit images using415

the reduced data features. Such a step aims to balance the416

relatively high dimension features of the data example and417

the limited quantum resources available in present-day.418

After applying PCA, we denote the employed dataset as419

z = {(xi, yi)}360i=1, where xi ∈ R
3 is the i-th data feature420

and yi ∈ {0, 1} is the i-th label. The last step is randomly421

splitting z into two groups, i.e., the training dataset zt422

and the test dataset zp. The size of the training dataset423

zt and the test dataset zp is 280 and 80, respectively.424

We now employ the preprocessed hand-written digits425

dataset z and quantum circuits as used in [17] (Con-426

fer Methods for the implementation details) to study427

the learnability of QNN under the depolarization noise.428

Specifically, we apply depolarization channel Np to every429

quantum circuit depth, where the depolarization rate is430

set as p = 0.0025. The depth of trainable circuits U(θ) is431

set as L = 5 and L = 20, respectively. The corresponding432

number of trainable parameters is 15 and 60, respectively.433

The number of measurements to estimate the expectation434

value is set as K = 20. We also train QNN without noisy435

channels Np under the setting L = 5, 20 with the infi-436

nite measurements, which aims to estimate the optimal437

parameter θ∗ and the minimized objective function L∗.438

The number of iterations for all numerical simulations439
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FIG. 2: The implementation of quantum circuits and the simulation results on hand-written digit dataset. The lower left panel
illustrates the original and reconstructed training examples, as highlighted by the blue and gray regions, respectively. The upper
left panel demonstrates the implementation of data encoding circuit and trainable circuit used in QNN. The label ‘x3’ and ‘xL’
means repeating the quantum gates in blue and brown boxes with 3 and L times, respectively. The lower center panel,
highlighted by the yellow region, shows the training loss under different hyper-parameters settings. In particular, the label
‘Loss_baseline_dep20’ (‘Loss_baseline_dep5’) refers to the obtained loss under the setting L = 20 (L = 5), p = 0, and K → ∞,
where L, p, and K refer to the circuit depth, depolarization rate, the number of measurements to estimate expectation value
used in QNN, respectively. Similarly, the label ‘Loss_QNN_dep20’ (‘Loss_QNN_dep5’) refers to the obtained loss of QNN
under the setting L = 20 (L = 5), p = 0.0025, K = 20. The upper right and lower right panels separately demonstrate the
training accuracy and test accuracy of the quantum classifiers with different hyper-parameters settings.

described above is set as T = 400.440

The simulation results, as shown in Figure 2, accord441

with our theoretical results. Specifically, as shown in the442

lower center of Figure 2, even though the gate noise and443

the finite number of measurements are considered, the444

training loss can still converge after a sufficient number of445

iterations. Moreover, the gap between the optimal result446

L∗ (noiseless) and the results L(θ(T )) under the varied447

noise setting, as indicated by two red arrows, becomes448

large with increasing the circuit depth L. Such a phe-449

nomenon echoes with the result such that a larger L and450

p lead a poorer utility bound. In addition, the achieved451

training and test accuracies as shown in the right panel452

of Figure 2 implies that the noisy QNN can also learn453

a useful decision rule while its performance has slightly454

degenerated. These observations support the applicability455

of QNN on NISQ devices.456

Discussion457

In this study, we explore the learnability of QNN from458

the aspect of the trainability and generalization. The459

achieved utility bounds towards ERM indicate that, more460

measurements, lower noise, and shallower circuit depth461

contribute to a better performance of QNN. These results462

can guide us to devise more advanced QNN based learning463

models that are robust to inevitable gate noise and insen-464

sitive to the barren plateau phenomenon. Moreover, we465

demonstrate that QNN can efficiently learn parity, juntas,466

and DNF with quantum advantages even with gate noise.467

Our work also generates plausible new directions for NISQ468

study that we plan to explore in the future. First, we will469

use other advanced results in optimization theory to ana-470

lyze various variational hybrid models on NISQ machines471

with provable guarantees. In particular, beyond solving472

classification and regression tasks, QNNs, or equivalently,473

the variational hybrid quantum-classical learning models,474

have also been empirically applied to explore fundamental475

properties of physical systems, e.g., ground energies ap-476

proximation and thermal averages computation [57, 58].477

These problems are generally more sensitive to the global478

minimum than that of machine learning problems. We479

expect that the analysis technique established on this480

study can be applied to explain heuristic result achieved481

in these learning problems. Second, we aim to exploit482

more advanced quantum models developed in quantum483

learning theory to explore the potential advantages that484

can be achieved by QNN.485

Methods.486

Parameter shift rule. Denote the updating rule of QNN487

at the t-th iteration as488

θ
(t+1) = θ

(t) − η

B

B
∑

i=1

∇Li(θ
(t)) .

To acquire the analytic gradient ∇jLi(θ
(t)) = (Ŷ

(t)
i −489

Yi)∂Ŷ
(t)
i /∂θ

(t)
j + λθ

(t)
j with j ∈ [d], the parameter shift490
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rule proceeds by separately feeding tunable parameters491

θ(t) and θ(t,±j) := θ(t)± π
2 ej to the trainable circuit U(θ),492

where ej is the basis vector with the j-th entry being 1493

and zero otherwise. Following the above notations, we494

denote Ŷ
(t)
i and Ŷ

(t,±j)
i as expectation values of quantum495

measurements when feeding parameters θ(t) and θ(t,±j)
496

into the trainable quantum circuit U(θ) in the noiseless497

scenario. The corresponding analytic gradient of QNN is498

∇jLi(θ
(t)) = (Ŷ

(t)
i − Yi)

Ŷ
(t,+j)
i − Ŷ (t,−j)

i

2
+ λθ

(t)
j .

However, in practice, QNN could only generate statis-499

tics Ȳ
(t)
i = 1

K

∑K
k=1 V

(t)
k and Ȳ

(t,±j)
i = 1

K

∑K
k=1 V

(t,±j)
k ,500

where V
(t)
k ∼ Ber(Ỹ

(t)
i ) and V

(t,±j)
k ∼ Ber(Ỹ

(t,±j)
i ), and501

Ỹ
(t)
i and Ỹ

(t,±j)
i refer to expectation values of quantum502

measurements when feeding parameters θ(t) and θ(t,±j)
503

into the noisy trainable quantum circuit U(θ). This leads504

to the estimated gradient as505

∇jL̄i(θ
(t)) = (Ȳ

(t)
i − Yi)

Ȳ
(t,+j)
i − Ȳ (t,−j)

i

2
+ λθ

(t)
j .

Note that the difficulties of optimizing QNN arise when506

only the approximated Ŷ
(t)
i and ∂Ŷ

(t)
i /∂θ(t) are available507

caused by the finite number of measurements, and the508

precision deteriorates when more iterations occur.509

The analytic and estimated gradients of QNN. As ex-510

plained in the main text, the key component to prove511

Theorem 1 is quantifying the relation between the ana-512

lytic and the estimated gradient of QNN. Here we show513

that the estimated gradient, which is caused by the gates514

noise and the sample errors, can be explicitly formulated515

to relate with its analytic gradient. An informal result is516

summarized below (See Appendix D for details).517

Theorem 3. It follows that

∇jL̄i(θ
(t)) = (1− p̃)2∇jLi(θ

(t)) + C
(i,t)
j,1 + ς

(t,j)
i ,

where p̃ = 1 − (1 − p)LQ , LQ is the circuit depth, the518

constant C
(i,t)
j,1 only depends on Yi, θ

(t), and p̃, and ς
(t,j)
i519

follows the distribution PQ that is formed by Yi, θ
(t), the520

number of measurements K, and p̃ with zero mean.521

Theorem 3 indicates that the estimated gradient522

∇jL̄i(θ
(t)) is centralized around the (1− p̃)2∇jLi(θ

(t)) +523

C
(i,t)
j,1 and perturbed by a random variable ς

(t,j)
i . This524

enables us to quantitively measure how far the estimated525

gradient is away from the analytic gradient, which is the526

precondition to leverage the optimization theory to an-527

alyze the performance of QNN. Moreover, the result of528

Theorem 3 implies that, compared with the finite mea-529

surements, the gate error is more harmful for the QNN’s530

optimization, which may lead to diverging. In particu-531

lar, the term C
(i,t)
j,1 , which is independent with K, will532

always exist and induce a biased optimization direction533

when p̃ 6= 0. For the worst case, with p̃ = 1, the analytic534

gradient information is exactly lost. In contrast, K only535

determines the variance of the distribution PQ with zero536

mean, where classical and quantum literatures [59, 60]537

have provided the convergence guarantee even if K = 1.538

The construction details of numerical simulations. The539

implementation of the data encoding circuit Ux and the540

trainable unitary U(θ) follows the proposal [17]. In par-541

ticular, the data encoding circuit Ux uses the kernel en-542

coding method, and the architecture of the trainable543

unitary U(θ) follows the multi-layer structure. The right544

panel of Figure 2 illustrates the implementation of data545

encoding circuit and the trainable circuit used in QNN.546

Three qubits are employed to build such two circuits. The547

data encoding circuits Ux is composed of Hadamard gates548

H = 1√
2

(

1 1
1 −1

)

, RY gates with RY (2a) =
( cos(a) − sin(a)
sin(a) cos(a)

)

,549

and controlled-RY gates with CRY(2a) = |0〉 〈0| ⊗ I2 +550

|1〉 〈1|⊗RY (2a). Specifically, the rotation angle in RY (x)551

is (π − xi,1)(π − xi,2)(π − xi,3). The construction of the552

trainable circuit U(θ) uses RY gates and controlled-NOT553

gates CX = |0〉 〈0| ⊗ I2 + |1〉 〈1| ⊗X with X =
(

0 1
1 0

)

.554
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The organization of the appendix is as follows. In Appendix A, we unify the notations used in the whole appendix.803

In Appendix B, we elaborate the implementation details of the quantum encoding circuit Ux and the trainable quantum804

circuit U(θ) used in QNN. In Appendix C, we quantifies the properties of the objective function with respect to the805

optimization theory, which will be employed to prove the utility bounds of QNN. Then, in Appendix D, we exhibit the806

proof of Theorem 3, as the precondition to achieve utility bounds of QNN. In Appendix E, we exhibit the proofs details807

of Theorem 1 that achieves the utility bounds of QNN towards ERM. Next, in Appendix F, we prove Theorem 2,808

which shows that any QSQ oracle can be efficiently simulated by noisy QNN. Eventually, in Appendix G, we generalize809

all achieved results to a more general quantum channel.810

A. The summary of notations811

We unify the notations throughout the whole paper. We denote d as the number of training parameters (θ ∈ R
d).812

Define N as the number of qubits and n as the number of training examples. Denote the set {1, 2, ...,m} as [m]. With813

a slight abuse of notations, we denote ℓb as the b-norm, while ℓ (without subscript) is the loss function. We denote814

the ℓp norm of v as ‖v‖p. In particular, ‖v‖ refers to the ℓ2 norm. We use O(·) (or Õ(·)) to denote the complexity815

bound (hide poly-logarithmic factors). A random variable X that follows Delta distribution is denoted as X ∼ Del(x0),816

i.e., Pr(X = x0) = 1 and Pr(X 6= x0) = 0. A random variable X that follows uniform distribution is denoted as817

X ∼ U(a, b), where P (X = x0) = 1/(b− a) with a ≤ x0 ≤ b.818

B. Implementation details of encoding circuit and trainable circuit of QNN819

The selection of encoding circuits Ux and trainable circuit U(θ) is flexible in QNN. We now separately explain the820

implementation details of these two circuits supported by QNN.821

Encoding circuit Ux. The typical encoding circuits of QNN can be divided into four categories. A common822

feature of these encoding methods is that their implementation only costs a low circuit depth, driven by the restricted823

quantum resources. Let the feature dimension of the classical example xi be Dc with i ∈ [n]. The first category is the824

direct amplitude encoding [45–47, 61]. Specifically, the encoder circuit satisfies Ux : Bi → 1√
Bs

∑Bs

b=1

∑Dc

j=1 x̂
(i)
b,j |b〉 |j〉825

with x̂
(i)
b,j = x

(i)
b,j/‖x

(i)
b,j‖. This method requires a low feature dimension Dc, since the quantum gates complexity to826

build Ux is O(Dc). The second category is the kernel mapping [17–19], where Bi is encoded into a set of single-qubit827

gates with a specified arrangements, e.g., Ux(Bi) =
∑Bs

b=1(|b〉 〈b|)⊗Dc

j=1 RY(x
(i)
b,j). The third category is the dimension828

reduction method proposed by [48]. Specifically, instead of encoding Bi, the amplitude or kernel encoder circuits Ux829

is exploited to encode a projected features g(Bi) ∈ R
Bs×D′

c , where g(·) is a predefined function and D′
c ≪ Dc. The830

fourth category is the basis encoding [16, 31, 36], which is broadly used in quantum learning theory. Specifically, the831

encoding circuit Ux is employed to prepare a quantum example |ψ〉 =∑
x∈{0,1}N

√

D(x) |x, c(x)〉 with N = ⌈log2Dc⌉,832

where D(x) is the data distribution over x, c(x) corresponds to the label of the bit-string x [31, 32]. In most cases,833

the distribution D(x) is uniform. Hence, the state |ψ〉 can be efficiently prepared by setting B = 1, and applying834

Hadamard gates and control-not gates [38] to the initial state |0〉⊗N+1
.835

Trainable quantum circuits U(θ). The trainable quantum circuits, a.k.a, parameterized quantum circuits [24, 49],836

used in QNN can be written as a product of layers of unitaries in the form U(θ) =
∏L

l=1 Ul(θl), where Ul(θl) is837

composed of parameterized single-qubit gates and fixed two-qubits gates. Each trainable layer can be decomposed into838

Ul(θl) = (
⊗N

k=1 Ul,k(θl))Ueng, where Ul,k(θl) represents the composition of trainable single-qubit gates and Ueng refers839

to entanglement layer that contains two-qubits gates. Depending on the detailed architecture, the implementation840

of Ul(θl) can be categorized into three classes. The first class is the hardware-efficient circuit architecture, where841

the selection of Uk(θl)) and Ueng is according to the given NISQ machine that has the specific sparse qubit-to-qubit842

connectivity and a specified set of quantum gates [29, 62]. The second class is the tensor network inspired architecture.843

In particular, the layout of quantum gates is following different tensor networks, e.g., the matrix product state, the844

tree tensor network, and the multi-scale entanglement renormalization ansatz (MERA) [63]. The third class is the845

Hamiltonian based architecture, where the entanglement layer Ueng refers to a specific Hamiltonian, e.g., the study846

[18] employs Ueng = e−iHT with H =
∑N

j=1 aj Xj +
∑N

j=1

∑j−1
k=1 Jjk Zi Zk. Notably, almost all quantum approximate847

optimization algorithms follow the Hamiltonian based architecture [20].848
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C. The S-smooth, G-Lipschitz, and PL condition properties for the objective function849

Before quantifying properties of the objective function used in QNN from the perspective of the optimization theory,850

we first present the formal definition of S-smooth, G-Lipschitz, and PL condition properties.851

Definition 1. A function f is S-smooth over a set C if ∇2f(u) � SI with S > 0 and ∀u ∈ C. A function f is852

G-Lipschitz over a set C if for all u,w ∈ C, we have |f(u)− f(w)| ≤ G‖u−w‖2. A function f satisfies PL condition853

if there exists µ > 0 and for every possible θ ∈ C, ‖∇f(θ)‖2 ≥ 2µ(f(θ)− f∗), where f∗ = minθ∈C f(θ).854

To ease the discussion, let us formulate the explicit form of L(θ). Without loss of generality, we set B = n, where
each batch Bi only contains the i-th input xi with Bs = 1. Denote the prepared quantum states as {ρBi

}ni=1 i.e.,

ρBi
= |φBi

〉 〈φBi
| and |φBi

〉 Ux←−− {xi} refers to the quantum example corresponding to the classical input batch Bi (or
equivalently, xi). The explicit form of the objective function is

L(θ) = 1

n

n
∑

i=1

(ŷi − yi)2 +
λ

2
‖θ‖22 , (C1)

where ŷi = Tr(ΠU(θ)ρBi
U(θ)†) refers to the prediction of QNN given the i-th input xi, U(θ) is the trainable circuit, Π855

is the employed two-outcome POVM, and yi is the true label of the i-th input. Moreover, since the tunable parameters856

θ in QNN refer to the rotation angles, we set its range as θ ∈ [π, 3π]d.857

Given Definition 1 and Eqn. (C1), the properties of the objective function L are summarized in the following lemma.858

Lemma 1. Following the notations in Eqn. (C1), L(θ) is S-smooth with S = ( 32 + λ)d2 and G-Lipschitz with859

G = d(1 + 3πλ). Assuming λ ∈ (0, 1
3π ) ∪ ( 1π ,∞), L satisfies PL condition with µ = (−1 + λπ)2/(1 + λd(3π)2).860

Proof of Lemma 1. We employ the three lemmas presented below to prove Lemma 1, whose proofs are given in the861

following subsections.862

Lemma 2. The objective function L is S-smooth with S = (3/2 + λ)d2.863

Lemma 3. The objective function L is G-Lipschitz with G = d(1 + 3πλ).864

Lemma 4. Assume λ ∈ (0, 1
3π ) ∪ ( 1π ,∞). The objective function L satisfies PL condition with µ = (−1+λπ)2

1+λd(3π)2 .865

In conjunction with the results of Lemma 2, 3, and 4, the proof of Lemma 1 is completed.866

1. Proof of Lemma 2: S-smooth867

Proof of Lemma 2. Recall the function L(θ) is S-smooth if868

∇2L(θ) � SI , (C2)

with S > 0. In other words, to promise SI−∇2L(θ) is a positive semidefinite matrix as required in Eqn. (C2), we869

need to obtain the upper bound of the second derivative of L(θ), i.e., S ≥ ‖∇2L(θ)‖2.870

Following the notation used in Eqn. (C1), the gradient for the parameter θj is

∂L(θ)
∂θj

=
2

n

n
∑

i=1

(ŷi − yi)
∂ŷi
∂θj

+
λ

2

∂‖θ‖22
∂θj

=
2

n

n
∑

i=1

(ŷi − yi)
ŷ
(+j)
i − ŷ(−j)

i

2
+ λθj

≤1 + 3λπ , (C3)

where ŷ
(±j)
i = Tr(ΠU(θ± π

2 ej)ρBi
U(θ± π

2 ej)
†), the second equality employs the conclusion of the parameter shift rule871

with ∂ŷi

∂θj
=

ŷ
(+j)

i −ŷ
(−j)

i

2 [18, 39], and the last inequality uses the facts π ≤ θj ≤ 3π, (ŷi− yi) ≤ 1, and ŷ
(+j)
i − ŷ(−j)

i ≤ 1,872

since ŷi, yi, ŷ
(±j)
i ∈ [0, 1].873
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The upper bound of the derivative ∂2L(θ)
∂θj∂θk

can be derived using the results of Eqn. (C3). In particular,

∂2L(θ)
∂θj∂θk

=
∂(∂L(θ)

∂θj
)

∂θk
=

1

n

n
∑

i=1

∂
(

(ŷi − yi)
(

ŷ
(+j)
i − ŷ(−j)

i

)

+ λθj

)

∂θk

=
1

n

n
∑

i=1





∂ŷi
∂θk

(

ŷ
(+j)
i − ŷ(−j)

i

)

+ (ŷi − yi)
∂
(

ŷ
(+j)
i − ŷ(−j)

i

)

∂θk
+ λ





≤3

2
+ λ , (C4)

where the first equality comes from the last equality of Eqn. (C3), and the last inequality employs (ŷi − yi) ≤ 1,874

ŷ
(+j)
i − ŷ(−j)

i ≤ 1, and875

∂ŷi
∂θk

,
∂ŷ

(+j)
i

∂θk
,
∂ŷ

(−j)
i

∂θk
∈ [−1/2, 1/2] ,

supported by the parameter shit rule and ŷi, ŷ
(±j)
i ∈ [0, 1].876

The result of Enq. (C4) implies that ‖∇2L‖2 ≤ d‖∇2L‖∞ ≤ d2( 32 +λ). In conjunction with Eqn. (C2), the objective877

function is S-smooth with S = d2( 32 + λ).878

2. Proof of Lemma 3: G-Lipschitz879

Proof of Lemma 3. Recall a function f(x) is G-Lipschitz if it satisfies880

|f(b)− f(a)| ≤ G‖b− a‖ . (C5)

Moreover, the mean value theorem gives that, if f : Rd → R is differentiable and [a, b] ⊆ R
d, then ∃c ∈ (a, b) such881

that882

f(b)− f(a) = 〈∇f(c), b− a〉 . (C6)

Combining Enq. (C5) and (C6), the G-Lipschitz condition in Eqn. (C5) is equivalent to883

|〈∇f(c), b− a〉| ≤ G‖b− a‖ . (C7)

We now replace f , b, and a used in Eqn. (C7) with L, θ(1), and θ(2) to prove that the objective function L is884

G-Lipschitz. Specifically, we need to find a real value G that satisfies885

∣

∣

∣

〈

∇L(θ),θ(1) − θ
(2)
〉∣

∣

∣
≤ G‖θ(1) − θ

(2)‖ , (C8)

where θ ∈ (θ(2),θ(1)).886

The upper bound of the term
〈

∇L(θ),θ(1) − θ(2)
〉

is

〈

∇L(θ),θ(1) − θ
(2)
〉

≤ ‖∇L(θ)‖ ‖θ(1) − θ
(2)‖ ≤ d ‖∇L(θ)‖∞ ‖θ(1) − θ

(2)‖ . (C9)

In conjunction with Eqn. (C8) and (C9), G-Lipschitz of L requests887

d ‖∇L(θ)‖∞ ≤ G . (C10)

By leveraging the result of Eqn. (C3) with ∇jL(θ) ≤ 1 + 3λπ, we obtain the upper bound of the left side in888

Eqn. (C10) is889

d ‖∇L(θ)‖∞ ≤ d(1 + 3πλ) . (C11)

This leads to the objective function L of QNN satisfying G-Lipschitz with G = d(1 + 3πλ).890



13

3. Proof of Lemma 4: PL condition891

Proof of Lemma 4. Recall the definition of Polyak-Lojasiewicz as formulated in Definition 1, it requires that the892

objective function L satisfies893

‖∇L(θ)‖2 ≥ 2µ(L(θ)− L∗) , (C12)

where L∗ = minθ∈C L(θ).894

We first derive a lower bound of ‖∇L(θ)‖2. In particular, we have

‖∇L(θ)‖2 =

d
∑

j=1

(∇jL(θj))2 ≥ max
j

(∇jL(θ))2 . (C13)

The lower bound of maxj(∇jL(θ))2 as shown in Eqn. (C13) follows895

max
j

(∇jL(θ))2 ≥ min
θj∈[π,3π]

(−1 + λθj)
2 , (C14)

where the last inequality is achieved by exploiting the last second line of Eqn. (C3), and the fact ŷi, yi, ŷ
(±j)
i ∈ [0, 1]896

and λ > 0, i.e.,897

∇jL(θ) =
2

n

n
∑

i=1

(ŷi − yi)
ŷ
(+j)
i − ŷ(−j)

i

2
+ λθj ≥ −1 + λθj .

Combining the assumption λ ∈ (0, 1
3π ) ∪ ( 1π ,∞) and the above results, the lower bound of Eqn. (C13) satisfies898

‖∇L(θ)‖2 ≥ (−1 + λθj)
2 > 0 .

We then derive the upper bound of the term (L(θ)− L∗) in Eqn. (C12). In particular, we have

L(θ)− L∗ ≤ L(θ) + 0 ≤ 1 + λd(3π)2 , (C15)

where the first inequality comes from the definitions of L∗, i.e.,899

−L∗ = − 1

n

n
∑

i=1

(ŷ∗i − yi)2 −
λ

2
‖θ‖2 ≤ 0 ,

with ŷ∗i = Tr(ΠU(θ∗)ρiU(θ∗)†), and the second inequality employs the definition of L(θ) with900

L(θ) = 1

n

n
∑

i=1

(ŷi − yi)2 +
λ

2
‖θ‖2 ≤ 1 +

λ

2
‖θ‖2 ,

and λ
2 ‖θ‖2 ≤ λ

2 d‖θ‖2∞ = (3π)2λd/2.901

By combining Eqn. (C14) and (C15) with Eqn. (C12), we obtain the following relation902

‖∇L(θ)‖2 ≥ (−1 + λπ)2 ≥ 2µ(1 + λd(3π)2) ≥ 2µ(L(θ)− L∗) . (C16)

The above relation indicates that the objection function L(θ) satisfies PL condition with903

µ =
(−1 + λπ)2

1 + λd(3π)2
.

904



14

D. Proof of Theorem 3905

Theorem 3 establishes the relation between the analytic gradient ∇jLi(θ
(t)) and the estimated gradient ∇jL̄i(θ

(t))906

of QNN. Its formal description is as follows.907

Theorem 4 (The formal description of Theorem 3). Denote p̃ = 1− (1− p)LQ with LQ being the quantum circuit908

depth. At the t-th iteration, we define five constants with909

C
(i,t)
j,a =



































(1− p̃)p̃(1/2− Yi)(Ŷ (t,+j)
i − Ŷ (t,−j)

i )− (2p̃− p̃2)λθ(t)
j , a = 1

(1− p̃)(Ŷ (t,+j)
i − Ŷ (t,−j)

i ) , a = 2

((1− p̃)Ŷ (t)
i + p̃/2− Yi) , a = 3

−(1−p̃)(Ŷ
(t)
i )2+(1−p̃)2Ŷ

(t)
i + p̃

2−
p̃2

4

K , a = 4

−(1−p̃)((Ŷ
(t,+j)

i )2+(Ŷ
(t,−j)

i )2)+(1−p̃)2(Ŷ
(t,+j)

i +Ŷ
(t,−j)

i )+p̃− p̃2

2

K , a = 5 ,

where Ŷ
(t,±j)
i = Tr(ΠU(θ ± ej)ρBi

U(θ ± ej)
†), K refers to the number of quantum measurements, and Ŷ

(t)
i and Yi910

are the sum average of the predicted and true labels for the i-th batch Bi.911

The relation between the estimated and analytic gradients of QNN follows912

∇jL̄i(θ
(t)) = (1− p̃)2∇jLi(θ

(t)) + C
(i,t)
j,1 + ς

(t,j)
i

with ς
(t,j)
i = C

(i,t)
j,2 ξ

(t)
i + C

(i,t)
j,3 ξ

(t,j)
i + ξ(t)ξ

(t,j)
i , where ξ

(t)
i and ξ

(t,j)
i are two random variables with zero mean and913

variances C
(i,t)
j,4 and C

(i,t)
j,5 , respectively.914

The intuition to achieve Theorem 4 is as follows. As explained in the main text, the discrepancy between the915

estimated gradient ∇jL̄i(θ
(t)) and the analytic gradient ∇jLi(θ

(t)) is caused by the difference between the estimated916

results Ȳ
(t)
i (or Ȳ

(t,±j)
i ) and the expected results Ŷ

(t)
i (or Ŷ

(t,±j)
i ), due to the involved depolarization noise Np and917

the finite number of measurements K. Specifically, the noisy channel Np shifts the expectation values, and the finite918

number of measurements K turns the output of quantum circuit from the determination to be random. Under the919

above observation, the estimated gradients ∇jL̄i(θ
(t)) can be treated as the random variable that is formed by three920

random variables Ȳ
(t)
i and Ȳ

(t,±j)
i , where the probability distributions of Ȳ

(t)
i and Ȳ

(t,±j)
i are determined by K,921

Np, Ŷ
(t)
i , and Ŷ

(t,±j)
i . Therefore, to explicitly build the relation between ∇jL̄i(θ

(t)) and ∇jLi(θ
(t)), we should first922

formulate the distribution of the estimated gradients using Ȳ
(t)
i and Ȳ

(t,±j)
i , and then connect the obtained distribution923

with the analytic gradients. The following lemma summarizes the distribution of the estimated gradients using Ȳ
(t)
i924

and Ȳ
(t,±j)
i , whose proof is given in Subsection D 1.925

Lemma 5. The mean ν
(t)
i and variance (σ

(t)
i )2 of the estimated result Ȳ

(t)
i are

ν(t) = (1− p̃)Ŷ (t)
i + p̃

Tr(Π)

D
,

(σ
(t)
i )2 =

−(1− p̃)2(Ŷ (t)
i )2 + (1− p̃)

(

1− 2p̃Tr(Π)
D

)

Ŷ
(t)
i + p̃Tr(Π)

D − p̃2 (Tr(Π))2

D2

K
. (D1)

The mean ν
(t,±j)
i and variance (σ

(t,±j)
i )2 of the estimated results Ȳ

(t,±j)
i are

ν(t,±j) = (1− p̃)Ŷ (t,±j)
i + p̃

Tr(Π)

D
,

(σ
(t,±j)
i )2 =

−(1− p̃)2(Ŷ (t,±j)
i )2 + (1− p̃)

(

1− 2p̃Tr(Π)
D

)

Ŷ
(t,±j)
i + p̃Tr(Π)

D − p̃2 (Tr(Π))2

D2

K
. (D2)

Proof of Theorem 4. We now utilize the established relations as shown in Lemma 5 to obtain the relation between the926

estimated and the analytic gradients. Recall that, at the t-th iteration, given the input Bi and K measurements, the927

estimated gradient for j-th parameter θj of noisy QNN is928

∇jL̄i(θ
(t)) = (Ȳ

(t)
i − Yi)

(

Ȳ
(t,+j)
i − Ȳ (t,−j)

i

)

+ λθ
(t)
j . (D3)
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Combining Lemma 5 and Eqn. (D3), the term ∆
(t,j)
i := Ȳ

(t,+j)
i − Ȳ (t,−j)

i in Eqn. (D3) can be treated as the difference929

of two random variables. The term (Ȳ
(t)
i − Yi) in Eqn. (D3) can also be treated as a random variables. We now930

separately investigate their moment properties.931

The term ∆
(t,j)
i . Following the notations used in Lemma 5, the mean and variance of the term ∆

(t,j)
i are ν

(t,+j)
i −ν(t,−j)

i932

and (σ
(t,j)
i )2 = (σ

(t,+j)
i )2 + (σ

(t,−j)
i )2, supported by the definition of moments and the independent relation between933

Ȳ
(t,+j)
i and Ȳ

(t,−j)
i .934

By leveraging the explicit form of ν
(t,±j)
i , the random variable ∆

(t,j)
i can be rewritten as935

∆
(t,j)
i = (1− p̃)(Ŷ (t,+j) − Ŷ (t,−j)) + ξ(t,j) , (D4)

where ξ(t,j) is a random variable with zero mean and variance (σ
(t,j)
i )2.936

The term (Ȳ
(t)
i − Yi). Following the notations used in Lemma 5, an equivalent representation of (Ȳ

(t)
i − Ȳ (t)

i ) is937

(Ȳ
(t)
i − Ȳ (t)

i ) = (1− p̃)Ŷ (t)
i + p̃

Tr(Π)

D
+ ξ(t) − Ȳ (t)

i , (D5)

where ξ(t) is a random variable with zero mean and variance (σ
(t)
i )2.938

The reformulated terms as shown in Eqn. (D4) and Eqn. (D5) indicate that the estimated result ∇jL̄i(θ
(t)) can be

rewritten as

∇jL̄i(θ
(t))

=(Ȳ
(t)
i − Yi)(Ȳ (t,+j)

i − Ȳ (t,−j)
i ) + λθ

(t)
j

=

(

(1− p̃)Ŷ (t)
i + p̃

Tr(Π)

D
− Yi

)

(1− p̃)(Ŷ (t,+j) − Ŷ (t,−j)) +

(

(1− p̃)Ŷ (t)
i + p̃

Tr(Π)

D
− Yi

)

ξ(t,j)

+ (1− p̃)(Ŷ (t,+j) − Ŷ (t,−j))ξ(t) + ξ(t)ξ(t,j) + λθ
(t)
j

=(1− p̃)2∇jLi(θ
(t)) + (1− p̃)p̃

(

Tr(Π)

D
− Yi

)

(Ŷ (t,+j) − Ŷ (t,−j)) + (2p̃− p̃2)λθ(t)
j

+ (1− p̃)(Ŷ (t,+j) − Ŷ (t,−j))ξ(t) +

(

(1− p̃)Ŷ (t)
i + p̃

Tr(Π)

D
− Yi

)

ξ(t,j) + ξ(t)ξ(t,j) . (D6)

Combining the above equation and the explicit expression of ξ(t) and ξ(t,j), we obtain the relation between the939

estimated and the analytic gradients. Specifically, the estimated gradient can be formulated as940

∇jL̄i(θ
(t)) = (1− p̃)2∇jLi(θ

(t)) + C
(i,t)
j,1 + ς

(t,j)
i ,

where ς
(t,j)
i = C

(i,t)
j,2 ξ

(t)
i + C

(i,t)
j,3 ξ

(t,j)
i + ξ(t)ξ

(t,j)
i , the first three constants {C(i,t)

j,1 }3i=1 are defined as941

C
(i,t)
j,a =















(1− p̃)p̃
(

Tr(Π)
D − Yi

)

(Ŷ (t,+j) − Ŷ (t,−j)) + (2p̃− p̃2)λθ(t)
j , a = 1

(1− p̃)(Ŷ (t,+j)
i − Ŷ (t,−j)

i ) , a = 2
(

(1− p̃)Ŷ (t)
i + p̃Tr(Π)

D − Yi
)

, a = 3 ,

and the last two constants, which separately correspond to the variance (σ
(t)
i )2 and (σ

(t,j)
i )2 of the random variables942

ξ
(t)
i and ξ

(t,j)
i , are943

C
(i,t)
j,a =







−(1−p̃)2(Ŷ
(t)
i )2+(1−p̃)(1−2p̃

Tr(Π)
D )Ŷ (t)

i +p̃
Tr(Π)

D
−p̃2 (Tr(Π))2

D2

K , a = 4

−(1−p̃)2((Ŷ
(t,+j)

i )2+(Ŷ
(t,−j)

i )2)+(1−p̃)(1−2p̃
Tr(Π)

D )(Ŷ
(t,+j)

i +Ŷ
(t,−j)

i )+2p̃
Tr(Π)

D
−2p̃2 (Tr(Π))2

D2

K , a = 5 .

944
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1. Proof of Lemma 5945

To achieve Lemma 5, we first simplify the learning model of QNN with the depolarization noise. In particular, all946

noisy channels Np, which are separately applied to each quantum circuit depth, can be merged together to a specific947

circuit depth and presented by a new depolarization channel Np̃.948

Lemma 6. Let Np be the depolarization channel. There always exists a depolarization channel Np̃ with p̃ = 1−(1−p)LQ
949

that satisfies Np(ULQ
(θ)...U2(θ)Np(U1(θ)ρU1(θ)

†)U2(θ)
†...ULQ

(θ)†) = Np̃(U(θ)ρU(θ)†), where ρ is the input quantum950

state.951

Proof of Lemma 6. Denote ρ(k) as ρ(k) =
∏k

l=1 Ul(θ)ρUl(θ)
†. Applying Np to ρ(1) gives952

Np(ρ
(1)) = (1− p)ρ(1) + p

ID

D
, (D7)

where D refers to the dimensions of Hilbert space interacted with Np.953

Supporting by the above equation, applying U2(θ) to the state Np(ρ
(1)) gives954

U2(θ)Np(ρ
(1))U2(θ)

†
= (1− p)ρ(2) + p

ID

D
. (D8)

Then interacting Np with the state U2(θ)Np(ρ
(1))U2(θ)

†
gives955

Np(U2(θ)Np(ρ
(1))U2(θ)

†
) = (1− p)2ρ(2) + (1− p)p ID

D
+ p

ID

D
= (1− p)2ρ(2) + (1− (1− p)2) ID

D
. (D9)

By induction, suppose at k-th step, the generated state is956

ρ(k) = (1− p)lρ(k) + (1− (1− p)k) ID
D

. (D10)

Then applying Uk+1(θ) followed by Np gives957

ρ(k+1) = Np

(

Uk+1(θ)ρ
(k)Uk+1(θ)

†
)

= (1− p)k+1ρ(k+1) + (1− (1− p)k+1)
ID

D
. (D11)

According to the formula of depolarization channel, an immediate observation is that the noisy QNN is equivalent to958

applying a single depolarization channel Np̃ at the last circuit depth LQ, i.e.,959

Np̃(ρ) = (1− p)LQρ(LQ) + (1− (1− p)LQ)
I

D
, (D12)

where960

p̃ = 1− (1− p)LQ . (D13)

961

Proof of Lemma 5. We now use the simplified QNN given by Lemma 6 to explore the relation between the generated962

statistic Ȳ
(t)
i and the expectation value Ŷ (t) (the same rule applies to connect Ȳ

(t,±j)
i with Ŷ (t,±j)).963

At the t-th iteration, given the tunable parameters θ(t) and inputs Bi, the ensemble corresponding to the generated964

state of QNN before taking quantum measurements is {pl, γ(t)i,l }2l=1, i.e., p1 = 1 − p̃ with γ
(t)
i,1 = U(θ(t))ρBi

U(θ(t))†965

and p2 = p̃ with γ
(t)
i,2 = ID/D. After applying a two-outcome POVM Π to measure such an ensemble K times, the966

generated statistics (sample mean) is Ȳ
(t)
i = 1

K

∑K
k=1 V

(t)
k , where each measured outcome V

(t)
k with k ∈ [K] is a967

random variable that satisfies Fact 1.968

Fact 1. V
(t)
k is a random variable that follows the distribution PQ′(V

(t)
k ) =

∑2
c=1 Pr(z = c) Pr(V

(t)
k |z = c). The969

explicit formula of PQ′ is970

1. Pr(z = 1) = 1− p̃ with V
(t)
k |z = 1 ∼ Ber(Ŷ

(t)
i ) and Ŷ

(t)
i = Tr(Πγ

(t)
i,1) ;971

2. Pr(z = 2) = p̃ with V
(t)
k |z = 2 ∼ Ber(Tr(Π)

D ) with Tr(Π)
D = Tr(Πγ

(t)
i,2) .972
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Fact 1 implies that the mean and variance of V
(t)
k are973

(1− p̃)Ŷ (t)
i + p̃

Tr(Π)

D
and − (1− p̃)2(Ŷ (t)

i )2 + (1− p̃)
(

1− 2p̃
Tr(Π)

D

)

Ŷ
(t)
i + p̃

Tr(Π)

D
− p̃2 (Tr(Π))2

D2
,

respectively. Moreover, since each outcome V
(t)
k follows the distribution PQ′ , the mean ν

(t)
i and the variance (σ

(t)
i )2 of

the sample mean Ȳ
(t)
i are

ν(t) = (1− p̃)Ŷ (t)
i + p̃

Tr(Π)

D
,

(σ
(t)
i )2 =

−(1− p̃)2(Ŷ (t)
i )2 + (1− p̃)

(

1− 2p̃Tr(Π)
D

)

Ŷ
(t)
i + p̃Tr(Π)

D − p̃2 (Tr(Π))2

D2

K
. (D14)

Following the same routine, the mean ν
(t,±j)
i and the variance (σ

(t,±j)
i )2 of the sample mean Ȳ

(t,±j)
i satisfy

ν(t,±j) = (1− p̃)Ŷ (t,±j)
i + p̃

Tr(Π)

D
,

(σ
(t,±j)
i )2 =

−(1− p̃)2(Ŷ (t,±j)
i )2 + (1− p̃)

(

1− 2p̃Tr(Π)
D

)

Ŷ
(t,±j)
i + p̃Tr(Π)

D − p̃2 (Tr(Π))2

D2

K
. (D15)

974

E. Proof of Theorem 1975

Theorem 1 quantifies the utility bounds R1 and R2 of QNN under the depolarization noise towards ERM framework.976

For ease of illustration, we restate Theorem 1 below.977

Theorem 5 (Restate of Theorem 1). QNN outputs θ(T ) ∈ R
d after T iterations with utility bounds R1 ≤978

Õ
(

poly( d

T (1−p)LQ
, d

BK(1−p)LQ
, d

(1−p)LQ
)
)

and R2 ≤ Õ
(

poly(d, 1
K2B ,

1

(1−p)LQ
)
)

, where K is the number of quantum979

measurements, LQ is the quantum circuit depth, p is the gate noise, and B is the number of batches.980

The high level idea to achieve the utility bounds R1 and R2 is as follows. Recall that R1 measures how far the981

trainable parameter of QNN is away from the stationary point. A well-known result in optimization theory [50] is that982

when a function satisfies the smooth property, its stationary point can be efficiently located by a simple gradient-based983

algorithm. By leveraging this observation and the relation between the estimated and analytic gradients as achieved in984

Theorem 4, we can quantify how the estimated gradients of QNN converge to the stationary point, which corresponds985

to the utility bound R1.986

Recall that the utility bound R2 evaluates the disparity between the expected empirical risk and the optimal risk987

that is determined by the global minimum. To achieve R2, we utilize the result of the study [51], which claims that if988

a non-convex function satisfies PL condition, then every stationary point is the global minimum. Since the objective989

function used in QNN satisfies PL condition as shown in Lemma 1, we can effectively combine the PL condition with990

the result of R1 to obtain the utility bound R2.991

Proof of Theorem 5. We employ the following two theorems to achieve Theorem 5, whose proofs are given in Subsections992

E 1 and E 2, respectively.993

Theorem 6. Given the dataset z, QNN outputs θ(T ) after T iterations with utility bound994

R1 ≤
2S(1 + 90λd)

T (1− p̃)2 +
(2p̃− p̃2)(2G+ d)(1 + 10λ)2

(1− p̃)2 +
6dK + 8d

(1− p̃)2BK2
.

Theorem 7. Given the dataset z, QNN outputs θ(T ) after T iterations with utility bound995

R2 ≤ (1 + 90λd) exp

(

−µ(1− p̃)
2T

S

)

+ T
(2p̃− p̃2)(G+ 2d)(1 + 10λ)2BK2 + 6dK + 8d

2SBK2
.
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As for R1, with setting T ←∞ and after the simplification, the utility bound as shown in Theorem 6 follows

R1 ≤ Õ
(

poly(
d

T (1− p)LQ
,

d

BK(1− p)LQ
,

d

(1− p)LQ
)

)

. (E1)

As for R2, with setting T = O
(

S
µ(1−p̃)2 ln

(

(1+90λd)2SBK2

(2p̃−p̃2)(G+2d)(1+10λ)2BK2+6dK+8d

))

and after simplification, the utility

bound as shown in Theorem 7 follows

R2 ≤ Õ
(

poly(d,
1

K2B
,

1

(1− p)LQ
)

)

. (E2)

996

1. Proof of Theorem 6: The utility bound R1997

The proof of Theorem 6 employs the following Lemma, where its proof is given in Subsection E 3.998

Lemma 7. Taking expectation over the randomness of ξ
(t)
i and ξ

(t,j)
i in the estimated gradient ∇jL̄(θ(t) as formulated999

in Theorem 4, the term 1
2S

∑d
j=1 Eξ

(t)
i ,ξ

(t,j)
i

[

(

∇jL̄(θ(t))
)2
]

with S being the smooth parameter is upper bounded by1000

(1− p̃)4
2S

‖∇L(θ(t))‖2 + (1− p̃)2G
2S

max
i,j

C
(i,t)
j,1 +

d

2S
max
i,j

(

C
(i,t)
j,1

)2

+
6dK + 8d

2SBK2
.

Proof of Theorem 6. Recall that the optimization rule of noisy QNN at the t-th iteration follows

θ
(t+1) = θ

(t) − η∇L̄(θ(t)) . (E3)

Since the objective function L(θ) is S-smooth, as indicated in Lemma 1, we have1001

L(θ(t+1))− L(θ(t)) ≤ 〈∇L(θ(t)),θ(t+1) − θ
(t)〉+ S

2
‖θ(t+1) − θ

(t)‖2 . (E4)

Combine the above two equations and setting η = 1/S, we have

L(θ(t+1))− L(θ(t))

≤〈∇L(θ(t)),θ(t+1) − θ
(t)〉+ S

2
‖θ(t+1) − θ

(t)‖2

=− 1

S
〈∇L(θ(t+1)),∇L̄(θ(t))〉+ 1

2S
‖∇L̄(θ(t))‖2

=− 1

S

d
∑

j=1

(

∇jL(θ(t+1))∇jL̄(θ(t))
)

+
1

2S

d
∑

j=1

(

∇jL̄(θ(t))
)2

. (E5)

Recall the definition of the estimated gradient is ∇jL̄(θ(t)) = 1
B

∑B
i=1∇jL̄i(θ

(t)) and the explicit expression of1002

∇jL̄i(θ
(t)) is1003

∇jL̄i(θ
(t)) = (1− p̃)2∇jLi(θ

(t)) + C
(i,t)
j,1 + C

(i,t)
j,2 ξ(t) + C

(i,t)
j,3 ξ

(t,j)
i + ξ

(t)
i ξ

(t,j)
i .

Alternatively, the gradient for the j-th parameter ∇jL̄(θ(t)) follows1004

∇jL̄(θ(t)) =
1

B

B
∑

i=1

(1− p̃)2∇jLi(θ
(t)) + C

(i,t)
j,1 + C

(i,t)
j,2 ξ

(t)
i + C

(i,t)
j,3 ξ

(t,j)
i + ξ

(t)
i ξ(t,j) . (E6)

Combining Eqn. (E5) with Eqn. (E6) and taking expectation over ξ
(t)
i and ξ

(t,j)
i , we obtain

E
ξ
(t)
i ,ξ

(t,j)
i

[L(θ(t+1))− L(θ(t))]
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≤− 1

S
(1− p̃)2‖∇L(θ(t))‖2 − 1

S

d
∑

j=1

∇jL(θ(t))

(

1

B

B
∑

i=1

C
(i,t)
j,1

)

− 1

S

d
∑

j=1

∇jL(θ(t))
1

B

B
∑

i=1

E
ξ
(t)
i

[

C
(i,t)
j,2 ξ

(t)
i

]

− 1

S

d
∑

j=1

∇jL(θ(t))
1

B

B
∑

i=1

E
ξ
(t,j)
i

[

C
(i,t)
j,3 ξ

(t,j)
i

]

− 1

S

d
∑

j=1

∇jL(θ(t))
1

B

B
∑

i=1

E
ξ
(t)
i ,ξ

(t,j)
i

[

ξ
(t)
i ξ

(t,j)
i

]

+
1

2S

d
∑

j=1

E
ξ
(t)
i ,ξ

(t,j)
i

[

(

∇jL̄(θ(t))
)2
]

≤− 1

S
(1− p̃)2‖∇L(θ(t))‖2 + G

2S
max
i,j

C
(i,t)
j,1 +

1

2S

d
∑

j=1

E
ξ
(t)
i ,ξ

(t,j)
i

[

(

∇jL̄(θ(t))
)2
]

. (E7)

The first inequality uses the result of Eqn. (E6). The second inequality uses E[ξ
(t)
i ] = 0, E[ξ

(t,j)
i ] = 0 as shown in1005

Theorem 4, and −G/d ≤ ∇jL(θ(t)) ≤ G/d supported by G-Lipschitz property.1006

By leveraging Lemma 7, Eqn. (E7) can be further simplified as

E
ξ
(t)
i ,ξ

(t,j)
i

[L(θ(t+1))− L(θ(t))]

≤− 1

S
(1− p̃)2‖∇L(θ(t))‖2 + G

2S
max
i,j

C
(i,t)
j,1 +

(1− p̃)4
2SB

‖∇jL(θ(t))‖2

+
(1− p̃)2G

2S
max
i,j

C
(i,t)
j,1 +

d

2S
max
i,j

(

C
(i,t)
j,1

)2

+
6dK + 8d

2SBK2

≤− 1

2S
(1− p̃)2‖∇L(θ(t))‖2 + 2G+ d

2S
(2− p̃)p̃(1 + 10λ)2 +

6dK + 8d

2SBK2
. (E8)

The first inequalities comes from Lemma 7, and the second inequality employs (1−p̃)4

2SB ≤ (1−p̃)2

2S and the following result

G

2S
max
i,j

C
(i,t)
j,1 +

(1− p̃)2G
2S

max
i,j

C
(i,t)
j,1 +

d

2S
max
i,j

(

C
(i,t)
j,1

)2

≤ (1 + (1− p̃)2)G
2S

(2− p̃)p̃(1 + 10λ) +
d

2S
(2− p̃)p̃(1 + 10λ)2

≤2G+ d

2S
(2− p̃)p̃(1 + 10λ)2 , (E9)

where the first inequality uses the upper bound of C
(i,t)
j,1 and (C

(i,t)
j,1 )2, i.e., maxi,j C

(i,t)
j,1 ≤ (1− p̃)p̃+ 10(2− p̃)p̃λ ≤1007

(2 − p̃)p̃(1 + 10λ) and maxi,j

(

C
(i,t)
j,1

)2

≤ ((2− p̃)p̃(1 + 10λ))
2 ≤ (2 − p̃)p̃(1 + 10λ)2, and the second inequality uses1008

(1− p̃)2 ≤ 1.1009

An equivalent representation of Eqn. (E8) is

‖∇L(θ(t))‖2 ≤ 2S
L(θ(t))− E

ξ
(t)
i ,ξ

(t,j)
i

[L(θ(t+1))]

(1− p̃)2 +
(2p̃− p̃2)(2G+ d)(1 + 10λ)2

(1− p̃)2 +
6dK + 8d

(1− p̃)2BK2
. (E10)

By induction, with summing over t = 0, ..., T − 1 and taking expectation of Eqn. (E10), we obtain

Et

[

‖∇L(θ(t))‖2
]

≤2S
L(θ(0))− E

ξ
(T )
i ,ξ

(T,j)
i

[L(θ(T ))]

T (1− p̃)2 +
(2p̃− p̃2)(2G+ d)(1 + 10λ)2

(1− p̃)2 +
6dK + 8d

(1− p̃)2BK2

≤2S + 2Sλd(3π)2

T (1− p̃)2 +
(2p̃− p̃2)(2G+ d)(1 + 10λ)2

(1− p̃)2 +
6dK + 8d

(1− p̃)2BK2

≤2S(1 + 90λd)

T (1− p̃)2 +
(2p̃− p̃2)(2G+ d)(1 + 10λ)2

(1− p̃)2 +
6dK + 8d

(1− p̃)2BK2
, (E11)

where the second inequality uses L(θ(0))− E
ξ
(T )
i ,ξ

(T,j)
i

[L(θ(T ))] ≤ L(θ(0))−L∗, L∗ > 0 and L(θ(0)) ≤ 1 + λd(3π)2.1010
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2. Proof of Theorem 7: The utility bound R21011

Proof of Theorem 7. The proof of Theorem 7 is similar with that of Theorem 6. In particular, following the same
routine, we obtain the result of Eqn.(E8), i.e.,

E
ξ
(t)
i ,ξ

(t,j)
i

[L(θ(t+1))− L(θ(t))]

≤− 1

2S
(1− p̃)2‖∇L(θ(t))‖2 + 2G+ d

2S
(2− p̃)p̃(1 + 10λ)2 +

6dK + 8d

2SBK2
. (E12)

Then, we call the conclusion of PL condition as formulated in Lemma 1 and acquire

E
ξ
(t)
i ,ξ

(t,j)
i

[L(θ(t+1))− L(θ(t))]

≤− µ(1− p̃)2
S

(L(θ(t))− L∗) +
2G+ d

2S
(2− p̃)p̃(1 + 10λ)2 +

6dK + 8d

2SBK2
. (E13)

An equivalent reformulation of Eqn. (E13) is

Eς(t) [L(θ(t+1))]− L∗

≤
(

1− µ(1− p̃)2
S

)

(L(θ(t))− L∗) +
2G+ d

2S
(2− p̃)p̃(1 + 10λ)2 +

6dK + 8d

2SBK2
. (E14)

By induction, with summing over t = 0, ..., T and taking expectation, we obtain

Eς(t) [L(θ(T ))]− L∗

≤
(

1− µ(1− p̃)2
S

)T

(L(θ(0))− L∗) + T
2G+ d

2S
(2− p̃)p̃(1 + 10λ)2 + T

6dK + 8d

2SBK2

≤(1 + 90λd) exp

(

−µ(1− p̃)
2T

S

)

+ T
(2p̃− p̃2)(G+ 2d)(1 + 10λ)2BK2 + 6dK + 8d

2SBK2
, (E15)

where the second inequality uses L(θ(0))− L∗ ≤ 1 + 90λd and 1 + x ≤ ex for all real x.1012

1013

3. Proof of Lemma 71014

Proof of Lemma 7. As shown in Theorem 4, the explicit formula of the estimated gradient is

∇jL̄(θ(t)) =
1

B

B
∑

i=1

(1− p̃)2∇jLi(θ
(t)) + C

(i,t)
j,1 + C

(i,t)
j,2 ξ

(t)
i + C

(i,t)
j,3 ξ

(t,j)
i + ξ

(t)
i ξ(t,j) . (E16)

By using the above result, we obtain

1

2S

d
∑

j=1

E
ξ
(t)
i ,ξ

(t,j)
i

[

(

∇jL̄(θ(t))
)2
]

≤ (1− p̃)4
2S

‖∇L(θ(t))‖2 + (1− p̃)2
2SB

d
∑

j=1

∇jL(θ(t))

(

B
∑

i=1

C
(i,t)
j,1

)

+
(1− p̃)2
SB

d
∑

j=1

∇jL(θ(t))

B
∑

i=1

E
ξ
(t)
i

[ξ
(t)
i ]

+
(1− p̃)2
SB

d
∑

j=1

∇jL(θ(t))

B
∑

i=1

E
ξ
(t,j)
i

[ξ
(t,j)
i ] +

(1− p̃)2
SB

d
∑

j=1

∇jL(θ(t))

B
∑

i=1

E
ξ
(t)
i ξ

(t,j)
i

[ξ
(t)
i ξ

(t,j)
i ]

+
d

2SB2

(

B
∑

i=1

C
(i,t)
j,1

)2

+
1

2S

d
∑

j=1

E
ξ
(t)
i

[ξ
(t)
i ] +

1

2S

d
∑

j=1

E
ξ
(t,j)
i

[ξ
(t,j)
i ] +

1

2S

d
∑

j=1

E
ξ
(t)
i ,ξ

(t,j)
i

[ξ
(t)
i ξ

(t,j)
i ]

+
1

2SB2

d
∑

j=1

B
∑

i=1

E
ξ
(t)
i

[(ξ
(t)
i )2] +

1

SB2

d
∑

j=1

B
∑

i=1

(

E
ξ
(t)
i ,ξ

(t,j)
i

[ξ
(t)
i ξ

(t,j)
i ] + E

ξ
(t)
i ,ξ

(t,j)
i

[(ξ
(t)
i )2ξ

(t,j)
i ]

)
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+
1

2SB2

d
∑

j=1

B
∑

i=1

E
ξ
(t,j)
i

[(ξ
(t,j)
i )2] +

1

SB2

d
∑

j=1

B
∑

i=1

E
ξ
(t)
i ,ξ

(t,j)
i

[ξ
(t)
i (ξ

(t,j)
i )2]+

+
1

2SB2

d
∑

j=1

B
∑

i=1

E
ξ
(t)
i ξ

(t,j)
i

[(ξ
(t)
i )2(ξ

(t,j)
i )2]

≤ (1− p̃)4
2S

‖∇L(θ(t))‖2 + (1− p̃)2G
2S

max
i,j

C
(i,t)
j,1 +

d

2S
max
i,j

(

C
(i,t)
j,1

)2

+
dC

(t)
j,4,max

2SB
+
dC

(t,j)
j,5,max

2SB
+
dC

(t)
j,4,maxC

(t,j)
j,5,max

2SB
. (E17)

The first and second inequalities uses C
(i,t)
j,2 ≤ 1, C

(i,t)
j,3 ≤ 1, E[ξ

(t)
i ] = 0, E[ξ

(t,j)
i ] = 0, and −G/d ≤ ∇jL(θ(t)) ≤ G/d1015

supported by G-Lipschitz property. The term C
(t)
j,4,max refers to C

(t)
j,4,max = maxi C

(i,t)
j,4 . Similarly, the term C

(t,j)
j,5,max1016

refers to C
(t,j)
j,5,max = maxi C

(i,t)
j,5 .1017

Since Theorem 4 indicates that1018

C
(t)
j,4,max ≤

(1− p̃)
(

1− 2p̃Tr(Π)
D

)

K
+ p̃

Tr(Π)

DK
≤ 2

K
,

and1019

C
(t,j)
j,5,max ≤

(1− p̃)
(

1− 2p̃Tr(Π)
D

)

(Ŷ
(t,+j)
i + Ŷ

(t,−j)
i ) + 2p̃Tr(Π)

D

K
≤ 4

K
,

we obtain

1

2S

d
∑

j=1

E
ξ
(t)
i ,ξ

(t,j)
i

[

(

∇jL̄(θ(t))
)2
]

≤ (1− p̃)4
2S

‖∇L(θ(t))‖2 + (1− p̃)2G
2S

max
i,j

C
(i,t)
j,1 +

d

2S
max
i,j

(

C
(i,t)
j,1

)2

+
6dK + 8d

2SBK2
. (E18)

1020

F. Proof of Theorem 21021

To ease the understanding, we first explain how to use variational quantum circuits of QNN to conduct a similar1022

task of a QSQ oracle in Subsection F 1. We then complete the proof of Theorem 2 in Subsection F 2.1023

1. The similarity between the restricted QSQ oracle and QNN1024

Let us first recap the formal definition of the general QSQ learning model, i.e., the quantum example and the QSQ1025

oracle.1026

Definition 2 (Quantum example). Let c∗ : {0, 1}N → {0, 1} be an unknown concept sampled from a known concept1027

class C ⊆ {c : {0, 1}N → {0, 1}}. Denote the labeled examples as (x, c∗(x)), where x is drawn from some unknown1028

distribution D : {0, 1}N → [0, 1]. The quantum example is defined as1029

|ψc∗〉 =
∑

x∈{0,1}N

√

D(x) |x〉 |c∗(x)〉 . (F1)

Definition 3 (QSQ oracle, [36]). A quantum statistical query oracle for some c∗ ∈ C receives as inputs a tolerance1030

τ ≥ 0 and an observable M ∈ (C2)⊗N+1 × (C2)⊗N+1 with Tr(M) ≤ 1, and outputs a number α satisfying1031

|α− 〈ψc∗ |M|ψc∗〉 | ≤ τ ,

where the quantum example ψc∗ is defined in Eqn. (F1).1032
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The efficiency of QSQ learning model is quantified by the ε-learnirng.1033

Definition 4 (ε-learning). Let C ⊆ {c : {0, 1}N → {0, 1}} be a concept class and D : {0, 1}N → [0, 1] be a distribution.1034

We say that C can be ε-learned in the QSQ model with Q queries, if there is an algorithm A such that for every c∗ ∈ C,1035

A makes at most Q queries to the QSQ oracle and outputs a hypothesis h satisfying Prx∼D[h(x) 6= c∗(x)] ≤ ε.1036

The above definitions indicate that a QSQ oracle takes the tuple {|ψc∗〉 ,M, τ}, and returns a classical result α that1037

estimates the target result 〈ψc∗ |M|ψc∗〉 within the threshold τ . Moreover, ε-learning implies that the QSQ algorithm1038

adaptively chooses a sequence of {|ψc∗〉 ,Mi, τi}i and exploits the received feedback {αi}i to obtain the hypothesis h.1039

As proved in [36], there exists a poly(N) queries QSQ algorithm with tolerance τ = Õ(ε) that ε-learns some concept1040

classes under the uniform distribution, while these concept classes are computational hard for SQ models.1041

Lemma 8 (Modified from Lemma 4.2, 4.3, and 4.5 in [36]). Let C be the concept class of parities, k-juntas, or1042

poly(N)-sized DNFs (Disjunctive Normal Forms), then there exists a poly(N)-query QSQ algorithm with tolerance1043

τ = Õ(ε) that ε-learns C under the uniform distribution. All of these concepts are computational hard for SQ models.1044

Here we propose a restricted QSQ learning model, motivated by the result of Lemma 8 such that the quantum1045

advantages achieved by QSQ learning model are based on the uniform distribution setting. In particular, we impose1046

two restrictions on the tuple {|ψc∗〉 ,M, τ} that is feeding into the QSQ oracle. As for the quantum example, we require1047

|ψc∗〉 to follow the the uniform distribution, i.e., let c∗ : {0, 1}N → {0, 1} be an unknown concept sampled from a1048

known concept class C, the labeled examples as (x, c∗(x)) is drawn from the uniform distribution D with1049

|ψc∗〉 =
∑

x∈{0,1}N

√

D(x) |x〉 |c∗(x)〉 =
∑

x∈{0,1}N

1√
2N
|x〉 |c∗(x)〉 . (F2)

Second, we require that the observable M can be implemented by using at most poly(N) single and two qubits gates.1050

We define a restricted QSQ oracle that can only query these restricted quantum examples and observables.1051

Definition 5 (Restricted QSQ oracle). A restricted quantum statistical query oracle for some c∗ ∈ C receives a1052

tolerance τ ≥ 0 and an observable M ∈ (C2)⊗N+1 × (C2)⊗N+1 with Tr(M) ≤ 1 as inputs, and outputs a number α1053

satisfying1054

|α− 〈ψc∗ |M|ψc∗〉 | ≤ τ ,

where |ψc∗〉 is the restricted quantum example defined in Eqn. (F2) and the observable M can be implemented using at1055

most O(poly(N)) single and two qubits gates.1056

Supported by Definition 5, the criteria to quantify the efficiency of the restricted QSQ learning model is as follows.1057

Definition 6 (restricted ε-learning). Let C ⊆ {c : {0, 1}N → {0, 1}} be a concept class and D be a uniform distribution.1058

We say that C can be ε-learned in the restricted QSQ model with Q queries, if there is an algorithm A such that1059

for every c∗ ∈ C, A makes at most Q queries to the restricted QSQ oracle and outputs a hypothesis h satisfying1060

Prx∼D[h(x) 6= c∗(x)] ≤ ε.1061

We remark that the proposed restricted QSQ learning model can also be used to achieve quantum advantages in1062

learning parities, k-juntas, or poly(N)-sized DNFs, supported by Lemma 8 and the fact that the gate complexity to1063

implement the related M is poly(N) [36].1064

In the following, we will demonstrate that the quantum examples and observables of the restricted QSQ oracle1065

can be effectively represented by the variational quantum circuits used in QNN. In particular, the flexibility of QNN1066

allows us to specify a quantum observable as the quantum measurement conducted in the variational quantum circuit1067

[49, 62, 64]. This implies that the observable M that can be constructed by O(poly(N)) quantum gates, as formulated1068

in Definition 5, can be effectively represented by QNN. Moreover, the restricted quantum example given in Eqn. (F2)1069

can also be efficiently prepared by the quantum encoding circuit Ux, since |ψc∗〉 only involves the bit-string encoding1070

and its probability amplitude satisfies
√

D(x) = 1√
2N

for all x. As explained in Appendix B, the flexibility of Ux1071

allows the efficacy to prepare the restricted quantum example by leveraging Hadamard gates and two qubits gates,1072

e.g., CNOT gates. For example, the gate complexity of Ux to prepare |ψc∗〉 that is employed to accomplish parity1073

learning is at most 2N , where N Hadamard gates separately apply to N qubits, followed by at most N CNOT gates1074

to label c∗(x) [65, 66].1075

The efficiency of exploiting the variational quantum circuit to simulate the restricted quantum example |ψc∗〉 and1076

M ensures the similar statistical property between noisy QNN and the restricted QSQ oracle. Specifically, when the1077

number of measurements goes to infinity, the noisy QNN returns a classical result that estimates the target result within1078
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the a certain error. Let the encoding circuit Ux prepare the state |ψc∗〉 and the quantum measurement constructed1079

from M. Under the depolarization noise, the expectation value of quantum measurements of the noisy QNN yields1080

ν̃ = Tr(MNp̃(|ψc∗〉 〈ψc∗ |)) = (1− p̃)ν + p̃
Tr(M)

2N+1
, (F3)

where p̃ is defined in Eqn. (D13) and ν = 〈ψc∗ |M|ψc∗〉, supported by Lemma 6. Combining Definition 6 and Eqn. (F3),1081

it is easy to see the similar behavior between a QSQ oracle and a noisy QNN, where both of them can only output the1082

estimates of statistical properties of the labeled examples.1083

We end this subsection by addressing the potential to apply noisy QNN to simulate the general QSQ oracle. Recall1084

that a major difference between the restricted and general setting is the uniform distribution setting exerting on the1085

quantum example. This restriction ensures that Ux can efficiently load the quantum example into QNN. Besides the1086

uniform setting, Ux has the capability of loading quantum example under certain non-uniform distribution D with1087

O(poly(N)) gate complexity. A representative example is quantum generative adversarial network, which encodes1088

the generic probability distributions that implicitly given by data samples into quantum states [67]. In other words,1089

it is possible to employ noisy QNN to simulate a more general QSQ oracle that covers a large class of distributions.1090

However, connecting noisy QNN with the restricted QSQ oracle in Definition 6 is sufficient to answer the main focus1091

of this study, i.e., what concept classes can be efficiently learned by noisy QNN that are computational hard for1092

classical models, since the concept classes that separates QSQ learning with SQ learning are all based on the uniform1093

distribution setting.1094

2. proof of Theorem 21095

Proof of Theorem 2. Following Definition 6, we observe that the restricted QSQ algorithm can be efficiently simulated1096

by QNN once each query {|ψc∗〉 ,Mi, τi}i can be efficiently simulated by the variational quantum circuits of QNN, i.e.,1097

given Mi, and τi, the quantum circuit returns an estimated result that ε-close to ν = 〈ψc∗ |M|ψc∗〉 by querying |ψc∗〉 at1098

most O(poly(N)) times. In the following, we exploit the results obtained in Subsection F 1 to prove that each query to1099

the restricted QSQ oracle can be efficiently simulated by noisy QNN up to a polynomial overhead.1100

Without loss of generality, we set the tuple fed into the QSQ oracle as {|ψc∗〉 ,M, τ}, where |ψc∗〉 is the restricted1101

quantum example given in Eqn. (F2). In this way, as shown in Eqn. (F3), the expectation value of quantum measurements1102

for noisy QNN under the depolarization noise setting Np̃ yields ν̃ = (1 − p̃)ν + p̃Tr(M)
2N+1 with ν = 〈ψc∗ |M|ψc∗〉. In1103

addition, the measurement outcome Vk is a random variable that satisfies Vk ∼ Ber(ν̃).1104

By the Chernoff-Hoeffding bound for real-valued variables, we obtain the relation between the sample mean1105

Ỹ = 1
K

∑K
k=1 Vk with K measurements and the target result ν̃, i.e.,1106

Pr

(∣

∣

∣

∣

∣

1

K

K
∑

i=1

Vk − ν̃
∣

∣

∣

∣

∣

≥ δ

2

)

≤ 2 exp(−δ2K/2) . (F4)

Denote b = 2 exp(−δ2K/2). Eqn. (F4) implies that, when K = 2 ln(2/b)
δ2 , with probability at least 1 − b, we have1107

| 1K
∑K

i=1 Vk − ν̃| ≤ δ/2.1108

Moreover, supported by Eqn. (F3), the distance between the result ν (i.e., the target value of the restricted QSQ1109

oracle) and the shifted expectation value ν̃ follows1110

|ν − ν̃| ≤ p̃ν + p̃
Tr(M)

2N+1
. (F5)

In conjunction with the above two equations, we obtain, with probability at least 1− b,1111

∣

∣

∣

∣

∣

1

K

K
∑

k=1

Vk − ν
∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

1

K

K
∑

k=1

Vk − ν̃ + ν̃ − ν
∣

∣

∣

∣

∣

≤ p̃ν + p̃
Tr(M)

2N+1
+
δ

2
≤ p̃(ν + 1

2N+1
) +

δ

2
, (F6)

where the last equality uses Tr(M) ≤ 1 given in Definition 5.1112

Note that, to guarantee that QNN can simulate the restricted QSQ oracle as formulated in Definition 5, the rightest1113

term in Eqn. (F6) should be upper bounded by τ , i.e.,1114

∣

∣

∣

∣

∣

1

K

K
∑

k=1

Vk − ν
∣

∣

∣

∣

∣

≤ p̃(ν + 1

2N+1
) +

δ

2
≤ 5

4
p̃+

δ

2
≤ τ ,
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where the last second inequality uses the upper bounds ν ≤ 1 and 1
2N+1 ≤ 1

4 . Note that the above inequality implicitly1115

requests that p̃ < 4
5 , since the threshold τ is in the range (0, 1). After simplification, we have1116

δ ≤ 2(τ − p̃5
4
) .

In other words, when δ = 2(τ − p̃ 5
4 ), with probability at least 1− b, the sample mean of noisy QNN satisfies1117

∣

∣

∣

∣

∣

1

K

K
∑

k=1

Vk − ν
∣

∣

∣

∣

∣

≤ τ , (F7)

which accords with the output of the restricted QSQ oracle.1118

We now quantify the number of measurements K to promise Eqn. (F7). Recall K = 2 ln(2/b)
δ2 . By employing the1119

explicit form of δ, we obtain1120

K =
ln(2/b)

2(τ − p̃ 5
4 )

2
.

The achieved result indicates that the successful probability of noisy QNN (i.e., 1 − 2b) to estimate the restricted1121

QSQ oracle can be exponentially improved by linearly increasing the number of measurements. Moreover, the term1122

1
(τ−p̃ 5

4 )
implies that the lower gate noise and lower circuit depth result in the smaller number of measurements, which1123

guarantees the efficiency of noisy QNN to simulate the restricted QSQ oracle.1124

G. Generalization the results to more general quantum channels1125

Here we generalize the achieved results in main text from the depolarization channel to a more general channel Ep1
.

Specifically, after applying Ep1
to each circuit depth, the generated state of QNN follows

Ep1
(UL(θ)...U2(θ)Ep1

(U1(θ)ρU1(θ)
†)U2(θ)

†...UL(θ)
†)

=(1− p1)LQ (U(θ)Ux) ρ (U(θ)Ux)
†
+ p′2κ+ p

LQ

3

ID

D
, (G1)

where (1 − p1)
LQ + p′2 + p

LQ

3 = 1, and κ is a mixed state that can either be correlated or uncorrelated with1126

(U(θ)Ux) ρ (U(θ)Ux)
†
. Without confusion, we set p̃ = 1− (1− p1)LQ . It is worth noting that the quantum channel Ep1

1127

formulated above is sufficiently universal, which closely relates to most Pauli channels associated with the depolarization1128

channel [38, 68].1129

The outline of this section is as follows. In Subsection G 1, we discuss the utility bounds of QNN under ERM. Then,1130

in Subsection G2, we quantify the generalization property of QNN.1131

1. Utility bounds of QNN1132

We now employ the noisy quantum model, i.e., the right hand side of Eqn. (G1), to establish the relation between1133

the estimated gradients ∇jL̄i(θ
(t)) and the analytic gradients ∇jLi(θ

(t)). Recall that1134

∇jL̄i(θ
(t)) = (Ȳ

(t)
i − Yi)

(

Ȳ
(t,+j)
i − Ȳ (t,−j)

i

)

+ λθ
(t)
j ,

where Ȳ
(t)
i =

∑K
k=1 V

(t)
k /K and Ȳ

(t,±j)
i =

∑K
k=1 V

(t,±j)
k /K refer to the sample means when feeding θ(t) and θ(t,±j)

1135

into the trainable circuit. As with depolarization channel, the sample mean Ȳ
(t)
i or Ȳ

(t,±j)
i is a random variable follows1136

certain distribution. In particular, following the notations used in Theorem 4, the mean and variance of Ȳ
(t)
i follows1137







ν(t) = (1− p̃)Ŷ (t)
i + p′2 Tr(Πκ

(t)) +
p
LQ
3

2 ,

σ(t) = −
(

(1−p̃)Ŷ
(t)
i +p′

2 Tr(Πκ(t))
)2

K +
(1−p

LQ
3 )

(

(1−p̃)Ŷ
(t)
i +p′

2 Tr(Πκ(t))
)

K +
p
LQ
3

2 −
(p

LQ
3 )2

4 .
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Similarly, the mean and variance of Ȳ
(t,±j)
i follows1138







ν(t,±j) = (1− p̃)Ŷ (t,±j)
i + p′2 Tr(Πκ

(t,±j)) +
p
LQ
3

2 ,

σ(t,±j) = −
(

(1−p̃)Ŷ
(t,±j)

i +p′
2 Tr(Πκ(t,±j))

)2

K +
(1−p

LQ
3 )

(

(1−p̃)Ŷ
(t,±j)

i +p′
2 Tr(Πκ(t,±j))

)

K +
p
LQ
3

2 −
(p

LQ
3 )2

4 .

By expanding the sample means using their explicit forms as shown above, we obtain the relation between the estimated
and analytic gradients, i.e.,

∇jL̄i(θ
(t)) = (1− p̃)2∇jLi(θ

(t)) + C
(i,t)
j,1 + ς

(t,j)
i , (G2)

where ς
t,j
i = C

(i,t)
j,2 ξ

(t)
i + C

(i,t)
j,2 ξ

(t,j)
i + ξ

(t)
i ξ

(t,j)
i , and two random variables ξ

(t)
i and ξ

(t)
i have zero means and their1139

variances are C
(i,t)
j,4 and C

(i,t)
j,5 , respectively. The explicit formula of the five parameters {C(i,t)

j,a }ta=1 is1140
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


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C
(i,t)
j,1 =

(

p′2 Tr(Πκ
(t)) +

p
LQ
3

2 − p̃Yi
)

(1− p̃)(Ŷ (t,+j)
i − Ŷ (t,−j)

i )

+p′2(1− p̃)(Ŷ (t)
i − Yi)(Tr(Πκ(t,+j))− Tr(Πκ(t,−j)))

+

(

p′2 Tr(Πκ
(t)) +

p
LQ
3

2 − p̃Yi
)

(Tr(Πκ(t,+j))− Tr(Πκ(t,−j))) + (1− (1− p̃)2)λθ(t)
j ,
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(

(1− p̃)(Ŷ (t,+j)
i − Ŷ (t,−j)

i ) + p′2(Tr(Πκ
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,
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(i,t)
j,3 =
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i − Yi) +

(

p′2 Tr(Πκ
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p
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3
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,
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j,4 = −

(

(1−p̃)Ŷ
(t)
i +p′

2 Tr(Πκ(t))
)2

K +
(1−p

LQ
3 )

(

(1−p̃)Ŷ
(t)
i +p′

2 Tr(Πκ(t))
)

K +
p
LQ
3

2K −
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3 )2

4K ,

C
(i,t)
j,5 = −

(

(1−p̃)Ŷ
(t,+j)

i +p′
2 Tr(Πκ(t,+j))

)2

K −
(

(1−p̃)Ŷ
(t,−j)

i +p′
2 Tr(Πκ(t,−j))
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K
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LQ
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(

(1−p̃)(Ŷ
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i −Ŷ
(t,−j)

i )+p′
2(Tr(Πκ(t,+j))−Tr(Πκ(t,−j)))

)

K +
p
LQ
3

K − (p
LQ
3 )2

2K .

We next use the relation between the estimated and analytic gradients to separately quantify the utility bounds R11141

and R2 of QNN under the noisy channel Ep1 setting.1142

Utility bound R1. As with Eqn.(E7), with taking expectation over ξ
(t)
i and ξ

(t,j)
i , we obtain

E
ξ
(t)
i ,ξ

(t,j)
i

[L(θ(t+1))− L(θ(t))]

≤− 1

S
(1− p̃)2‖∇L(θ(t))‖2 + G

2S

(

1

B

B
∑

i=1

C
(i,t)
j,1

)

+
1

2S

d
∑

j=1

E
ξ
(t)
i ,ξ

(t,j)
i

[

(

∇jL̄(θ(t))
)2
]

, (G3)

where the inequality employs E[ξ
(t)
i ] = 0, E[ξ

(t,j)
i ] = 0, and −G/d ≤ ∇jL(θ(t)) ≤ G/d.1143

For the term 1
2S

∑d
j=1 Eξ

(t)
i ,ξ

(t,j)
i

[
(

∇jL̄(θ(t))
)2
] in the above equation, its upper bound satisfies

1

2S

d
∑

j=1

E
ξ
(t)
i ,ξ

(t,j)
i

[

(

∇jL̄(θ(t))
)2
]

≤ (1− p̃)4
2S

‖∇L(θ(t))‖2 + (1− p̃)2G
2SB

B
∑

i=1

C
(i,t)
1

+
d

2SB2

(

B
∑

i=1

C
(i,t)
1

)2

+ d
σ
(t)
max + σ

(t,j)
max + σ

(t)
maxσ

(t,j)
max

SB
, (G4)

where the first and second inequalities uses C
(i,t)
2 ≤ 2, C

(i,t)
3 ≤ 2, E[ξ

(t)
i ] = 0, and E[ξ

(t,j)
i ] = 0. The term σ

(t)
max refers1144

to σ
(t)
max = maxi σ

(t)
i ≤ 3/K. Similarly, the term σ

(t,j)
max refers to σ

(t,j)
max = maxi σ

(t,+j)
i + σ

(t,−j)
i ≤ 3/K.1145

In conjunction with the above two equations, we achieve

E
ξ
(t)
i ,ξ

(t,j)
i

[L(θ(t+1))− L(θ(t))]

≤− 1

2S
(1− p̃)2‖∇L(θ(t))‖2 + (2G+ d)(5 + 3(1− (1− p̃)2)λπ)

2S
+

6dK + 9d

SBK2
, (G5)
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where the inequality uses C
(i,t)
j,1 ≤ 5 + 3(1− (1− p̃)2)λπ.1146

After rewriting and taking induction, we have1147

‖∇L(θ(t))‖2 ≤ 2S
1 + 9λd

T (1− p̃)2 +
(2G+ d)(5 + 3(1− (1− p̃)2)λπ)

(1− p̃)2 +
12dK + 18d

(1− p̃)2BK2
. (G6)

With setting T →∞, we achieve the utility bound R1, i.e.,1148

R1 ≤ Õ
(

1

(1− p̃)2 , d,
1

BK

)

. (G7)

Utility bound R2. With combining Eqn. (G5) and PL condition, we obtain

E
ξ
(t)
i ,ξ

(t,j)
i

[L(θ(t+1))− L(θ(t))]

≤− µ(1− p̃)2
S

(L(θ(t))− L∗) +
(2G+ d)(5 + 3(1− (1− p̃)2)λπ)

2S
+

6dK + 9d

SBK2
. (G8)

After rewriting and induction, we have

Eς(t) [L(θ(T ))]− L∗ ≤ 15λd exp

(

−µ(1− p̃)
2T

S

)

+ T
(2G+ d)(5 + 3(1− (1− p̃)2)λπ)

2S
+ T

6dK + 9d

SBK2
. (G9)

With setting T = O
(

S
µ(1−p̃)2 ln

(

30λdSBK2

(2G+d)(5+3(1−(1−p̃)2)λπ)BK2+12dK+18d

))

, the utility bound is1149

R2 ≤ O
(

1

(1− p̃)2 ,
1

SBK2
, d

)

. (G10)

2. Generalization property of (noisy) QNN1150

The generalization of Theorem 2. Analogous to the depolarization noise setting, the distance between the1151

target result ν = Tr(M |ψc∗〉 〈ψc∗ |) and the shifted expectation value ν̃ = (1 − p̃)ν + p′2 Tr(Mκ) + p
LQ

3 Tr(M)/D of1152

QNN under the noisy channel Ep1
follows |ν − ν̃| ≤ p̃ν + p′2 + p

LQ

3 /D. Then by employing Chernoff-Hoeffding bound,1153

we achieve, with probability at least 1− 2 exp(−δ2n/2),1154
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With setting δ = 2(τ − p̃ν − p′2 − p
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3 /D), the relation between the number of measurements K and the successful1155

probability b obeys1156
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After simplification, we conclude that, when p̃ ≤ τ−p′
2−

p
LQ
3
D

− δ
2

ν (to promise the existence of the feasible solution),1157

with the successful probability at least 1− b, the required number of measurements to attain
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Figures

Figure 1

Illustration of DNN and QNN. The left and right panel shows DNN and QNN, respectively. For DNN, the
feature embedding layers Fx(.), which contains a sequence of operations with the arbitrary combination
such as convolution and attention, maps the input ‘0’ to the feature space. Wl(.) is the l-th fully-connected
layer. For QNN, an encoding quantum circuit Ux maps the classical input ‘0’ to the quantum feature
space. Ul(θ) is the l-th trainable quantum circuit. Classical information for optimization is extracted by
quantum measurements.

Figure 2

The implementation of quantum circuits and the simulation results on hand-written digit dataset. The
lower left panel illustrates the original and reconstructed training examples, as highlighted by the blue



and gray regions, respectively. The upper left panel demonstrates the implementation of data encoding
circuit and trainable circuit used in QNN. The label ‘x3’ and ‘xL’ means repeating the quantum gates in
blue and brown boxes with 3 and L times, respectively. The lower center panel, highlighted by the yellow
region, shows the training loss under different hyper-parameters settings. In particular, the label
‘Loss_baseline_dep20’ (‘Loss_baseline_dep5’) refers to the obtained loss under the setting L = 20 (L = 5),
p = 0, and K ! 1, where L, p, and K refer to the circuit depth, depolarization rate, the number of
measurements to estimate expectation value used in QNN, respectively. Similarly, the label
‘Loss_QNN_dep20’ (‘Loss_QNN_dep5’) refers to the obtained loss of QNN under the setting L = 20 (L = 5),
p = 0:0025, K = 20. The upper right and lower right panels separately demonstrate the training accuracy
and test accuracy of the quantum classi�ers with different hyper-parameters settings.
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