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By substitution,

[f-;]T = Gaa*

exactly, and the numerical expression is

T = 0.297,556,782 Gaa4

which differ slightly from St. Venant's result of 0.296 or 0.2966.2

2The value 0.296 is from the table in S. Timoshenko's Theory of elasticity, p. 250, 1st ed., 2nd and 8th
impression (1933 and 1934), McGraw-Hill; while from the datum given in I. Todhunter and K. Pearson's
A history of the theory of elasticity and of the strength of materials, vol. II, part I, p. 193, we have

T = 0.3776A/ = 0.3776 X Ga X Oa2)/2 X a2/2 = 0.29666W.

A NOTE ON MY PAPER

ON STEADY LAMINAR TWO-DIMENSIONAL JETS IN COMPRESSIBLE
VISCOUS GASES FAR BEHIND THE SLIT*

Quarterly of Applied Mathematics, 7, 313-323 (1949)
By M. Z. KRZYWOBLOCKI (University of Illinois)

Determination of the constant of integration for the temperature distribution (p.
317, eq. 25) from the condition that that total flux of enthalpy across jet is alike at all
cross-sections restricts solution to small Mach numbers (if the comparison cross-section
is close to the slit, as pointed out by A. H. Shapiro, Appl. Mech. Rev. Ill (1950) p. 415,
No. 2718) or to high Mach numbers (if the comparison section is far from the slit). To
take into account all the relative cases, that constant may be determined from the
condition that the total flux (enthalpy plus kinetic energy) is alike at all cross-sections:

2 / (JcvT1 -f u\/2)ui{pa + pi) dy = const.
•>0

*Received Feb. 22, 1951.

ON THE LEAST EIGENVALUE OF HILL'S EQUATION*
By C. R. PUTNAM (The Institute for Advanced Study, Princeton)

The differential equation

*" + [^ + f(t)]x = 0, (1)
in which X is a real parameter and /(£), for — <<<<», is a real-valued, continuous,
periodic function (^0), arises in problems dealing with the propagation of waves in

*Received November 10, 1950.
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periodic media; cf., e.g., [1], [5], [6], For a proper choice of units on the t-axis it may be
supposed that f(t) has period 1 and hence possesses a Fourier series

f(t) ~ Z cne2Tint, (c_„ = c„). (2)
n = — od

There exists a sequence of finite intervals (the intervals of stability) it : \k ^ X ^ X*,
where X* < X* < Xt+1 and k = 1,2, • • • , such that (1) possesses, or fails to possess, a
solution x (f^O) which is bounded on — oo < < < co according as X does, or does not,
belong to the (closed) set S = Jt ; cf. [6], p. 16. It is known ([8], [3]) that the set »S
is identical with the invariant spectrum (Weyl [7], p. 251) associated with the differ-
ential equation (1), on either the full line —oo < i < ® or a half-line, say, 0 ^ t < <*>.

Let Xj be denoted by n so that n is the least point of the set S. Alternatively, n can
be defined by the requirement that (1) be oscillatory, that is, every solution of (1)
should possess an infinity of zeros on 0 ^ t < °o (or equivalently, in the present case,
on—oo < t < oo) whenever X > /x, and non-oscillatory whenever X < ju. (This twofold
characterization of ju holds also in the general case of (1) in which/ need not be periodic;
cf. [2].)

Wintner ([9], p. 116, and [10]) has obtained the following estimates of m in terms of
the Fourier coefficients of the function/(i) defined by (2):

oo

Co 2 | c„ | ^ fj. ^ Co . (3)
n = l

The present note will be devoted to the problem of obtaining other such estimates. A
formula for fi involving the Fourier coefficients of the given function f(t) and those of
arbitrary periodic functions, subject to certain specified conditions, will be deduced
(cf. (12) below); furthermore, as a corollary of this formula, upper bounds for ju, involving
not only c0 , as in (3), but also arbitrary coefficients cn , will be obtained. Specifically,
it will be shown that

JK g T2N2 - Co + 9t(c,), N = 1, 2, • • • , (4)

where 9?(c) denotes the real part of a complex number c. In case f(t') satisfies

-/(0 = f(t + c),
for some real number c, as, e.g., is the case if / = sin 2irt. it is clear from the properties
of n that (4) can be refined to

M ̂  t2N2 - Co - | 9t(cw) |, N = 1, 2, • • • .

2. It follows from [4] (cf. the Remark on p. 636) that p. satisfies

H = lim {g.l.b. I [ (x'2 — fx2) dt / [ x2 dt k
T-*m {. L Jt / Jt J)

(5)

where x(t) belongs to the class of functions, flT , which, on the half-line T ^ t < oo,
are real-valued, continuous, and have piecewise continuous first derivatives (with
respect to any finite subinterval of T ^ t < oo) and, furthermore, satisfy

co /*co

x2 dt < oo, / x'2 dt < oo . (6)
T J T
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Since/(0 is periodic, it is clear that the expression {• • •} occurring in (5) is independent
of T. Hence (5) remains valid if the limit sign is removed and the expression [ ■ • • ] of
(5) is evaluated only for functions of class fi0 •

Let x(t) denote any function of class O0 . Clearly, it is possible to define a function
y{t) in 00 , such that y(t) = 0 for sufficiently large t, and, in addition, is such that the
expression [ • • • ] of (5) (for T = 0) evaluated for y differs from the corresponding ex-
pression for x by less than an arbitrarily preassigned positive number. (In fact, since
Jo x2 dt < co, there exists a sequence of points tn such that tn —»<» and x(tn) —> 0, as
n —. Let z„(t), where n = 1, 2, • • • and f„ ^ t g t„ + 1, be a sequence of continuous
functions, with piecewise continuous first derivatives, such that z„(t„) — x(tn), zn(tn + 1) =
0, and

/» in +1 Mb+ 1

I z2 dt —> 0, / z'2
Jtn Jtn

dt —><*>, as tn

If yn = x on 0 ^ t ^ t„ , y„ = zn on tn ^ t g <„ + 1 and yn = 0 for tn + 1 ^ t < °o,
it is clear that yn satisfies the conditions claimed for the function y above, provided tn is
sufficiently large.) The corners of y can be "smoothed out" so that, in addition to the
properties required above, y has a continuous first derivative on 0 :£ t < <».

It follows from the above discussion that n can be defined by

g.l.b. £ (x'2 — fx2) dt Ix2 d<J, (7)

where x belongs to rQ , the set of (real-valued) functions x(t) (f^0) which possess con-
tinuous first derivatives on 0 ^ t ^ Q and satisfy a;(0) = x(Q) = 0, and Q is, for con-
venience, an arbitrary (variable) positive integer. Any function a; of r0 , and its de-
rivative x', can be uniformly approximated on 0 ^ t S Q by a sequence of trigonometric
polynomials of rQ , and their derivatives, respectively. Hence, m can be defined by
(7) where, now, x{t) is any function of the type

x(t) = E ane2T"l(iv0)!, a_n = an , E a, = 0, (8)
n= —N n=—N

and where N, P and Q denote arbitrary positive integers. The remainder of this section
will be devoted to obtaining a transcription of (7) in terms of the Fourier coefficients
of the given /, defined by (2), and the Fourier coefficients of the variable function x,
defined by (8).

Let P and Q denote relatively prime positive integers and note that (2) and the
first relation of (8) can be rewritten as

f(t) ~ E Cne2Tin,/0 and x(t) = £ Aj*in,/0, (9)
where

c„ = CQn and an = APn for n = 0, ±1, ••• , ±N. (10)

(By the uniqueness theorem for Fourier series, Cn = 0 if Q does not divide n and A„ = 0
if P does not divide n.) Since x2 = E Bne2*""/Q, where B„ = E^ AkAn-k , it follows
from the Parseval relation that

f0 a:2 dt = Q E I An I2, r x'2 dt = (4*70) E
Jq Jo

n
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and

[° fx2 dt= Q £ CnBn .
Jo

Thus, the expression [ • • ■ ] of (7) is equal to

[(4 t2/Q2) Z»2|4„ r-QZ c„( Z AkAn_)j / Q Z I A, I2. (11)

From the definition (10) of Cn and A„ , it is clear that, in the numerator of (11), the
n occurring in the first term may be replaced by Pn, while the n and k of the second
term may be replaced by Qn and Pk respectively, so that the summation occurring in
the second term of the numerator of (11) becomes CQn APkAQn.Pk). Since P
and Q are relatively prime, 22 k APkAQn-Pk = 0 unless n is a multiple of P. But A0Pn_Pk =
AptQn-k) ; hence, from (10), (11) and (7), there follows

M = g-l-b.|j^(4ir2P7Q2) \ an\2 - £ cPjy J2 akaQn /Zl«n|2 . (12)

In the expression (12), the arbitrary positive integers P and Q and the finite set of com-
plex numbers (i-N , (i-N+l , ■ ■ ■ , aN are subject to

N

(P, Q) = 1, a_„ = an and £ a» = 0. (13)
n=—N

(It is to be noticed that each summation of (12) extends over only a finite range.) The
formula (12), subject to (13), will be used in the next section to deduce (4).

3. Choose <h = 1/2i, a_! = —1/2i, an = 0 if n ^ ±1; let Q = I and let P denote
an arbitrary positive integer. (This selection corresponds to the choice x = sin 2irPt in
(8).) The expression {• • •} of (12) becomes x2(2P)2 — c0 + 3t(c 2p) so that the equation
(4) is proved for an arbitrary even positive integer N = 2P. Suppose now that N of
(4) is odd and choose P = N and Q = 2; let the an's be defined as before. Proceeding as
above one sees that relation (12) implies n g ir2N2 — c0 + 3f(cjv) and the proof of (4)
is complete.

Appendix

I. For computational purposes, one may easily verify that the formula (12) can
be modified to

M = -c0 + g.l.b (8t2P2/Q2) n2 | an
n = l

29?( Cpn( ^2 Q'kQ'Qn-
\ n=1 \ k

a2 + 2 "^2 dn

For appropriate choices of the sequences {a, j and the pairs of integers P and Q, subject
to (13), various upper bounds for ju, in addition to those of (4), may be readily obtained
from the above formula and (13). Non-trivial lower bounds for yu are not as easily ob-
tained, in this manner, corresponding to the presence of the symbol "g.l.b." in the
formulas for n.



314 NOTES [Vol. IX, No. 3

II. The question has been raised by Wintner [10] whether the constant 2 occurring
as the coefficient in (3) is the least value of a for which

yu > —Co — a ^ | c„ |2 (14)
n-1

holds for an arbitrary periodic function/(i) defined by (2). Although this question will
remain unanswered, it can easily be shown, as a consequence of (4), that a ^ 1/4ir2.
For, suppose (14) holds for all f(t) defined by (2); then, by (4), —a XXi | c„ |2 g
ir2N2 + 9?(cjv) holds for N = 1, 2, • • ■ . If cN is real, it follows that x2N2 + cN + ac£ S: 0;
hence, by a consideration of the discriminant of this last quadratic expression, 1 —
4air2N2 ^ 0. For N = 1, this implies a ^ 1/4x2, which was to be shown.
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A MODIFICATION OF SOUTHWELL'S METHOD*
By W. H. INGRAM (New York)

J. L. Synge1 has given a geometrical interpretation of Southwell's method of solution
of the problem Ax = b when A = (a,,) is symmetric and X) o-aXiX; is a positive
definite form. A modification of the method having application to the more general
case in which xATAx is a positive definite form makes use of the ellipsoids of the Gauss-
Seidel process.

For any vector x, there is an error e defined by the equation

Ax — b = e, (1)

therefore

(xAt - b)W(Ax - b) = eWe; (2)

*Received Jan. 2, 1951.
'J. L. Svnge, A geometrical interpretation of the relaxation method, Q. Appl. Math., 2, p. 87 (1944).


