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Abstract—We report that human walks performed in outdoor
settings of tens of kilometers resemble a truncated form of Levy
walks commonly observed in animals such as monkeys, birds
and jackals. Our study is based on about one thousand hours of
GPS traces involving 44 volunteers in various outdoor settings
including two different college campuses, a metropolitan area,
a theme park and a state fair. This paper shows that many
statistical features of human walks follow truncated power-law,
showing evidence of scale-freedom and do not conform to the
central limit theorem. These traits are similar to those of Levy
walks. It is conjectured that the truncation, which makes the
mobility deviate from pure Levy walks, comes from geographical
constraints including walk boundary, physical obstructions and
traffic. None of commonly used mobility models for mobile
networks captures these properties. Based on these findings, we
construct a simple Levy walk mobility model which is versatile
enough in emulating diverse statistical patterns of human walks
observed in our traces. The model is also used to recreate similar
power-law inter-contact time distributions observed in previous
human mobility studies. Our network simulation indicates that
the Levy walk features are important in characterizing the
performance of mobile network routing performance.

I. INTRODUCTION

Our purpose of studying human mobility patterns is their
use in simulating mobile networks of wireless devices car-
ried by people. As wireless devices are often attached to
humans, understanding their mobility patterns leads to more
realistic network simulation and more accurate understanding
of protocol performance. Commonly used mobility models
include random way point (RWP) or random walk models such
as Brownian motion and Markovian mobility. These models
are simple enough for theoretical analysis and experimental
simulation. However, there has been little statistical validation
of such models for accuracy in describing human mobility.
Biologists [1], [2], [3] have found that the mobility pat-

terns of foraging animals such as spider monkey, albatrosses
(seabirds) and jackals can be commonly described in what
physicists have long called Levy Walks. The term Levy walks
was first coined by Schlesinger et al. [4] to explain atypical
particle diffusion not governed by Brownian motion (BM). BM
characterizes the diffusion of tiny particles with a mean free
path (or flight) and a mean pause time between flights. A flight
is defined to be a longest straight line trip from one location to
another that a particle makes without a directional change or
pause. Einstein [5] first showed that the probability that such
a particle is at a distance r from the initial position after time
t has a Gaussian distribution and thus is proportional to

√
t,

i.e., the width or standard deviation of a Gaussian distribution.

The mean squared displacement (MSD), which is defined to
be the variance of the probability distribution, is proportional
to t. It is a manifestation of the central limit theorem (CLT)
as the sum of flight lengths follows a Gaussian distribution.
However, when flight lengths do not have a characteristic scale
- in other words, their second moment is not finite, the particles
are making Levy walks and may undergo atypical diffusion.
This implies that the MSD of particles making Levy walks
is proportional to tγ where γ > 1 – thus CLT does not
hold. Intuitively, Levy walks consist of many short flights and
exceptionally long flights that eliminate the effect of such short
flights. Sample trajectories of an object undergoing BM, Levy
walks and RWP are presented in Fig. 1 in which differences
in the patterns are visually evident.
In this paper, we study the statistical patterns of human

walks observed within a radius of tens of kilometers. We use
mobility track logs obtained from 44 participants carrying GPS
receivers from September 2006 to January 2007. The sample
settings where traces are obtained are two university campuses
(one in Asia and one in the US), one metropolitan area (New
York city), one State fair and one theme park (Disney World).
The participants walk most of times in these locations and may
also occasionally travel by bus, trolley, cars, or subway trains.
These settings are selected because they are conducive to
collecting GPS readings. Although the number of participants
is relatively small in our study, the total duration of tracks
taken over the five different sites are over 1000 hours, which
adds to the statistical significance of our findings.
From the data analysis of our traces, we find the followings:

• The mobility patterns of the participants in these outdoor
settings have features defining Levy walks; their flight
distributions and pause time distributions closely match
truncated power-law distributions. Their MSD also shows
significant influence of these mobility patterns.

• There exist some deviations from pure Levy walks occur-
ring due to various factors specific to human mobility in-
cluding geographical constraints such as roads, buildings,
obstacles and traffic. These deviations are manifested in
our traces in the form of flight truncations which may
make the flight distribution appear like heavy-tailed or
even short-tailed at times.

From these findings, we construct a simple Levy walk (LW)
mobility model that can be used for network simulation. LW
is shown to be versatile enough to emulate various statistical
features and those deviations observed in our traces when run
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(a) (b) (c)

Fig. 1. Sample trajectories of (a) Brownian motion, (b) Levy walk and (c)
Random way point

under similar geographical constraints. Using LW, we report
the followings:

• LW can reproduce similar power-law inter-contact time
(ICT) distributions of human walks observed in earlier
studies (e.g., [6]). This result is significant because ICT
is an important performance determinant of DTN (delay-
tolerant networks) routing performance and our model
provides some clues on what caused the power-law
tendency.

• The DTN network simulation using the model shows
unique routing performance characteristics unobserved
in RWP and BM: while RWP shows overly optimistic
routing performance because its high occurrences of
long flights intensify the chance of meeting destinations,
and BM shows overly pessimistic routing performance
because its high occurrences of short flights diminish the
chance of meeting destinations, LW shows performance
somewhere in-between the performance seen from these
two models. For instance, the tail distributions of routing
delays for LW is between those of RWP (very short)
and BM (very heavy), but the significant portion of long
flights in LW also causes similar drastic improvement
in routing delays as RWP when the amount of message
redundancy increases. We also found other unique perfor-
mance characteristics from MANET simulation, but due
to a space constraint, we report only DTN results. The
results on MANET simulation can also be found in our
full report [7].

We do not claim that human walks are Levy walks; al-
though our human mobility traces contain striking statistical
resemblances to Levy walks, there are still some significant
deviations between pure Levy walks and our human walks.
This point may be less relevant to our research. What is
most relevant, perhaps the biggest contribution of our work,
is to demonstrate the value of Levy walk models in recreating
similar statistical patterns observed in real world traces that
are important in characterizing the performance of network
routing protocols in mobile environments involving humans.
To the best of our knowledge, this is the first work that studies
the Levy walk nature of human walk mobility through real
walk trace data, and none of the existing mobility models used
for mobile network simulations captures this nature. This paper
is an extended abstract of our full report [7].

II. PRELIMINARY
Consider a 2-dimensional random walk defined by a se-

quence of steps that a walker makes. A step is represented by
a tuple S = (l, θ,∆tf ,∆tp) in which a walker makes a flight
followed by a pause: θ is the direction of that flight, l > 0
is the length of the flight, ∆tf > 0 is the time duration of
the flight or flight time, ∆tp ≥ 0 is the time duration of the
pause or pause time. At the beginning of each step, a walker
chooses a direction randomly from a uniform distribution of
angle within [0, 360], a finite flight time randomly based on
some distribution, and its flight length and pause time from
probability distributions p(l) and ψ(∆tp), respectively. During
a pause, a walker stays at the location where the current flight
ends. The time elapsed during a step is called a step time ∆ts,
which is the summation of its flight time and pause time. The
walker starts its first step at the origin at time t = 0.
After some time t, the distance dis(t) of the random walker

from the origin follows a Gaussian distribution with its width
proportional to

√
t if the variance of flight lengths and the

mean of step times are both finite. To see this, consider a one
dimensional random walk where p(l) has a finite variance σ2
and the step time distribution has a finite mean τ . The position
x of a random walker after N steps can be described as a total
sum of each flight. According to CLT, the scaled position y
after making N steps, x/

√
N , obtains a Gaussian probability

density function, fY (y,N), in the limit N →∞.

lim
N→∞

fY (y,N) = fY (y) =
1√
2πσ2

e−y
2/2σ2 (1)

From Eq. 1, we know that the position x of the random walker
also follows a scaled Gaussian distribution. Translating N into
t using N ≈ t/τ , we can see without much manipulation that
the probability density function fX(x, t) of position x after
time t has also a Gaussian form known as a diffusion equation:

fX(x, t) ∼ 1√
4πDt

e−
x2

4Dt (2)

where D = σ2/2τ , known as a diffusion constant. Since the
walker starts its walk from the origin, dis(t) = x. This type
of diffusion is called normal diffusion.
Eq. 2 indicates that the MSD of normal diffusion grows

linearly with time t. However, CLT is no longer valid if the
variance of flight lengths is infinite [8], [9]. One distribution
for which the variance diverges is an inverse power-law
distribution: p(l) ∼ 1

l1+α
, 0 < α < 2. The positions of

the random walker with such a distribution of flight lengths
converge to another distribution, called Levy stable distribution
with a coefficient α [9]. Such random walks are named as Levy
walks [4]. The scale-free distribution of flight lengths leads to
super-diffusion where MSD is proportional to tγ , γ > 1.
Levy walks are often accompanied by power law pause

times. Such a random walk is called Levy walk with trapping
where the motion can be either super-diffusive (i.e., γ > 1)
or sub-diffusive (i.e., γ < 1), depending on the distributions
of flight lengths and pause times. We denote a power law
distribution of pause times by ψ(∆tp) ∼ 1/∆tp1+β .
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Fig. 2. Sample GPS traces from the Disney World scenario.
Site (# of # of Duration (hour) Radius (km)
participants) traces min avg max min avg max
NCSU (20) 35 1.71 10.19 21.69 0.46 1.82 5.84
KAIST (4) 46 4.21 10.62 22.37 0.43 1.26 4.16
NYC (8) 30 1.23 9.34 22.66 0.37 4.18 6.98
DW (4) 15 4.43 8.68 13.20 0.39 1.67 4.43
SF (8) 8 1.81 2.57 3.12 0.22 0.28 0.34

TABLE I
STATISTICS OF COLLECTED MOBILITY TRACES FROM FIVE SITES.

III. MEASUREMENT METHODOLOGY

A. Data collection
Five sites are chosen for collecting human mobility traces.

These are two university campuses (NCSU and KAIST), New
York City, Disney World (Orlando), and North Carolina state
fair. Garmin GPS 60CSx handheld receivers are used for
data collection which are WAAS (Wide Area Augmentation
System) capable with a position accuracy of better than three
meters 95 percent of the time, in North America [10]. The GPS
receivers take reading of their current positions at every 10
seconds and record them into a daily track log. The summary
of daily traces is shown in Table I. The radius of each trace is a
half of the maximum distance that a participant travels during
a day. Fig. 2 shows sample GPS traces from the Disney World
scenario. Some more details about the participants in our study
can be found in [7].
All participants in the five scenarios are different individu-

als. Although each scenario, except NCSU, may not contain
many participants, the number of traces we obtain for each
scenario is quite large and the traces are taken for a long
period of time which provide enough data for statistical
significance. Moreover, we perform our analysis separately for
each scenario and we do not aggregate traces from different
scenario in our analysis. Nonetheless, as can be seen in the
ensuing analysis, many statistical similarities are found among
traces from different scenarios. Note that participants are not
necessary simultaneously there.

B. Trace analysis
From the traces, we extract the following data: flight length,

pause time, direction, and velocity. To get these data from the
traces, we map the traces into a two dimensional area (note
that the GPS receivers produce three-dimensional positions),
and to account for GPS errors, we clean the data as follows.
We recompute a position at every 30 seconds by averaging

t(1)
t(2)

t(3)

t(4)

t(6

t(7)

t(5)

Flight
length

w
q

r

Fig. 3. The rectangular model used to extract flight information from traces.

three samples over that 30 second period (note GPS samples
are taken at every 10 seconds). All the position information
discussed below is based on the 30-second average positions.
As participants may move outside a line of sight from

satellites or run out of battery, daily traces may contain
discontinuities in time. For instance, if a participant disappears
at time t (in seconds) at a position p from a trace and reappears
at time t+∆t at another position p , we use a similar method
used in [11] to remove the discontinuity. If the next position
recorded after the discontinuity is within a radius of 20 meters
and the time to the next position is within a day boundary, then
we assume that the participant walks to the next position from
position p at a walking speed of 1 m/s from time t+∆t− k
(k is the distance between p and p in meters) just before he
shows up again at position p in the trace and the remaining
time (∆t− k) is recorded as a pause at the location where he
disappeared. Otherwise, it is assumed that the trace has ended
at time t and a new trace starts at time t +∆t.
We consider that a participant has a pause if the distance that

he has moved during a 30 second period is less than r meters.
It is not straightforward to extract flight information from a
trace because people hardly move in a straight line. Combined
with GPS errors, this human “errors” make it difficult to
analyze flight data. To reduce noise due to these factors, we use
three different methods, namely rectangular, angle and pause-
based models. In the rectangular model, given two sampled
positions xs and xe taken at times t and t + ∆t (∆t > 0)
in the trace, we define the straight line between xs and xe to
be a flight if and only if the following conditions are met: (a)
the distance between any two consecutively sampled positions
between xs and xe is larger than r meters (i.e., no pause
during a flight), (b) when we draw a straight line from xs to
xe, the sampled positions between these two end points are
at a distance less than w meters from the line. The distance
between the line and a position is the length of a perpendicular
line from that position to the line, (c) for the next sampled
position xe after xe, positions and the straight line between
xs and xe does not satisfy conditions (a) and (b). An example
of the rectangular model is shown in Fig. 3. In that figure, the
straight line movement between positions sampled at times
t(1) and t(4) is regarded as one single flight between the two
positions because all the sampled positions between them are
inside of the rectangle formed by the two end points. In this
example, the flight time is 90 seconds because each sample is
taken at every 30 seconds. Both r and w are model parameters.
The angle model allows more flexibility in defining flights.
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In the rectangular model, a trip can be broken into small flights
even though consecutive flights have similar directions. This
implies even a small curvature on the road may cause multiple
short flights. To remedy this, the angle model merges multiple
successive flights acquired from the rectangular model into a
single long flight if the following two conditions are satisfied:
(a) no pause occurs between consecutive flights and (b)
the relative angle (θ as shown in Fig. 3) between any two
consecutive flights is less than aθ degree. A merged flight is
considered to be a straight line from the starting position of
the first flight to the ending position of the last flight and its
flight length is the length of that line. aθ is a model parameter.
The pause-based model can be viewed as an extreme case

of the angle model. The pause-based model merges all the
successive flights from the rectangular model into a single
flight if there is no pause between the flights. A merged flight
is defined in the same way as in the angle model. This model
produces significantly different trajectories from the actual
GPS trajectories, due to the abstraction. However, it represents
more faithfully human intentions to travel from one position
to another without much deviation caused by geographical
features such as roads, buildings and traffic.
The rectangular and pause-based models can be viewed as

special cases of the angle model with aθ = 0 and aθ = 180,
respectively. Fig. 4 presents sample traces produced by the
above three flight models (we only show a few scenarios due
to the space constraint; all the traces can be found in [7]).

IV. HUMAN MOBILITY
In this section, we analyze the statistical features of human

walks from our traces.

start

end

(a)

200m

start

end

(b)

200m

start

end

(c)

200m

start
end

200m

(j) start
end

200m

(k) start
end

200m

(l)

start

end

200m

(m)
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200m
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end

start

end

200m

(o)

Fig. 4. Traces from NCSU (a)-(c) , Disney World (j)-(l) and State fair (m)-
(o). The first column represents the rectangular model with r = w = 5, the
second column the angle model with aθ = 30, and the third column the
pause-based model.

Rectangular Angle Pause-based
aθ = 0 aθ = 180

NCSU 0.65 (0.03) 0.66 (0.02) 0.24 (0.08)
KAIST 1.11 (0.02) 1.07 (0.04) 0.51 (0.10)
NYC 0.45 (0.01) 0.59 (0.04) 0.23 (0.11)

Disney World 1.31 (0.04) 1.19 (0.13) 0.79 (0.08)
State fair 1.55 (0.34) 1.13 (0.18) 0.62 (0.29)

TABLE II
THE ESTIMATED α VALUES (WITH STANDARD DEVIATION) FITTED TO THE
LOG-LOG CCDF OF FLIGHT LENGTHS OBTAINED BY VARYING FLIGHT
PARAMETERS: r AND w FROM 2.5 METERS TO 10 METERS AND aθ FROM

15 DEGREES TO 90 DEGREES.

A. Flight length distribution

In this section, we study the distributions of flight lengths
from our traces. In generating its distribution for each scenario,
flight length samples from all the traces of the same site,
regardless of their participants, are aggregated together and
used in the same distribution. This “aggregation” is reasonable
because every trace obtained from the same site is subject
to the same or similar geographical constraints (i.e., roads,
obstacles, traffic, and buildings). The same technique is used
in other studies of Levy walks (e.g., [3]).
Fig. 5 shows the CCDF (complementary cumulative density

function) of flight lengths from each scenario. CCDF is known
to show the tail patterns of a distribution better than log-log
binned PDF plots. The PDF plots can also be found in our full
report [7]. We apply Maximum Likelihood Estimation (MLE)
to fit three known distributions, exponential, log-normal, and
truncated Pareto distributions [12] to the CCDF. The MLE
of the truncated Pareto is performed over the x-axis range
between 50 meter and the 99.9% quantile of each distribution
to isolate only the tail behavior. We observe that truncated
Pareto has the best fit among the three distributions in all
cases with truncation points over three-orders of magnitudes
(i.e., 1000 meters), which is a rule of thumb for power-law
distributions. To reduce the sensitivity on particular settings
of our flight models, we vary the values of r, w and aθ
from 2.5 meters to 10 meters and from 15 degrees to 90
degrees, respectively. We performed line fitting on the tails
of the resulting CCDF over several ranges. Table II presents
the average slope of the lines and their standard deviation of
the fitted lines. All the scenarios have power law slopes as
their slopes are larger than -2 (so α < 2).
Flight truncations are natural consequences of geographical

constraints including boundaries and physical obstructions,
and observation artifacts (e.g., we do not consider those flights
that leave the area boundary). All the distributions in Fig. 5
suffer from truncations of flights longer than a few kilometers
whose effects are shown as sharp drops in the frequency of
very long flights. This effect show up evidently with State fair
traces shown in Fig.5(e) where even short-tail distributions fit
well. The State fair traces are obtained from a highly confined
area of less than 350 meter radius (it is smallest among the
five sites). Thus, it is subject to more truncations.
The sharp drops at the tails give rise to a possibility that
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Fig. 5. The CCDF of flight lengths (aθ = 30). Various known distributions
are fitted using maximum likelihood estimation.

the flight distributions have long-tails but not power tails since
truncated power law distributions can be also fitted with non
power-law long-tail distributions such as Weibull [13]. (This
truncation problem also appears in earlier studies of animal
mobility, e.g., [3]. ) Our data is inconclusive in disproving
this. However, there are some hints that this may not be the
case. Fig. 5(f) shows the CCDF of flights as we increase the
flight angle in the flight model. We find that as the angle
increases, the distribution becomes flatter with a heavier tail.
Under the pause-based model (i.e., aθ = 180), it shows the
heaviest tail. While it seems obvious that the frequency of
longer flights increases with more angle tolerance in the flight
model, this phenomenon also reveals an important feature
in human mobility patterns: if we accept that humans tend
to pause for a non-zero period of time when they get to
a destination, the heavier-tail distribution of flights for the
pause-based model implies that it is human intention causing
the heavy-tail tendency, not the geographical constraints that
force humans to make short flights with no pause. This also
implies the scale-free tendency of the flight distribution: as we
increase the scale by removing constraints and boundaries or
increasing the observation area, we are expected to see longer
flights. It does not make sense that human intention to move
to a destination is bounded by some invisible boundaries as
in Weibull. The power-law tendency of human mobility over
a larger scale [14] also provides hints for this scale-freedom
and self-similarity. This human intention is not well described
by pure non-power-law long-tail distributions.
From the perspective of network simulations, power law

distributions are easy to scale because simulation setups
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Fig. 6. The pause time CCDF of human walkers in various scenarios along
with the MLE of various known distributions.

including geographical constraints may always change; for
instance, simulation can run in a small area as well as a large
area. It would be impossible to pick a different distribution for
different setups. Using power-law distributions while inducing
truncations as the natural consequence of adaptations to a
given set of geographical constraints offers a much more
convenient way of mobility simulation. Our data implies that
human intentions and activities for mobility, independent of
geographical constraints, are scale-free within our observation
scale. Although geographical constraints may vary in different
scenarios, this scale-free tendency is invariant. For network
simulations involving human-assisted mobile networks, while
human navigation around obstacles and road shapes is rel-
atively easy to program, the heavy-tail tendency of human
intentions must be inherent in the mobility model to accurately
depict human walk patterns.

B. Pause time distribution
Fig. 6 shows the CCDF of the pause-time distributions

extracted from our traces. The flight definitions do not make
impact on the shape of pause time distributions because they
differ mostly in the number of zero pause time. Even when
we vary r in the pause time definition, we do not see much
difference in the pause time distribution patterns. The plots
use the pause-based models. All the pause time distributions,
except that from State fair, show the best fit with truncated
Pareto. In most scenarios, truncations for pause times are less
emphatic than for flight lengths. However, State fair shows a
good fit with short-tail distributions as well. We conjecture
that this is because of the setting that consists of many small
shopping and game arcades close to each other. In this setting,
participants tend to make many short stops, and furthermore,
high traffic in the setting prevented them from staying at one
location for a long time.

C. Mean Squared Displacement
Scale-free mobility leads to abnormal diffusion where MSD

does not grow linearly with time. Measuring MSD from real
mobility traces is not straightforward because it is hard to
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Fig. 7. MSD from various settings.

define the “origin” from the traces. A common technique to
handle this is to take average of MSD values measured by
varying the origin among all locations that the walker has been
at [15], [16]. Specifically, for each scenario, we compute the
following. Given each trace T from that scenario that consists
of an ordered sequence of location samples (t0, posT (t0))
where posT (t0) is the two dimensional position of the walker
at time t0 in trace T , the MSD(t) of that scenario in terms of
time interval t is:

MSD(t) = T t0
|posT (t+ t0)− posT (t0)|2

N
(3)

posT (t+ t0)− posT (t0) is a vector subtraction and | · | is the
norm operator. N = T n(T ) where n(T ) is the total number
of eligible samples t0 from trace T . A sample taken at time
t0 is eligible if t0 + t < tTe where tTe is the time that the last
sample of trace T is taken. If t+ t0 > tTe , the contribution of
t0 to MSD(t) is zero. We compute MSD(t) directly from the
GPS traces mapped to the two dimensional space.
Fig. 7 plots the MSD(t) for all scenarios. The shape of

MSD(t) in a log-log scale can be fitted by two lines using least
squares matching. From the plots, we can see that up to about
30 minutes, our participants make super-diffusion (γ > 1.2)
and after that, they make sub-diffusion (γ < 0.9). Truncated
Levy walks are known to have this pattern of MSD [16].
The change in the diffusion rates can be explained as

follows. As we increase time t, we are increasing the scale
of aggregation (note that posT (t+t0)−posT (t0) is a result of
summing all the displacement vectors over the trace segment
between the two positions). When the scale is small, the effect
of truncations does not appear so long flights (relative to
that scale) frequently appear. However, as we increase the
scale, the truncation takes effect and the flights become close
to Gaussian. As we look at flights from a far distance, the
number of long flights visible at that distance decreases very
fast because of truncations. Thus, when t is small (in our case,
less than 30 minutes), the effect of heavy tailed distributions
shows up and the mobility appears super-diffusive. But when
t is large, the flight lengths follow Gaussian and the mobility

  0.01

  0.02

  0.03

30

210

60

240

90

270

120

300

150

330

180 0

(a) Direction distri-
bution (NYC)

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

 10  100  1000

A
v
e

ra
g

e
 v

e
lo

c
it
y
 (

k
m

/h
o

u
r)

Flight length (m)

Velocity

(b) Velocity distribution
(DW)

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  5  10  15  20

A
ut

o-
co

va
ria

nc
e

Lags

flight
direction

(c) Flight and direction au-
tocorrelations over a time
series (KAIST)

Fig. 8. Various statistics from human walk traces.

is close to that of BM. This point was observed in [16].
When Gaussian flight lengths are combined with power-law
pause times, it is shown in [17] that the mobility appears sub-
diffusive. Another significant factor causing the sub-diffusion
is the human tendency to return to the original starting
points. Humans are not truly making random walks and they
come home in the end of day or come back to one point
(like entrance and exit in Disney world). This “homecoming”
tendency slows down diffusion excessively, resulting in sub-
diffusion.

D. Directions, velocity and auto-correlation

We also study other statistics that are relevant to generating
human mobility models. Fig. 8 shows statistics on direction,
velocity and correlation of flight lengths and directions over
time series. These statistics are not explicitly specified in Levy
walk models, but are useful in generating human mobility
tracks for simulation.
From our data, we find that while most scenarios produce

close to a uniform distribution of turning angles [7], the
New York City traces have more bias in particular directions
mostly in 90 and 270 degrees. This pattern is likely related to
geographical artifacts since Manhattan tends to induce more
perpendicular directional changes. Fig. 8 (a) shows the turning
angle distribution from New York City traces produced based
on the angle model with aθ = 30. The angle distributions show
the effect of the shapes of geographical constraints. The speed
of human mobility has high correlation with flight lengths:
velocity increases as flight lengths increase. Constant velocity
is a common assumption in Levy walks. Fig. 8(b) depicts
the correlation between flight lengths and velocity. We also
measure auto-correlation of flight lengths and turning angles
over the time series of flight length and turning angle samples.
We find some auto-correlation of flight lengths over up to
10 sample lags while almost no auto-correlation of turning
angles (in some cases, we find some negative correlation
around one or two lags). We did not find any significant
difference of these statistics over different scenarios. Fig. 8(c)
shows representative auto-covariance coefficients. The signifi-
cant auto-correlation of flight lengths indicate that when small
flights are made, there are non-zero preference for similar
sizes near future. This pattern cannot be described by random
walks (including Levy walks) as they produce flights randomly
without any dependency on the past history of flights.
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V. MOBILITY MODEL AND PERFORMANCE EVALUATION
In this section, we devise a Levy walk (LW) mobility

model that can emulate the statistical features we observed
in the earlier sections. Using the model, we characterize
the performance of routing protocols when run in a mobile
network carried by humans.

A. Levy-walk (LW) Mobility Model
A step is represented by four variables, flight length (l),

direction (θ), flight time (∆tf ), and pause time (∆tp). Our
model selects flight lengths and pause times randomly from
their PDFs p(l) and ψ(∆tp) which are Levy distributions with
coefficients α and β, respectively. The following defines a
Levy distribution with a scale factor c and exponent α in terms
of a fourier transformation,

fX(x) =
1

2π

+∞

−∞
e−itx−|ct|

α

dt (4)

For α = 1, it reduces to a Cauchy distribution and for
α = 2, a Gaussian with σ =

√
2c. Asymptotically, for

α < 2, fX(x) can be approximately by 1
|x|1+α . We allow

c, α and β to be simulation parameters. We use a uniform
angle distribution as shown in most of our data and we do
not add any geographical artifacts (other than boundaries) in
our synthetic model. The flight speed of our model is set by
the following relation between flight times and flight lengths:
∆tf = kl1−ρ, 0 ≤ ρ ≤ 1 where k and ρ are constants. In
one extreme, when ρ is 0, flight times are proportional to
flight lengths and it models the constant velocity movement.
In another extreme, when ρ is 1, flight times are constant and
flight velocity is linearly proportional to flight lengths. In our
measurement data, the relation is best fitted with k = 18.72
and ρ = 0.79 when l < 500m, and with k = 1.37 and
ρ = 0.36 when l ≥ 500m.
Based on the above model, we generate synthetic Levy-

walk mobility tracks with truncation factors τl and τp for
flight lengths and pause times respectively in a confined
area as follows. First, the initial location of a walker is
picked randomly from a uniform distribution in the area. At
every step, an instance of tuple (l, θ,∆tf ,∆tp) is generated
randomly from their corresponding distributions. If l and ∆tp
are negative or l > τl or ∆tp > τp, then we discard the step
and regenerate another step. We repeat this process after the
step time ∆tf + ∆tp. Until the end of the simulation, we
generate the tuples repeatedly.

B. Model verification
In this section, we verify whether LW can synthetically

generate the statistical features we have observed in our traces.
Figs. 9 (a) and (b) show statistical distributions of flights
and pause-time matching each scenario (we do not show the
matching of NCSU data as it is similar to that of KAIST). To
produce these traces, we set the simulation area by the same
size of each corresponding scenario. We then vary the values
of α and β to find synthetic traces that have similar flight
length and pause-time distributions of each scenario. We do
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Fig. 9. Our Levy walk model can generate synthetic traces that match the
flight and pause time distributions seen from real human walk traces. However,
it also shows some discrepancy in the MSD values although its overall shape
is similar.

not add any geographical constraints other than the simulation
area (i.e., we set τl to infinity) and any flight that goes outside
the area is abandoned and a new flight is generated. We set
the truncation of pause time (τp) using the same values we
obtained from the traces. Our synthetic traces show strikingly
similar flight and pause time distributions seen from our real
traces. This show the versatility of our model. In addition,
note that our truncated LW mobility model has its stationary
regime since it has finite pause time and trip duration as shown
in [18].
Our model does not exactly mimic human walk patterns.

This can be seen from the MSD values measured from the
synthetic traces. Figs. 9 (c) and (d) show the MSD values
from the synthetic traces that matches the New York city
and the Disney World trace, respectively. While it shows a
similar pattern of super and then sub-diffusion, we cannot
match MSD values (while simultaneously matching flight and
pause time distributions). This is because human walks are
not truly random as our model is and contains various factors
that only humans control including context, home-coming
tendency, flight auto-correlation, etc. Furthermore, since we do
not model the geographical constraints, they can also make a
difference. These are weaknesses of our mobility model that
requires more refinements.

C. Inter-contact time distribution
It is known that the ICT distribution of human walks

exhibits a power-law tendency up to some time after which
it shows exponential decay [19]. In this paper, we confirm the
same tendency from the ICT distribution generated from our
LW model exhibiting a good fit to empirical ICT distributions
from real traces.
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The earlier measurement studies on ICT (e.g., [6]) report
power-law distributions of ICT with human mobility with
slopes of 0.3 from the UCSD and Dartmouth traces and
0.4 from the INFOCOM trace. By varying the parameters
of α and β of our mobility model, we are able to generate
ICT distributions with the similar characteristics as in [6].
Fig. 10(a) shows the result for UCSD and the result for
INFOCOM can be found in [7]. In the UCSD simulation, we
fix the simulation area to 3.5 km by 3.5 km, τl to 3 km and τp
to 28 hours. These values are chosen based on the data from
[20]. We set the scale factors (c) of flight lengths and pause
time distributions to 10 and 1, respectively. The transmission
range of each node is set to 250 meter radius (which is typical
for IEEE 802.11b). 40 nodes are simulated for 300 hours
except in Fig. 10(a). In Fig. 10(a) we set simulation hours
to 11 weeks as shown in [20].
We also simulate RWP and BM in the same setup as the

UCSD environment to compare the results. The BM model
uses α = 2 and RWP chooses a random destination uniformly
within the simulation area. The pause time distributions of
these models are set the same as that in the LW model. All the
simulation runs are ensured to be in their stationary regimes as
all the mobility models have finite pause time and trip duration
and we discard the first 100 hours of simulation results to
avoid transient effects as shown in [18]. All models use the
same velocity model discussed in V-A. Compared to BM’s
ICT distribution, the ICT distribution of Levy walks fits much
better to the measured ICT distribution in UCSD. We are able
to fit the power-law slope and also approximate the exponential
decay at the tail portion of the measured data. Although
there could be other types of mobility patterns that could
generate the same ICT distributions as UCSD’s, this result
allows us to conjecture that the actual mobility that generates
these characteristics in these settings is more closely modeled
by Levy walks than BM. Furthermore, the ICT distribution
patterns of various mobility models are closely related to their
diffusion rates. In RWP, the mobility is the most diffusive and
in BM it is the least. In LW, the diffusivity is in-between and
with smaller value of α it becomes more diffusive. The more
diffusive the mobility is, the shorter tail its ICT distribution
becomes. To confirm this pattern, we run Levy walks with
various α while fixing β to one. Fig. 10(b) shows that as α
gets smaller, the tail distribution of ICT becomes shorter.

D. DTN routing performance
To see the effect of Levy walk features on routing perfor-

mance, we simulate one of the most widely studied routing
DTN algorithms called two-hop relay routing [21] where a
source node sends a message (or a sequence of data packets) to
the first node it contacts and then that first node acts as a relay
and delivers the message when it contacts the destination node
of the message. We run the protocol under various mobility
models including RWP, BM and LW with various α values
(small values induce heavier tails in flight distributions). For
all the simulations, we assume infinite buffer and that message
transfers occur instantaneously. These assumptions are used to
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Fig. 10. The ICT distributions of mobility models. (a) Levy walks recreate
the ICT distributions seen in the UCSD traces. The measured ICT distribution
of UCSD is obtained from [6]. (b) ICT distributions from various mobility
models.

isolate the effect of mobility patterns on the performance of
DTN routing. The area of the simulation is set to the size of
UCSD.
Fig. 11 shows the performance of the protocol with one

relay and multiple relays. From Fig. 11(a), we can see that
BM has the heaviest tail distribution of routing delays and
RWP has the shortest. BM tends to have much longer delays
than any other models because nodes do not move out of their
original locations very often while RWP, as expected, shows
the smallest delays because its probability of long flights is
highest. The Levy walk models show their patterns in between
the two extremes: as we increase α, their delays get closer to
BM’s and as we reduce α, they get closer to RWP.
The heavy tail distribution of routing delays may intuitively

imply that many nodes experience similar long routing delays
and that use of more relays (or copies of messages) may not
necessarily improve the performance drastically. We simulate
a multiple copy protocol where the source distributes the
message to the first m relays that it contacts. The routing
delay is the time till any copy of the message is delivered to
the destination. Fig. 11 (b) shows the 99% quantile delays of
the same models normalized by their corresponding one-relay
delays as we add more relays. As expected, in BM, the delay
does not improve so much as the number of relays increases,
since every relay takes long time to meet the destination.
However, it is interesting to note that all our Levy walk models
including the one with α = 1.5 which shows fairly similar
delay patterns as BM for one relay case, show almost the
same improvement ratio as RWP as we add more relays. This
implies that while in RWP, most nodes travel long distances
frequently, in Levy walks, although not all nodes make such
long trips, there exist with high probability some nodes within
the mobility range of the source nodes that make such long
trips. This contributes to the great reduction of the delays even
with a small number of relays.

VI. RELATED WORK

Recently, measurement studies of detailed human mobil-
ity patterns have been conducted. At Dartmouth [11] and
UCSD [20], mobility traces of users are collected based on
the association information of mobile handheld devices (e.g.,
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PDAs and VoIP phones) that access wireless LAN access
points (APs). However, these traces are inherently restricted
by the locations of the deployed APs and thus, estimated
movements in between access points might be incorrect be-
cause of relatively long distance among APs. Due to the
coarse granularity of the measurement methodology, these
traces are not adequate to describe detailed human mobility
trajectories. In other groups, human contact patterns are stud-
ied by using iMotes [6] or information of class schedules
and class rosters [22], but they do not generate detailed or
accurate mobility trajectories suitable for our study. Recently,
Brockmann et al. [14] analyze human traveling patterns from
the circulation patterns of bank notes, in the scale of several
hundred to thousand kilometers, and prove that human long-
distance traveling patterns at a macro scale show Levy walk
patterns. However, considering real mobile network deploy-
ments, the mobility patterns over several hundred kilometers
are too large to apply to the mobility modeling for mobile
network simulations. However, combined with our results that
show the same result but within a much smaller scale, we can
confirm the self-similar nature of human mobility.

VII. CONCLUSION
Humans move with context, work, meeting, gathering, fa-

vorite places, etc. Thus, it is wrong to claim that human walks
are random Levy walks because it does not make sense that
humans move in a pure random fashion. What we conclude
from our work, though, is not that they are the same, but
there exist some common statistical patterns between them,
most distinctively, the heavy-tail distribution of flight lengths
and pause times and super and sub-diffusive MSD; and these
features are likely not caused by artifacts of geographical con-
straints (obstacles, buildings, roads, boundary, etc.), but rather
by human intention ([23] also finds other human activities such
as email are also heavy-tailed).
We view that it is an important step forward for the mobility

modeling of mobile network simulation. Many network simu-
lation studies use random mobility models to simulate mobility
of mobile nodes. Unfortunately, most lack in the features we
find from our human traces. Our work points out that there
exists some scale-free features inherent of human mobility
in outdoor settings and these features are important for the
mobility models to provide some realism in the simulation.

While we can easily program the maneuvering around physical
obstacles, the scale-free features are invariant and must be
explicitly modeled.
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