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Abstract: The latest LHCb angular analysis of the rare decay B → K∗µ+µ− shows

some discrepancies from the SM up to the 3.7σ level. There is a consistent new physics

explanation of these anomalies, while it is also reasonable that these anomalies are just

statistical fluctuations and/or a direct consequence of underestimated hadronic uncertain-

ties. We briefly discuss possible cross-checks of the various hypotheses with an analysis of

the inclusive B → Xsℓ
+ℓ− based on the data collected by the B factories Babar and Belle

and also based on future opportunities at SuperBelle. We also present a global analysis

of the latest LHCb data under the hypothesis of Minimal Flavour Violation. The latter is

an important benchmark scenario for new physics models. Any measurements beyond the

MFV bounds and relations unambiguously indicate the existence of new flavour structures

next to the Yukawa couplings of the Standard Model. However, if new physics is responsi-

ble for these discrepancies, we show it is compatible with the MFV hypothesis, so no new

flavour structures are needed. Moreover, we analyse the impact of the correlations between

the observables based on a Monte Carlo study.
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1 Introduction

The recent measurements by the high-statistics LHCb experiment [1] have been fully con-

sistent with the simple Cabibbo-Kobayashi-Maskawa (CKM) theory of the Standard Model

(SM) [2, 3]. The LHCb collaboration has not found any sizeable discrepancy in the B meson

sector until recently besides the isospin asymmetry in the rare decay mode B → Kµ+µ−.

This confirms the general result of the B factories at SLAC (BaBar experiment) [4] and at

KEK (Belle experiment) [5] and of the Tevatron B physics experiments [6, 7].

However, more recently, with the first measurement of new angular observables in the

exclusive decay B → K∗µ+µ−, LHCb has announced a 3.7σ local discrepancy in one of the

q2 bins for one of the angular observables [8]. LHCb compared here with the theoretical

predictions in ref. [9]. In fact, as was correctly stated in ref. [10], the deviation is 4σ if one

compares the central values of the experimental measurement and the theory prediction

together with the corresponding error bars as it is usually done. In refs. [10–17] consistent

SM and new physics interpretations of this deviation have been discussed. Intriguingly,

other smaller but consistent deviations are also present in other observables [8].
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In this paper we discuss the hadronic uncertainties, possible cross-checks using the

inclusive B → Xsℓ
+ℓ− mode, and the impact of experimental correlations. Moreover, we

investigate the possibility of new physics under the MFV hypothesis.

This paper is organised as follows. In the next section we discuss the various sources of

hadronic uncertainties in the exclusive mode B → K∗µ+µ− and explore the role of power

corrections. In section 3 we work out the correlations between the measurements of the

various observables. In section 4 we present MFV-analysis of the latest data, and in section

5 we explore possible cross-checks with the inclusive mode B → Xsℓ
+ℓ−. The conclusions

are given in section 6.

2 Hadronic uncertainties in the mode B → K∗µ+µ−

2.1 Form factor independent observables

Let us recall the construction of so-called theoretically clean angular observables in the

exclusive semi-leptonic penguin mode. The mode B → K∗µ+µ− offers a large variety

of experimentally accessible observables, but the hadronic uncertainties in the theoreti-

cal predictions are in general large. The decay with K∗ on the mass shell has a 4-fold

differential distribution

d4Γ[B → K∗(→ Kπ)µµ]

dq2 d cos θl d cos θK dφ
=

9

32π

∑

i

Ji(q
2) gi(θl, θK , φ) , (2.1)

w.r.t. the dilepton invariant mass q2 and the angles θl, θK , and φ (as defined in [18]).

It offers 12 observables Ji(q
2), from which all other known ones can be derived upon

integration over appropriate combinations of angles. The Ji depend on products of the eight

theoretical complex K∗ spin amplitudes Ai, A
L,R
⊥,‖,0, At, AS . The Ji are bi-linear functions

of the spin amplitudes such as

J1
s =

3

4

[

|AL
⊥|2 + |AL

‖ |2 + |AR
⊥|2 + |AR

‖ |2
]

, (2.2)

with the expression for the eleven other Ji terms given for example in [19–22].

In the low-q2 region, the up-to-date description of exclusive heavy-to-light B →
K∗µ+µ− decays is the method of QCD-improved Factorisation (QCDF) and its field-

theoretical formulation of Soft-Collinear Effective Theory (SCET). In the combined limit

of a heavy b-quark and of an energetic K∗ meson, the decay amplitude factorises to leading

order in Λ/mb and to all orders in αs into process-independent non-perturbative quantities

like B → K∗ form factors and light-cone distribution amplitudes (LCDAs) of the heavy

(light) mesons and perturbatively calculable quantities, which are known to O(α1
s) [23, 24].

Further, the seven a priori independent B → K∗ QCD form factors reduce to two univer-

sal soft form factors ξ⊥,‖ [25]. The factorisation formula applies well in the range of the

dilepton mass range, 1 GeV2 < q2 < 6 GeV2.

Taking into account all these simplifications the various K∗ spin amplitudes at lead-

ing order in ΛQCD/mb and αs turn out to be linear in the soft form factors ξ⊥,‖ and also

in the short-distance Wilson coefficients. As was explicitly shown in refs. [18, 22], these
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simplifications allow to design a set of optimised observables, in which any soft form fac-

tor dependence (and its corresponding uncertainty) cancels out for all low dilepton mass

squared q2 at leading order in αs and ΛQCD/mb. An optimised set of independent1 observ-

ables was constructed in refs. [9, 26], in which almost all observables are free from hadronic

uncertainties which are related to the form factors.

2.2 Power corrections

The soft form factors are not the only source of hadronic uncertainties in these angular

observables. It is well-known that within the QCDF/SCET approach, a general, quanti-

tative method to estimate the important ΛQCD/mb corrections to the heavy quark limit

is missing. In spite of the fact that the power corrections cannot be calculated, the corre-

sponding uncertainties should be made manifest within the theory predictions. Therefore,

in refs. [18, 22] the effect of the ΛQCD/mb corrections has been parametrised for each of

the K∗0 spin-amplitudes with some unknown linear corrections. In case of CP-conserving

observables this just means

A′
i = Ai(1 + Ci), (2.3)

where Ci is the relative amplitude.2 It is further assumed that these amplitudes (Ci)

are not functions of q2, although in practice they may actually be, and any unknown

correlations are also ignored. An estimate of the theoretical uncertainty arising from the

unknown ΛQCD/mb corrections can now be made using a randomly selected ensemble.

For each member of the ensemble, values of Ci are chosen in the ranges Ci ∈ [−0.1, 0.1]

or Ci ∈ [−0.05, 0.05] from a random uniform distribution. This is done for the seven

amplitudes, At, A
L,R
0 , AL,R

‖ , AL,R
⊥ (neglecting the scalar amplitude), to provide a complete

description of the decay. To estimate the contribution to the theoretical uncertainties from

ΛQCD/mb corrections for a particular observable, each element in the ensemble is used to

calculate the value of that observable at a fixed value of q2. A one σ error is evaluated

as the interval that contains 68% of the values around the median. This is done for both

Ci ∈ [−0.05, 0.05] and Ci ∈ [−0.1, 0.1] to illustrate the effects of five and ten percent

corrections at the amplitude level. By repeating this process for different values of q2,

bands can be built up. The bands illustrate the probable range for the true value of each

observable, given the current central value [22]. Some remarks are in order:

• The choice |Ci| < 10% is based on a simple dimensional estimate. We emphasise

here that there is no strict argument available to bound the ΛQCD/mb corrections

this way.

There are soft arguments however: under the assumption that the main part of the

1The number of independent observables Ji is in general smaller than 12 due to dependencies between

them. This set of independent Ji matches the number of theoretical degrees of freedom, namely the spin

amplitudes Ai due to symmetries of the angular distribution under specific transformations of the Ai. These

symmetries and relations were explicitly identified in refs. [18, 22]. For the most general case this was done

in ref. [26]. However, in practice one could completely ignore these theory considerations of symmetries and

relations and would recover them by obvious correlations between the observables.
2In the case of CP-violating observables, a strong phase has to be included (see ref. [22] for details).
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ΛQCD/mb corrections is included in the full form factors, the difference of the theo-

retical results using the full QCD form factors on one hand and the soft form factors

on the other hand confirms this simple dimensional estimate. In fact, the comparison

of the approaches leads to a 7% shift of the central value at the level of observables.

Secondly, one can state that the chiral enhancement of ΛQCD/mb corrections in the

case of hadronic B decays does not occur in the case of the semileptonic decay mode

with a vector final state. Thus, it is not expected that they are as large as 20− 30%

as in the B → ππ decay.

• The sophisticated parametrisation of the unknown ΛQCD/mb corrections should not

hide the fact that this ansatz is put in by hand and there is no rigorous theory behind

this ansatz. In addition, it accidentally happens that these corrections cancel out in

various ratios by different amount. Of course this simulates an effect which we expect

also from real corrections, however, the precise features depend on the ansatz made.

• This parametrisation of the unknown ΛQCD/mb was also used in all the theory pre-

dictions of ref. [9] to which the LHCb collaboration refers.

• In ref. [27] a general parametrisation for the power corrections to the form factor

terms (the factorisable piece in the QCD factorisation formula) is given. But also

this ansatz is just a parametrisation of our ignorance about the power corrections

only. There are two free parameters in the ansatz for each QCD form factor which

have to be determined. The power corrections to the non factorisable piece are here

not included yet and have to be considered separately.

2.3 Low-recoil region

The low-hadronic recoil region is characterised by large values of the dilepton invariant

mass q2 >∼ (14− 15)GeV2 above the two narrow resonances of J/ψ and ψ(2S). It is shown

that local operator product expansion is applicable (q2 ∼ m2
b) [28, 29] and it allows to

obtain the B → K∗µ+µ− matrix element in a systematic expansion in αs and in Λ/mb.

Most important, the leading power corrections are shown to be suppressed by (ΛQCD/mb)
2

or αsΛQCD/mb [29] and to contribute only at the few percent level. The only caveat is that

heavy-to-light form factors are known only from extrapolations from LCSR calculations

at low-q2 at present. But this is improving with direct lattice calculations in the high-q2

becoming available [30, 31]. There are improved Isgur-Wise relations between the form

factors in leading power of Λ/mb. Their application and the introduction of specific mod-

ified Wilson coefficients lead to simple expressions for the K∗ spin amplitudes to leading

order in 1/mb in the low recoil region ([32–34], see also [35]).

Thus, the hadronic uncertainties are well under control in the low-recoil region. But

we will see below, the sensitivity to the short-distance Wilson coefficients in which also

potential NP contributions enter is relatively small.

The theoretical tools used in the low- and high-q2 are different. This allows for impor-

tant cross-checks in the future and might help to disentangle potential new physics signals

from power corrections.
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2.4 Theory predictions and signs for new physics beyond the SM

The LHCb collaboration reports one significant local deviation, namely in the bin q2 ∈
[4.3, 8.63]GeV2 of the observable P

′

5 within the comparison with the theory predictions in

ref. [9]. Here LHCb states a 3.7σ deviation [8] (i).

All other data appear to be compatible with the SM predictions. But comparing

theory and experiment more closely, there are some other slight deviations beyond the 2σ

level visible; in the second low-q2 bin, q2 ∈ [2, 4.3]GeV2, of P2 (ii) and in the high-q2 bin,

q2 ∈ [14.18, 16]GeV2, of P
′

4 (iii).

This is also shown in a model-independent analysis given in ref. [10]. Here NP con-

tributions of the operators O7, O9, O10 and their chiral counterparts are considered in

the global fit of almost all available b → s data based on the standard χ2. The pull of

the three anomalous measurements has been found to be 4σ (i), 2.9σ (ii), and 2.1σ (iii)

respectively [10].

It has been shown that the deviation in the observable P ′
5 and the small deviation in

the observable P2, both in the low-q2 area, can be consistently described by a smaller C9

Wilson coefficient, together with a less significant contribution of a non-zero C ′
9 (see for

example ref. [36]). More recently, the authors of ref. [30] calculated the form factors in the

low-recoil region with lattice methods and then showed that the best-fit to the low-recoil

observables hints in the same direction as the fits to the low-q2 region [31]. This consistency

is quite remarkable, since different theory methods are used in the two kinematical regions.

However, there are also some critical remarks in order, specifically on the largest de-

viation related to the observable P
′

5:

• The uncertainties due to power corrections in ref. [9] should just make these unknown

corrections manifest and are therefore separately given in the tables of that publica-

tion. The procedure given above leads often accidentally to very small uncertainties

of 3-5% at the observable level. This might be an underestimation of the hadronic

uncertainty. However, if we assume 10% error due to the unknown power corrections

— which corresponds to a naive dimension estimate of Λ/mb and is also backed up

by some soft arguments (see above) — we find the pull in case of the third bin of the

observable P
′

5 reduced from 4.0σ to 3.6σ what still represents a significant deviation.

And even if one assumes 30% error then the pull in this case is still 2.2σ within the

model-independent analysis presented in ref. [10].

• The validity of the theory predictions based on QCD factorisation approach within the

region q2 ∈ [4.3, 8.63]GeV2 is highly questionable. The validity is commonly assumed

up to 6GeV2 for two reasons. The perturbative description of the charm loops is valid

in this region and also the kinematical assumptions about the large energy of the K∗

within the SCET/QCD factorisation approach are still reasonable. Thus, using the

theory predictions up to 8.63GeV2 could induce larger hadronic corrections.

• Only using the measurement of the integrated q2 ∈ [1, 6]GeV2 as done in ref. [10,

11, 17] circumvents this problem. The LHCb collaboration has presented also this
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measurement and states a 2.5σ deviation with respect to the SM [8]. The integration

over the complete low-q2 region also smears out the potential new physics signals.

But it is the q2-dependence which might be crucial for the new physics signal to

be visible. Clearly, averaging over the full low-q2 bin will often lead to a smaller

deviation from the SM. This could explain the reduced discrepancy in this bin found

by the LHCb collaboration.

• There is another issue, namely the role of the charm-loop effects which were tackled

in ref. [37]. In ref. [10] it is argued that these contributions tend to enhance the new

physics signal due to their specific sign. But in ref. [37] only soft-gluon contributions

were considered via an OPE which is valid below the charm threshold only. Thus,

a model-dependent extrapolation to higher q2 via a dispersion relation is needed.

And spectator contributions were not considered yet, so the sign of the complete

non-perturbative charm effects is not fixed yet and could change.

• We should also mention the contributions of the Kπ system in an S-wave configura-

tion. The presence of such background would pollute the angular distributions and

bias the measurement of the observables [38, 39]. The size of the S-wave component

in the K∗ mass window is difficult to estimate from the theoretical point of view.

Possible implications of neglecting this contribution have been discussed in ref. [40].

At present, these effects are difficult to predict, but they are taken into account in

the experimental analysis and added as systematics. LHCb has set an upper limit

on the contribution of the S-wave in their Kπ mass window [8] by exploiting the

interference between P- and S-wave and using the change of phase of the P-wave in

the pole of the Breit-Wigner. Systematics due to the interference terms have been

taken into account by using the bounds derived in ref. [39]. These systematics are

rather small compared to the statistical error. An explanation of the anomaly in

terms of interference with an S-wave system seems at the moment unlikely.

3 Experimental fit correlations

The LHCb experiment uses particular folding techniques to access the observables of in-

terest. This procedure largely breaks experimental correlations between the different ob-

servables. In order to investigate the residual correlations, a toy Monte Carlo study with

simulated pseudo-experiment was performed [41]. Several datasets with the same number

of signal events observed by LHCb in each bin of q2 are generated with the full angular

probability density function of B0 → K∗µ+µ−. The observables are generated around the

measured values by LHCb in refs. [8, 42], and the described folding techniques are ap-

plied to each datasets. The eight angular observables are then extracted with an unbinned

likelihood fit, obtaining eight values for each dataset. The correlation coefficient is then

computed assuming linear correlations among the different observables. The correlation

matrix is shown for the q2 bin [4.3, 8.68]GeV2 in table 1. The other correlation matrices

can be found in the appendix. It is important to note that this correlation matrix does not

– 6 –



J
H
E
P
0
4
(
2
0
1
4
)
0
9
7

P1 P2 P ′
4 P ′

5 P ′
6 P ′

8 FL AFB

P1 1.00 -0.02 0.14 -0.03 -0.03 0.04 0.07 0.02

P2 -0.02 1.00 0.03 0.18 -0.07 -0.02 -0.13 -0.97

P ′
4 0.14 0.03 1.00 -0.16 -0.05 0.03 -0.04 -0.03

P ′
5 -0.03 0.18 -0.16 1.00 0.04 0.01 0.02 -0.18

P ′
6 -0.03 -0.07 -0.05 0.04 1.00 -0.14 -0.01 0.07

P ′
8 0.04 -0.02 0.03 0.01 -0.14 1.00 0.01 0.02

FL 0.07 -0.13 -0.04 0.02 -0.01 0.01 1.00 0.13

AFB 0.02 -0.97 -0.03 -0.18 0.07 0.02 0.13 1.00

Table 1. Correlation matrix for the q2 region [4.3, 8.68]GeV2 estimated by using a toy Monte

Carlo technique [41].

contain information about the correlation due to the background or due to systematic un-

certainties, which cannot be evaluated with a toy Monte Carlo study. The main motivation

of this study is to investigate the correlation of the fitting procedure after folding.

The correlation matrix includes both AFB and P2. In this case the same Pdf is used to

fit the folded dataset, by using the relation AFB = −3
2(1− FL)P2. As expected, we found

that these observables have a correlation exceeding 90% in most of the bins. For this reason

we prefer to use the observable FL, which does not exhibit such a strong correlation with

P2, in place of AFB. All experimental measurements of the other decays used in our fit are

assumed to be independent. A covariance matrix is built using the correlation matrices

and it is used to compute the χ2 probability with each NP scenario. Both theoretical

and experimental errors are assumed to be independent in the different bins. It has been

checked that the impact of these correlations in the MFV analysis is small, as expected

since the correlation matrices, after excluding AFB, are almost diagonal.3 However, for

completeness these matrices are included in the analysis presented in the next section.

4 General MFV analysis

4.1 MFV hypothesis

It is not easy to find a concrete NP model which is consistent with the LHCb anomaly [14].

However, assuming that the LHCb anomaly is a hint for NP, the question if new flavour

structures are needed or not is an obvious one.

The hypothesis of MFV [43–47], implies that flavour and CP symmetries are broken

as in the SM. Thus, it requires that all flavour- and CP-violating interactions be linked

to the known structure of Yukawa couplings. The MFV hypothesis represents an impor-

tant benchmark in the sense that any measurement which is inconsistent with the general

3It is clear that including or not the correlations would make a significant difference if AFB were used

instead of FL, as done in ref. [10].
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Ceff
7 (µb) Ceff

8 (µb) C9(µb) C10(µb) Cℓ
0(µb)

-0.2974 -0.1614 4.2297 -4.2068 0

Table 2. SM Wilson coefficients at µb = mpole
b

and µ0 = 2MW to NNLO accuracy in αs.

constraints and relations induced by the MFV hypothesis unambiguously indicates the

existence of new flavour structures.

Moreover, compared with a general model-independent analysis, the number of free

parameters is heavily reduced due to the additional MFV relations. Our analysis is based

on the MFV effective Hamiltonian relevant to b→ s transitions:

Hb→s
eff = −4GF√

2

{

[

V ∗
usVub(C

c
1P

u
1 + Cc

2P
u
2 ) + V ∗

csVcb(C
c
1P

c
1 + Cc

2P
c
2 )
]

+

10
∑

i=3

[

(V ∗
usVub + V ∗

csVcb)C
c
i + V ∗

tsVtbC
t
i

]

Pi + V ∗
tsVtbC

ℓ
0P

ℓ
0 + h.c.

}

(4.1)

with

P u
1 = (s̄LγµT

auL)(ūLγ
µT abL) , P5 = (s̄Lγµ1γµ2γµ3bL)

∑

q

(q̄γµ1γµ2γµ3q) ,

P u
2 = (s̄LγµuL)(ūLγ

µbL) , P6 = (s̄Lγµ1γµ2γµ3T
abL)

∑

q

(q̄γµ1γµ2γµ3T aq) ,

P c
1 = (s̄LγµT

acL)(c̄Lγ
µT abL) , P7 =

e

16π2
mb(s̄Lσ

µνbR)Fµν ,

P c
2 = (s̄LγµcL)(c̄Lγ

µbL) , P8 =
gs

16π2
mb(s̄Lσ

µνT abR)G
a
µν ,

P3 = (s̄LγµbL)
∑

q

(q̄γµq) , P9 =
e2

16π2
(s̄LγµbL)

∑

ℓ

(ℓ̄γµℓ) ,

P4 = (s̄LγµT
abL)

∑

q

(q̄γµT aq) , P10 =
e2

16π2
(s̄LγµbL)

∑

ℓ

(ℓ̄γµγ5ℓ) . (4.2)

In addition we have the following scalar-density operator with right-handed b-quark

P ℓ
0 =

e2

16π2
(s̄LbR)(ℓ̄RℓL) . (4.3)

Following our previous analyses [46, 47], we leave out the four-quark operators P1−6 because

most of the NP contributions to them could be reabsorbed into the Wilson coefficients of

the FCNC operators. The NP contributions are parametrised as usual:

δCi(µb) = CMFV
i (µb)− CSM

i (µb) . (4.4)

where the CSM
i (µb) are given in table 2.
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mB = 5.27917GeV [52] mBs
= 5.36677GeV [52]

mK∗ = 0.89594GeV [52] |VtbV ∗
ts| = 0.0401+0.0011

−0.0007 [52]

mMS
b (mb) = 4.18± 0.03GeV [52] mMS

c (mc) = 1.275± 0.025GeV [52]

mpole
t = 173.5± 0.6± 0.8GeV [52] mµ = 0.105658GeV [52]

αs(MZ) = 0.1184± 0.0007 [52] α̂em(MZ) = 1/127.916 [52]

αs(µb) = 0.2161 α̂em(mb) = 1/133

sin2 θ̂W (MZ) = 0.23116(13) [52] GF /(~c)
3 = 1.16637(1) GeV−2 [52]

fB = 194± 10MeV [47] τB = 1.519± 0.007 ps [52]

fBs
= 234± 10MeV [47] τBs

= 1.497± 0.026 ps [52]

fK∗,⊥(1GeV)= 0.185± 0.009GeV [53] fK∗,‖ = 0.220± 0.005GeV [53]

a1,⊥(1GeV)= 0.10± 0.07 [54] a1,‖(1GeV)= 0.10± 0.07 [54]

a2,⊥(1GeV)= 0.13± 0.08 [54] a2,‖(1GeV)= 0.09± 0.05 [54]

λB,+(1GeV)= 0.46± 0.11GeV [55]

µb = mpole
b µ0 = 2MW

µf =
√
0.5× µbGeV [24]

Table 3. Input parameters.

4.2 Numerical details

Compared to the analysis in ref. [47] we have the following three main changes within the

experimental input:

• We include now the complete new dataset on B → K∗µ+µ− from ref. [8].4

• We use the new averages of the Bs,d → µ+µ− measurements of [49–51].

• We take into account the experimental correlations between the B → K∗µ+µ− ob-

servables as described in section 3.

We have used the input parameters of table 3 and the program SuperIso v3.4 [56, 57] in

order to obtain the theoretical predictions.

The set of observables used in this study are provided in table 4, together with the SM

predictions and the experimental results. To investigate the allowed regions of the Wilson

coefficients in view of the current measurements, we scan over δC7, δC8, δC9, δC10 and

δCℓ
0 at the µb scale. For each point, we then compute the flavour observables and compare

4The CMS Collaboration has also released an angular analysis of B → K∗µ+µ− with the measurement

of the differential branching ratio, AFB and FL, which are in good agreement with the SM predictions [48].

However no result on the optimised observables was presented.
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with the experimental results by calculating χ2 as:

χ2 =
∑

bins





∑

j,k∈(B→K∗µ+µ− obs.)

(Oexp
j −Oth

j ) (σ(bin))−1
jk (Oexp

k −Oth
k )





+
∑

i∈(other obs.)

(Oexp
i −Oth

i )2

(σexpi )2 + (σthi )2
, (4.5)

where Oexp
i and Oth

i are the central values of the experimental result and theoretical pre-

diction of observable i respectively. The first term is the contribution to the χ2 from the

B → K∗µ+µ− observables including the experimental correlations. The (σ(bin))−1 are the

inverse of the covariance matrices for each bin, computed using the correlations given in the

appendix. The second term is a χ2, quantifying the agreement between theory predictions

and experimental measurements without correlations, using all the other observables, σexpi

and σthi being their experimental and theoretical errors respectively. The global fits are

obtained by minimisation of the χ2.

We do not consider the difference of the χ2 with the minimum χ2, but directly obtain

the allowed regions from the absolute χ2 computed using eq. (4.5). This procedure leads

to larger allowed regions with respect to the use of the ∆χ2. This is due to the fact that

some of the observables are less sensitive to some Wilson coefficients, while they contribute

in a democratic way to the number of degrees of freedom. The statistical meaning of the

two dimensional contours is that for a point in the 1σ interval allowed region, there is at

least one solution with the corresponding values of the Wilson coefficients in MFV that has

a χ2 probability corresponding to less than one Gaussian standard deviation with respect

to the full set of measurements. Using this method is justified since we are not aiming to

determine a preferred direction to which the current results with the observed anomalies

would lead, but instead our goal is to examine the global agreement of the data with the

MFV predictions.

It is important to note that the exclusion plots in our MFV analysis presented in

the following section cannot be directly compared with the ones of the model-independent

analyses in refs. [10, 11, 17]. The main reason is that the operator basis of the MFV analysis

used here is different from the set adopted in those analyses (see previous subsection).

Another reason is mentioned above, namely that we use the absolute χ2 to derive the

allowed regions.

4.3 Results

We first study the results of the global fit for the new physics contributions to the Wilson

coefficients. For B → K∗µ+µ−, we use the eight observables P1, P2, P
′
4, P

′
5, P

′
6, P

′
8, FL

and the branching ratio in the three low q2 bins and the two high q2 bins. We also include

BR(B → Xsγ), ∆0(B → K∗γ), BR(B → Xdγ), BR(Bs → µ+µ−), BR(Bd → µ+µ−),

BR(B → Xsµ
+µ−)q2∈[1,6]GeV2 and BR(B → Xsµ

+µ−)q2>14.4GeV2 , which in total amount

to 47 observables in the fit, as given in table 4. The 1 and 2σ allowed regions are calculated

as explained above, and the results for (δC7, δC8), (δC9, δC10) and (δC10, δCl) are presented

in figure 1.
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Observable Experiment SM prediction

BR(B → Xsγ) (3.43± 0.21± 0.07)× 10−4 (3.09± 0.24)× 10−4

∆0(B → K∗γ) (5.2± 2.6)× 10−2 (7.9± 3.9)× 10−2

BR(B → Xdγ) (1.41± 0.57)× 10−5 (1.49± 0.30)× 10−5

BR(Bs → µ+µ−) (2.9± 0.7)× 10−9 (3.49± 0.38)× 10−9

BR(Bd → µ+µ−) (3.6± 1.6)× 10−10 (1.07± 0.27)× 10−10

BR(B → Xsℓ+ℓ−)q2∈[1,6]GeV2 (1.60± 0.68)× 10−6 (1.73± 0.16)× 10−6

BR(B → Xsℓ+ℓ−)q2>14.4GeV2 (4.18± 1.35)× 10−7 (2.20± 0.44)× 10−7

〈dBR/dq2(B → K∗µ+µ−)〉q2∈[0.1,2]GeV2 (0.60± 0.06± 0.05± 0.04± 0.05)× 10−7 (0.70± 0.81)× 10−7

〈FL(B → K∗µ+µ−)〉q2∈[0.1,2]GeV2 0.37± 0.10± 0.04 0.32± 0.20

〈P1(B → K∗µ+µ−)〉q2∈[0.1,2]GeV2 −0.19± 0.40± 0.02 −0.01± 0.04

〈P2(B → K∗µ+µ−)〉q2∈[0.1,2]GeV2 0.03± 0.15± 0.01 0.17± 0.02

〈P ′

4(B → K∗µ+µ−)〉q2∈[0.1,2]GeV2 0.00± 0.52± 0.06 −0.37± 0.03

〈P ′

5(B → K∗µ+µ−)〉q2∈[0.1,2]GeV2 0.45± 0.22± 0.09 0.52± 0.04

〈P ′

6(B → K∗µ+µ−)〉q2∈[0.1,2]GeV2 0.24± 0.22± 0.05 −0.05± 0.04

〈P ′

8(B → K∗µ+µ−)〉q2∈[0.1,2]GeV2 −0.12± 0.56± 0.04 0.02± 0.04

〈dBR/dq2(B → K∗µ+µ−)〉q2∈[2,4.3]GeV2 (0.30± 0.03± 0.03± 0.02± 0.02)× 10−7 (0.35± 0.29)× 10−7

〈FL(B → K∗µ+µ−)〉q2∈[2,4.3]GeV2 0.74± 0.10± 0.03 0.76± 0.20

〈P1(B → K∗µ+µ−)〉q2∈[2,4.3]GeV2 −0.29± 0.65± 0.03 −0.05± 0.05

〈P2(B → K∗µ+µ−)〉q2∈[2,4.3]GeV2 0.50± 0.08± 0.02 0.25± 0.09

〈P ′

4(B → K∗µ+µ−)〉q2∈[2,4.3]GeV2 0.74± 0.58± 0.16 0.54± 0.07

〈P ′

5(B → K∗µ+µ−)〉q2∈[2,4.3]GeV2 0.29± 0.39± 0.07 −0.33± 0.11

〈P ′

6(B → K∗µ+µ−)〉q2∈[2,4.3]GeV2 −0.15± 0.38± 0.05 −0.06± 0.06

〈P ′

8(B → K∗µ+µ−)〉q2∈[2,4.3]GeV2 −0.3± 0.58± 0.14 0.04± 0.05

〈dBR/dq2(B → K∗µ+µ−)〉q2∈[4.3,8.68]GeV2 (0.49± 0.04± 0.04± 0.03± 0.04)× 10−7 (0.48± 0.53)× 10−7

〈FL(B → K∗µ+µ−)〉q2∈[4.3,8.68]GeV2 0.57± 0.07± 0.03 0.63± 0.14

〈P1(B → K∗µ+µ−)〉q2∈[4.3,8.68]GeV2 0.36± 0.31± 0.03 −0.11± 0.06

〈P2(B → K∗µ+µ−)〉q2∈[4.3,8.68]GeV2 −0.25± 0.08± 0.02 −0.36± 0.05

〈P ′

4(B → K∗µ+µ−)〉q2∈[4.3,8.68]GeV2 1.18± 0.30± 0.10 0.99± 0.03

〈P ′

5(B → K∗µ+µ−)〉q2∈[4.3,8.68]GeV2 −0.19± 0.16± 0.03 −0.83± 0.05

〈P ′

6(B → K∗µ+µ−)〉q2∈[4.3,8.68]GeV2 0.04± 0.15± 0.05 −0.02± 0.06

〈P ′

8(B → K∗µ+µ−)〉q2∈[4.3,8.68]GeV2 0.58± 0.38± 0.06 0.02± 0.06

〈dBR/dq2(B → K∗µ+µ−)〉q2∈[14.18,16]GeV2 (0.56± 0.06± 0.04± 0.04± 0.05)× 10−7 (0.67± 1.17)× 10−7

〈FL(B → K∗µ+µ−)〉q2∈[14.18,16]GeV2 0.33± 0.08± 0.03 0.39± 0.24

〈P1(B → K∗µ+µ−)〉q2∈[14.18,16]GeV2 0.07± 0.28± 0.02 −0.32± 0.70

〈P2(B → K∗µ+µ−)〉q2∈[14.18,16]GeV2 −0.50± 0.03± 0.01 −0.47± 0.14

〈P ′

4(B → K∗µ+µ−)〉q2∈[14.18,16]GeV2 −0.18± 0.70± 0.08 1.15± 0.33

〈P ′

5(B → K∗µ+µ−)〉q2∈[14.18,16]GeV2 −0.79± 0.20± 0.18 −0.82± 0.36

〈P ′

6(B → K∗µ+µ−)〉q2∈[14.18,16]GeV2 0.18± 0.25± 0.03 0.00± 0.00

〈P ′

8(B → K∗µ+µ−)〉q2∈[14.18,16]GeV2 −0.40± 0.60± 0.06 0.00± 0.01

〈dBR/dq2(B → K∗µ+µ−)〉q2∈[16,19]GeV2 (0.41± 0.04± 0.04± 0.03± 0.03)× 10−7 (0.43± 0.78)× 10−7

〈FL(B → K∗µ+µ−)〉q2∈[16,19]GeV2 0.38± 0.09± 0.03 0.36± 0.13

〈P1(B → K∗µ+µ−)〉q2∈[16,19]GeV2 −0.71± 0.35± 0.06 −0.55± 0.59

〈P2(B → K∗µ+µ−)〉q2∈[16,19]GeV2 −0.32± 0.08± 0.01 −0.41± 0.15

〈P ′

4(B → K∗µ+µ−)〉q2∈[16,19]GeV2 0.70± 0.52± 0.06 1.24± 0.25

〈P ′

5(B → K∗µ+µ−)〉q2∈[16,19]GeV2 −0.60± 0.19± 0.09 −0.66± 0.37

〈P ′

6(B → K∗µ+µ−)〉q2∈[16,19]GeV2 −0.31± 0.38± 0.10 0.00± 0.00

〈P ′

8(B → K∗µ+µ−)〉q2∈[16,19]GeV2 0.12± 0.54± 0.04 0.00± 0.04

〈dBR/dq2(B → K∗µ+µ−)〉q2∈[1,6]GeV2 (0.34± 0.03± 0.04± 0.02± 0.03)× 10−7 (0.38± 0.33)× 10−7

〈FL(B → K∗µ+µ−)〉q2∈[1,6]GeV2 0.65± 0.08± 0.03 0.70± 0.21

〈P1(B → K∗µ+µ−)〉q2∈[1,6]GeV2 0.15± 0.41± 0.03 −0.06± 0.04

〈P2(B → K∗µ+µ−)〉q2∈[1,6]GeV2 0.33± 0.12± 0.02 0.10± 0.08

〈P ′

4(B → K∗µ+µ−)〉q2∈[1,6]GeV2 0.58± 0.36± 0.06 0.53± 0.07

〈P ′

5(B → K∗µ+µ−)〉q2∈[1,6]GeV2 0.21± 0.21± 0.03 −0.34± 0.10

〈P ′

6(B → K∗µ+µ−)〉q2∈[1,6]GeV2 0.18± 0.21± 0.03 −0.05± 0.05

〈P ′

8(B → K∗µ+µ−)〉q2∈[1,6]GeV2 0.46± 0.38± 0.04 0.03± 0.04

Table 4. Input observables: the experimental data represent the most recent ones. The updated

SM predictions are based on the input parameters given in table 3 and computed with SuperIso.
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Figure 1. Global fit to the NP contributions δCi in the MFV effective theory, at 68% C.L. (red)

and 95% C.L. (green) using the 3 low-q2 bins and the 2 high-q2 bins of B → K∗µ+µ−, and the

other observables given in table 4.

Figure 2. Global fit to the NP coefficients δCi in the MFV effective theory, at 68% C.L. (red) and

95% C.L. (green) using the q2 ∈ [1, 6]GeV2 bin and the 2 high-q2 bins of B → K∗µ+µ−, and the

other observables given in table 4.

Compared to our previous analysis [47] where the new measurements for the optimised

observables were not yet available, the allowed 68% and 95% regions are now smaller

which shows the impact of the new measurements. C8 is mostly constrained by b → sγ

observables, C9 and C10 by B → K∗µ+µ−, and Cl by BR(Bs → µ+µ−). C7 is constrained

by most of the observables. Similar to the previous results, two sets of solutions are

possibles, corresponding to two separate zones in each plane, of which one contains the SM

value of the Wilson coefficients (with δCi = 0) while the other corresponds to the opposite

sign values.

If instead of using the first three bins in the low-q2 region for the B → K∗µ+µ−

observables we use the [1, 6] bin, in which the deviations are smaller, the tension with the

SM is reduced as can be seen in figure 2. Comparing figures 1 and 2 reveals that using the

[1, 6] bin, the zones including the SM still provide 1σ acceptable solutions, while the other

set could be in agreement with the experimental data only at the 2σ level.

To see the effect of the B → K∗µ+µ− observables which present deviations with the

SM predictions, namely P2, P
′
4 and P

′
5, we remove them one at the time from the global fit.

The difference with the results from the full fit is indicative of the impact of the removed

observable. The results are shown in figure 3. As can be seen the impact of P ′
4 and P ′

5 is

rather mild, while removing P2 makes a substantial change in the 1 and 2σ regions which

are now enlarged. This shows the important effect of P2 on the global fit, which is mainly

due to the fact that the experimental measurement of P2 is more accurate.
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Figure 3. Fit results, using all the observables except P ′

4 (upper), except P ′

5 (middle), and except

P2 (lower).

4.4 MFV predictions and bounds

The MFV solutions as a result of the global fit for P2, P
′
4 and P ′

5 are displayed in figure 4

in each q2 bin. The bands corresponding to the allowed 68 and 95% C.L. regions are

displayed in blue colours. The experimental results are also shown with black dots and

error bars. It is remarkable that the 1σ experimental errors overlap with the 1σ range

of the MFV predictions except for the [14.18, 16] bin in P ′
4. It is however not possible to

visualise the full q2 distribution corresponding to each point in the fit. Therefore to guide

the interpretation, we show the position of the best fit point throughout the bins with the

red line, which shows a good overall agreement in all the bins, at least at the 2σ level.

Predictions for P2, P ′

4
and P ′

5
. We can also check the MFV predictions for the ob-

servables which present deviations, namely P2, P
′
4 and P ′

5. To make prediction for an

observable, it is necessary to exclude that observable from the global fit. The predictions

are shown in figure 5 for P2, P
′
4 and P ′

5 respectively from left to right. Again the red line

shows the predictions for the best fit point of the fit. The MFV predictions prove to be in

good agreement with the experimental results, which are also shown in the figure.

The results presented in this section show that the overall agreement of the MFV

solutions with the data is very good at the 2σ level, and no new flavour structure is needed

to explain the experimental results.
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Figure 4. MFV bounds for P2 (left), P ′

4 (centre) and P ′

5 (right), using the results of the global

fit at 68% C.L. (dark blue) and 95% C.L. (light blue), using the 3 low-q2 bins and the 2 high-q2

bins of B → K∗µ+µ− together with the other observables given in table 4. The red lines show the

position of the best fit point.

Figure 5. MFV predictions for P2 (left), P ′

4 (centre) and P ′

5 (right), obtained by removing P2, P
′

4

and P ′

5 from the fit respectively, using the 3 low-q2 bins and the 2 high-q2 bins of B → K∗µ+µ−

and the other observables given in table 4. The red lines show the position of the best fit point.

5 Cross-check with the inclusive mode

The inclusive mode B → Xsℓ
+ℓ− provides complementary information to the exclusive

B → K∗µ+µ− decay as already underlined in [47]. This inclusive decay is theoretically well-

explored. The NNLL QCD calculations for the branching ratio [58–64] and the forward-

backward asymmetry [65–70] have been finalised some time ago by an effort of several

research groups. Even electromagnetic corrections have been already calculated [69, 71, 72].

The theoretical accuracy in the low-q2 region is of the order of 10% [72].

We redo the global fit using only B → K∗µ+µ− observables and separately only

B → Xsℓ
+ℓ− branching ratio and confront the results. Since the scalar contributions

are neglected in the experimental results for the former, we also set them to zero in the

following. For B → K∗µ+µ− we consider all the observables given in table 4. For B →
Xsℓ

+ℓ−, we combine the results from Belle and Babar for the branching ratio at low-q2 and

high-q2. In order to compare these two different sets of observables, we use now the ∆χ2

fit method to obtain the exclusion plots of the Wilson coefficients. Indeed, the χ2 method

we used in the previous section to test the overall consistency of the MFV hypothesis is

not suitable for this comparison here because the exclusion plots would change if some less

sensitive observables were removed from the fit. However, we have cross-checked and found

very similar results using both methods.
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Figure 6. ∆χ2 fit results for the new physics contributions to C7, C9 and C10, using only B →
K∗µ+µ− observables in the low q2 region (upper), using the current measurements of BR(B →
Xsµ

+µ−) at low and high q2 (lower).

In figure 6, we illustrate the results of the ∆χ2 fit for the relevant Wilson coefficients.

The upper row shows the fit based on the exclusive (B → K∗ℓ+ℓ−) observables and the

lower row the one based on the measurements of the inclusive (B → Xsℓ
+ℓ−) branching

ratio in the low- and high-q2 regions. It is remarkable that the exclusion plot of the inclusive

and the one of the exclusive modes are very similar and also compatible with each other.

This is a nontrivial consistency check.

However, unfortunately the latest measurements of the inclusive observables of the B

factories stem from 2004 in case of BaBar based on 89 × 106BB̄ events [73] from 2005 in

case of Belle based on 152 × 106BB̄ events [74]. These numbers of events correspond to

less than 30% of the dataset available at the end of the B factories. The analysis of the full

datasets is expected to lead to a combined uncertainty of around 13% for the measurements

of the branching ratios [75]. Thus, it will lead to even stronger constraints on the Wilson

coefficients and to a more significant cross-check of the new physics hypothesis.

Assuming the same central value as of the present measurements now with 13% exper-

imental errors for the final statistics of the B factories, the χ2 fit results are very bad as

figure 7 shows; one notices there is no compatibility at 68% C.L. and the 95% C.L. regions

are very small. So a ∆χ2-metrology does not make sense in this case. Therefore, let us

illustrate the usefulness of a future measurement of the inclusive mode with the full dataset

of the B factories in another way: based on the model-independent analysis of ref. [10],

we predict the branching ratio at low- and high-q2. In figure 8, we show the 1, 2, and 3σ

ranges for these observables. In addition, we add the future measurements based on the

full dataset with 13% uncertainties assuming the best fit solution of the model-independent
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Figure 7. χ2 fit results for the new physics contributions to C7, C9 and C10, using the extrapolated

measurements for BR(B → Xsµ
+µ−) at low and high q2 with the full Babar and Belle datasets

assuming the central values as in the present measurements.

Figure 8. 1, 2 and 3σ ranges for the branching ratio at low- and high-q2 within the model-

independent analysis. Future measurement based on the full dataset of the B factories (13% uncer-

tainty) assuming the best-fit point of the model-independent analysis as central value (black) and

the SM predictions (red/grey).

analysis of ref. [10] as central value. These measurements are indicated by the black er-

ror bars. They should be compared with the theoretical SM predictions given by the red

(grey) error bars. It is worth mentioning that the theory prediction for the high-q2 region

can be improved in the future by at least a factor 2.5 Figure 8 indicates that the future

measurement of the inclusive branching ratios separates nicely from the SM prediction as

the model-independent fit.

We can go one step further. In case the issue will be not resolved in the near future

and more experimental accuracy is needed, there will be two dedicated flavour precision

experiments: the upgrade of the LHCb experiment [76] will increase the integrated lumi-

5In fact, it is possible to drastically reduce the size of 1/m2
b and 1/m3

b power corrections to the integrated

decay width, by normalising it to the semileptonic decay rate integrated over the same q2 interval [79]. This

procedure will help reducing the uncertainties induced by the large power corrections to the decay width

integrated over the high-q2 region [72].
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nosity from 5 fb−1 to 50 fb−1, so the statistical uncertainties will get decreased by a factor

3. However, the theory of exclusive modes will most probably not match this progress

within the experimental measurements. Moreover, there will be Super-B factory Belle-II

with a final integrated luminosity of 50 ab−1. Fully inclusive measurements, i.e. those in

which there are no a priori assumptions on the properties of the hadronic system accompa-

nying the two final state leptons, can only be done at such a high luminosity machine [77]

by simultaneously reconstructing the two final state leptons and the accompanying re-

coiling B meson produced in Υ(4S) decays. We follow here a recent analysis [78] of the

expected total uncertainty on the partial decay width and the forward-backward asymme-

try in several bins of dilepton mass-squared for the fully inclusive B → Xsℓ
+ℓ− decays

assuming a 50 ab−1 total integrated luminosity. Based on some reasonable assumptions6

one finds a relative fractional uncertainty of 2.9% (4.1%) for the branching fraction in the

low- (high-)q2 region.

Moreover, a toy model including both signal and background contributions can be

employed to estimate the AFB-sensitivities
7. Within this toy model, one finds a total

absolute uncertainty of 0.050 in the low-q2 bin1 (1 < q2 < 3.5GeV2), 0.054 in the low-

q2 bin2 (3.5 < q2 < 6GeV2) and 0.058 in the high-q2 interval (q2 > 14.4GeV2) for the

normalised AFB.

With this expected performance of the Belle-II experiment, the measurement of the

branching ratios will be possible with much smaller uncertainties. In figure 8 the experi-

mental error bars will get smaller by more than a factor 2 with Belle-II.

Also the future measurement of the forward-backward asymmetry at Belle-II will allow

to separate the potential new physics measurement from the SM prediction in a significant

way as shown in figure 9. Note the zero of the forward backward asymmetry is pushed to

higher values with the best fit solution of the model-independent analysis: the 1σ-interval

from the model-independent fit at NLO is: 4.74 − 5.51. This implies that the integrated

forward-backward asymmetry of the second low-q2 bin is also negative.

6The most important assumptions are the following: an overall efficiency of 2% to reconstruct recoiling

B meson in either semileptonic or hadronic final states is assumed. After a tagged decay has been found,

an efficiency of 60% is assumed for the dilepton signal, which includes both geometric and reconstruction

efficiencies. The dilepton mass-squared distribution assumed for signal decays is based on the theoretical

prediction. Based on the experience at the first generation B factories, signal-to-background ratios of order

O(1) in the low-q2 region can reasonably be expected for tagged B events accompanied by two oppositely

charged signal-side leptons. Significantly lower background rates can be expected in the high-q2 region, and

a signal-to-background ratio of 2.0 is assumed there. Systematic uncertainties should be under good control

using charmonium control samples decaying to the same final states as signal decays, and one assigns a

total systematic of 2% in both the low- (1 < q2 < 6GeV2) and high-q2 (q2 > 14.4GeV2) regions.
7Within this toy model, signal distributions of the cosine of flavour-tagged lepton helicity angle at several

values in the interval [−0.4, 0.4] (for the normalised AFB) are generated using the distribution expected

for SM-like B → K∗ℓ+ℓ− decays as a model. This is justified by noting that the distribution for fully

inclusive SM signal events is not substantially different from that for SM B → K∗ℓ+ℓ− decays. As before,

backgrounds are assumed to occur at the same rate as signal in the lower q2 region and half the signal rate in

the upper range, with the additional assumption that there is no structure in the background helicity angle

distribution. Central values and uncertainties for AFB are then derived from fitting background-subtracted

toy distributions generated at several values of AFB to the theoretical prediction. Associated systematics

are expected to be constrained using charmonium control samples, and one assumes a 3% value for the

total angular analysis systematic uncertainty in any dilepton mass-squared interval.
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Figure 9. 1, 2 and 3σ ranges for the unnormalised forward-backward asymmetry in bin 1 (1 <

q2 < 3.5GeV2) and in bin 2 (3.5 < q2 < 6GeV2) within the model-independent analysis. Future

measurement at the high-luminosity Belle-II Super-B-Factory assuming the best-fit point of the

model-independent analysis as central value (black) and the SM predictions (red/grey).

6 Conclusion

The LHCb collaboration has presented an angular analysis of the decay mode B →
K∗µ+µ− based on 1 fb−1. LHCb has found a 4.0σ local discrepancy in one of the low-

q2 bins for one of the angular observables. This deviation together with other smaller

deviations in the angular analysis can be consistently described by a smaller C9 Wilson

coefficient, together with a less significant contribution of a non-zero C ′
9.

Clearly, this exciting LHCb result calls for a better understanding of the power correc-

tion to the decay mode. They lead to the largest part of the theoretical uncertainty because

they are undetermined within the QCD-factorisation approach which is the state of the art

method for the low-q2 region. However, there are soft arguments that such uncertainties

are of the order of 10%.

Possible cross-checks with other observables are interesting. First, there are the corre-

sponding angular observables at the high-q2 region which are based on different theoretical

methods with lower uncertainties. Second, we made manifest that these final measurements

of Babar and Belle allow for important cross-checks of the new physics hypothesis.

We also showed that SuperLHCb and Belle-II might play a role if the new physics

signals need more experimental accuracy.

Finally, assuming that the LHCb anomaly is a hint of NP, we showed within a detailed

MFV analysis that no new flavour structures are needed.
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A Correlation matrices

We provide below the correlation matrices for each bin [41]. They have been estimated by

using a toy Monte Carlo technique.

P1 P2 P ′
4 P ′

5 P ′
6 P ′

8 FL AFB

P1 1.00 -0.01 0.05 0.09 -0.00 0.04 -0.02 0.01

P2 -0.01 1.00 0.08 0.02 0.02 -0.02 0.07 -0.97

P ′
4 0.05 0.08 1.00 0.05 -0.06 -0.04 0.00 -0.08

P ′
5 0.09 0.02 0.05 1.00 -0.08 0.02 -0.08 -0.01

P ′
6 -0.00 0.02 -0.06 -0.08 1.00 -0.01 -0.06 -0.02

P ′
8 0.04 -0.02 -0.04 0.02 -0.01 1.00 -0.05 0.02

FL -0.02 0.07 0.00 -0.08 -0.06 -0.05 1.00 -0.07

AFB 0.01 -0.97 -0.08 -0.01 -0.02 0.02 -0.07 1.00

Table 5. Correlation matrix for the q2 region [0.1, 2.0]GeV2 estimated by using a toy Monte Carlo

technique.

P1 P2 P ′
4 P ′

5 P ′
6 P ′

8 FL AFB

P1 1.00 0.02 0.08 0.05 -0.03 -0.00 -0.03 -0.02

P2 0.02 1.00 0.02 0.11 -0.01 -0.01 0.10 -0.73

P ′
4 0.08 0.02 1.00 0.28 0.02 -0.00 0.03 -0.02

P ′
5 0.05 0.11 0.28 1.00 0.02 -0.05 0.03 -0.11

P ′
6 -0.03 -0.01 0.02 0.02 1.00 0.22 -0.03 0.01

P ′
8 -0.00 -0.01 -0.00 -0.05 0.22 1.00 -0.03 0.01

FL -0.03 0.10 0.03 0.03 -0.03 -0.03 1.00 -0.10

AFB -0.02 -0.73 -0.02 -0.11 0.01 0.01 -0.10 1.00

Table 6. Correlation matrix for the q2 region [2.0, 4.3]GeV2 estimated by using a toy Monte Carlo

technique.

P1 P2 P ′
4 P ′

5 P ′
6 P ′

8 FL AFB

P1 1.00 -0.02 0.14 -0.03 -0.03 0.04 0.07 0.02

P2 -0.02 1.00 0.03 0.18 -0.07 -0.02 -0.13 -0.97

P ′
4 0.14 0.03 1.00 -0.16 -0.05 0.03 -0.04 -0.03

P ′
5 -0.03 0.18 -0.16 1.00 0.04 0.01 0.02 -0.18

P ′
6 -0.03 -0.07 -0.05 0.04 1.00 -0.14 -0.01 0.07

P ′
8 0.04 -0.02 0.03 0.01 -0.14 1.00 0.01 0.02

FL 0.07 -0.13 -0.04 0.02 -0.01 0.01 1.00 0.13

AFB 0.02 -0.97 -0.03 -0.18 0.07 0.02 0.13 1.00

Table 7. Correlation matrix for the q2 region [4.3, 8.68]GeV2 estimated by using a toy Monte

Carlo technique.
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P1 P2 P ′
4 P ′

5 P ′
6 P ′

8 FL AFB

P1 1.00 -0.02 0.03 -0.22 -0.08 -0.03 -0.14 0.01

P2 -0.02 1.00 -0.14 0.13 -0.04 0.00 -0.13 -0.93

P ′
4 0.03 -0.14 1.00 -0.14 0.02 0.04 -0.07 0.13

P ′
5 -0.22 0.13 -0.14 1.00 -0.06 0.03 -0.07 -0.12

P ′
6 -0.08 -0.04 0.02 -0.06 1.00 -0.20 -0.03 0.04

P ′
8 -0.03 0.00 0.04 0.03 -0.20 1.00 0.03 -0.01

FL -0.14 -0.13 -0.07 -0.07 -0.03 0.03 1.00 0.13

AFB 0.01 -0.93 0.13 -0.12 0.04 -0.01 0.13 1.00

Table 8. Correlation matrix for the q2 region [10.09, 12.90]GeV2 estimated by using a toy Monte

Carlo technique.

P1 P2 P ′
4 P ′

5 P ′
6 P ′

8 FL AFB

P1 1.00 0.00 0.00 -0.21 0.02 -0.05 0.08 -0.00

P2 0.00 1.00 -0.03 -0.04 0.01 -0.00 -0.02 -0.95

P ′
4 0.00 -0.03 1.00 -0.36 0.03 -0.04 0.00 0.03

P ′
5 -0.21 -0.04 -0.36 1.00 -0.02 0.02 0.02 0.04

P ′
6 0.02 0.01 0.03 -0.02 1.00 -0.40 0.05 -0.01

P ′
8 -0.05 -0.00 -0.04 0.02 -0.40 1.00 0.00 0.00

FL 0.08 -0.02 0.00 0.02 0.05 0.00 1.00 0.02

AFB -0.00 -0.95 0.03 0.04 -0.01 0.00 0.02 1.00

Table 9. Correlation matrix for the q2 region [14.18, 16.00]GeV2 estimated by using a toy Monte

Carlo technique.

P1 P2 P ′
4 P ′

5 P ′
6 P ′

8 FL AFB

P1 1.00 0.01 -0.05 -0.22 -0.03 0.04 -0.05 -0.01

P2 0.01 1.00 -0.17 -0.12 0.05 0.03 -0.14 -0.95

P ′
4 -0.05 -0.17 1.00 -0.39 0.02 -0.05 -0.05 0.16

P ′
5 -0.22 -0.12 -0.39 1.00 0.04 0.00 -0.04 0.12

P ′
6 -0.03 0.05 0.02 0.04 1.00 -0.37 -0.03 -0.05

P ′
8 0.04 0.03 -0.05 0.00 -0.37 1.00 -0.02 -0.03

FL -0.05 -0.14 -0.05 -0.04 -0.03 -0.02 1.00 0.14

AFB -0.01 -0.95 0.16 0.12 -0.05 -0.03 0.14 1.00

Table 10. Correlation matrix for the q2 region [16.0, 19.0]GeV2 estimated by using a toy Monte

Carlo technique.
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P1 P2 P ′
4 P ′

5 P ′
6 P ′

8 FL AFB

P1 1.00 0.09 0.10 -0.16 -0.01 -0.01 -0.09 -0.08

P2 0.09 1.00 -0.27 0.11 0.01 -0.03 0.09 -0.77

P ′
4 0.10 -0.27 1.00 0.28 -0.01 0.01 0.01 0.28

P ′
5 -0.16 0.11 0.28 1.00 -0.03 -0.01 -0.11 -0.10

P ′
6 -0.01 0.01 -0.01 -0.03 1.00 0.26 -0.01 -0.01

P ′
8 -0.01 -0.03 0.01 -0.01 0.26 1.00 -0.05 0.03

FL -0.09 0.09 0.01 -0.11 -0.01 -0.05 1.00 -0.09

AFB -0.08 -0.77 0.28 -0.10 -0.01 0.03 -0.09 1.00

Table 11. Correlation matrix for the q2 region [1.0, 6.0]GeV2 estimated by using a toy Monte

Carlo technique.
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[20] F. Krüger and J. Matias, Probing new physics via the transverse amplitudes of

B0 → K∗0(→ K−π+)ℓ+ℓ− at large recoil, Phys. Rev. D 71 (2005) 094009 [hep-ph/0502060]

[INSPIRE].

[21] W. Altmannshofer et al., Symmetries and asymmetries of B → K∗µ+µ− decays in the

standard model and beyond, JHEP 01 (2009) 019 [arXiv:0811.1214] [INSPIRE].

[22] U. Egede, T. Hurth, J. Matias, M. Ramon and W. Reece, New physics reach of the decay

mode B̄ → K̄∗0ℓ+ℓ−, JHEP 10 (2010) 056 [arXiv:1005.0571] [INSPIRE].

[23] M. Beneke, T. Feldmann and D. Seidel, Systematic approach to exclusive B → V ℓ+ℓ−, V γ

decays, Nucl. Phys. B 612 (2001) 25 [hep-ph/0106067] [INSPIRE].

[24] M. Beneke, T. Feldmann and D. Seidel, Exclusive radiative and electroweak b→ d and b→ s

penguin decays at NLO, Eur. Phys. J. C 41 (2005) 173 [hep-ph/0412400] [INSPIRE].

[25] J. Charles, A. Le Yaouanc, L. Oliver, O. Pene and J. Raynal, Heavy to light form-factors in

the heavy mass to large energy limit of QCD, Phys. Rev. D 60 (1999) 014001

[hep-ph/9812358] [INSPIRE].

[26] J. Matias, F. Mescia, M. Ramon and J. Virto, Complete anatomy of B̄d → K̄∗0(→ Kπ)l+l−

and its angular distribution, JHEP 04 (2012) 104 [arXiv:1202.4266] [INSPIRE].
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