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ABSTRACT
We study the evolution of dark matter satellites orbiting inside more massive haloes using
semi-analytical tools coupled with high-resolution N-body simulations. We select initial satel-
lite sizes, masses, orbital energies, and eccentricities as predicted by hierarchical models of
structure formation. Both the satellite (of initial mass M s,0) and the main halo (of mass Mh)
are described by a Navarro, Frenk & White density profile with various concentrations.

We explore the interplay between dynamic friction and tidal mass loss/evaporation in de-
termining the final fate of the satellite. We provide a user-friendly expression for the dynamic
friction time-scale τ df,live and for the disruption time for a live (i.e. mass-losing) satellite. This
can be easily implemented into existing semi-analytical models of galaxy formation improving
considerably the way they describe the evolution of satellites.

Massive satellites (M s,0 > 0.1Mh) starting from typical cosmological orbits sink rapidly
(irrespective of the initial circularity) toward the centre of the main halo where they merge
after a time τ df,rig, as if they were rigid. Satellites of intermediate mass (0.01Mh < M s,0 <

0.1Mh) suffer severe tidal mass losses as dynamic friction reduces their pericentre distance.
In this case, mass loss increases substantially their decay time with respect to a rigid satellite.
The final fate depends on the concentration of the satellite, cs, relative to that of the main halo,
ch. Only in the unlikely case where cs/ch � 1 are satellites disrupted. In this mass range, τ df,live

gives a measure of the merging time. Among the satellites whose orbits decay significantly,
those that survive must have been moving preferentially on more circular orbits since the
beginning as dynamical friction does not induce circularization. Lighter satellites (M s,0 <

0.01Mh) do not suffer significant orbital decay and tidal mass loss stabilizes the orbit even
further. Their orbits should map those at the time of entrance into the main halo.

After more than a Hubble time satellites have masses M s ∼ 1–10 per cent M s,0, typically,
implying M s < 0.001Mh for the remnants. In a Milky-Way-like halo, light satellites should
be present even after several orbital times with their baryonic components experimenting
morphological changes due to tidal stirring.

They coexist with the remnants of more massive satellites depleted in their dark matter
content by the tidal field, which should move preferentially on tightly bound orbits.

Key words: methods: analytical – methods: numerical – galaxies: interactions – galaxies:
kinematics and dynamics – dark matter.

1 I N T RO D U C T I O N

In the current view, structure formation in the Universe proceeds
through a complex hierarchy of mergers between dark matter haloes,
from the scale of dwarf galaxies up to that of galaxy clusters. Galaxy

�E-mail: taffoni@sissa.it (GT); mayer@astro.washington.edu (LM); colpi
@mib.infn.it (MC); fabio@astro.washington.edu (FG)

formation occurs within dark matter haloes, while these evolve and
grow through a series of mergers. During the assembly of these sys-
tems, various processes, such as morphological transformations of
the stellar and gaseous components, are expected to occur. There-
fore, understanding the dynamical evolution of dark matter haloes
is a fundamental step of any theory of galaxy formation.

N-body simulations are widely used to study the dynamical evolu-
tion of cosmic structures (Governato et al. 1999) and they have been
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the most useful tool to address this problem, so far. However, the
detailed study of the internal dynamical evolution of many haloes
requires a high number of particles in order to resolve substruc-
ture avoiding its artificial evaporation (Moore et al. 1996; Ghigna
et al. 1998; Moore et al. 1999b; Lewis et al. 2000; Jing & Suto
2000; Fukushige & Makino 2001). The heavy computational bur-
den associated with such cosmological runs limits the level of de-
tail at which the evolution of the internal structure of satellites can
be followed. On the other hand, non-cosmological simulations at
very high resolution, for a limited number of systems, have shown
that merging and other interactions between haloes (and eventually
between their embedded luminous galaxies) such as harassment
and tidal stirring can dramatically affect their global properties and
their internal structure (Huang & Carlberg 1997; Naab, Burkert &
Hernquist 1999; Velázquez & White 1999; Moore et al. 1996;
Moore, Lake & Katz 1998; Mayer et al. 2001a,b; Zhang et al. 2002).

A different approach to the problem of structure formation and
evolution is brought about by semi-analytical methods. The back-
bone of the semi-analytical models of galaxy formation (Somerville
& Primack 1999; Kauffmann et al. 1999; Cole et al. 2000) is the
merging history of dark matter haloes which can be Monte Carlo
generated (Somerville & Kolatt 1999; Sheth & Lemson 1999; Cole
et al. 2000) or calculated from N-body simulations (Kauffmann,
White & Guiderdoni 1993). The evolution of substructures in semi-
analytical models is followed in a simplified way; a merging event
between unequal mass haloes takes place when the lighter halo
reaches the centre of the more massive halo. The time-scale for this
to occur is obtained from the local application of the formula of
Chandrasekhar (1943) for dynamical friction (DF).

However, as the magnitude of the frictional drag depends on the
mass of the satellite and this is a time-dependent quantity, we expect
stripping to ultimately affect the orbital decay rate. Somerville &
Primack (1999) include a simple recipe which accounts for mass
stripping, reducing the mass of the satellite by re-calculating its
tidal radius while it spirals toward the centre along a circular orbit.

Colpi, Mayer & Governato (1999, hereafter CMG99) have quan-
tified the interplay between DF and tidal stripping for a selected sam-
ple of orbit and satellite masses. Using high-resolution N-body sim-
ulations, they have shown that small satellites (with initial masses
50 times smaller than that of the primary) undergo tidal mass loss
and their orbits decay as if they had an ‘effective mass’ ∼60 per
cent lower than the initial mass; on typical cosmological orbits
they never merge at the centre of the primary because the mag-
nitude of the drag is drastically reduced at such a small effective
mass. The fraction of mass lost by the satellite is strictly related
to the particular orbital parameters and halo profile assigned to the
haloes. In order to improve this recipe and make it more physically
motivated, it is necessary to recognize that mass loss is the conse-
quence not only of the initial tidal truncation but also of the repeated
gravitational shocks occurring at each pericentre passage (Taylor
& Babul 2001, TB; Gnedin, Hernquist & Ostriker 1999, GHO;
Weinberg 1994). The strength and effectiveness of the shocks de-
pends on the central density profile and orbit of the satellite and
might lead to its complete disruption before the merger is completed.
This regime of disruption or, at least, of mass evaporation during
orbital decay, is completely neglected by semi-analytical models
of galaxy formation, even by the recipe adopted by Somerville &
Primack (1999). However, it has been shown that satellite orbits are
very eccentric in cold dark matter (CDM) models (Tormen 1997;
Ghigna et al. 1998), and this points to strong tidal shocks.

The full dynamical evolution of the satellites must be studied
using haloes similar to those forming in cosmological simulations,

which have cuspy density profiles. In this paper, we consider haloes
with Navarro, Frenk & White (NFW; 1996, 1997) profiles as op-
posed to a previous work (CMG99), where our analysis was re-
stricted to isothermal spheres with cores. We note that more recent
higher-resolution simulations (Moore et al. 1999b; Ghigna et al.
2000; Kolatt et al. 2000; Jing & Suto 2000; Governato, Ghinga &
Moore 2001) find that the inner slope of the density profile is even
steeper than the NFW profile.

Following the same philosophy of CMG99, we use semi-
analytical methods to describe the orbital evolution and mass loss
of satellites in a NFW profile, and we compare the results with
high-resolution N-body simulations. In particular, we use the the-
ory of linear response (TLR) to model DF and we study orbital
decay (Colpi 1998; Colpi & Pallavicini 1998). We apply the theory
of gravitational shocks developed by GHO to model tidal mass loss
and the disruption of satellites (Taylor & Babul 2001; Hayashi et al.
2002).

The paper is organized as follows. First, we review the main
features of NFW haloes (Section 2), and of the drag force as derived
using the TLR (Section 2.1). In Section 3 we study the orbital decay
of a rigid satellite. We then move on to describe the effects of the
tidal perturbation both when the orbit is stable and when it decays
due to DF (Section 4). Finally we discuss the global effect of DF
and mass loss on the evolution of satellites.

2 O R B I TA L E VO L U T I O N I N A N F W P RO F I L E

A realistic representation of the density profile consistent with the
findings of structure-formation simulations is needed for a mean-
ingful study of the disruption of satellites. Here, we use the so called
‘universal density profile’ of Navarro et al. (1996):

ρ(r ) = Mh

4πR3
h

δc

(chx)(1 + chx)2
, (1)

where x = r/Rh is the dimensionless radius in units of the virial
radius Rh, Mh is the mass of the halo inside Rh, ch = r s/Rh is the
concentration parameter (r s is a scale radius), and δc = c3

h/[ln (1 +
ch) − ch/(1 + ch)].

A halo of given mass and size does not have a unique NFW profile;
the concentration c plays the role of a free parameter that basically
tells how much of the total mass is contained within a given inner
radius. Haloes with a higher concentration have more mass in the
central part and should thus be more robust against tidal effects. We
consider various concentrations for both the primary halo and the
satellite.

The mass profile of a spherically symmetric halo (i.e. the mass
contained inside a sphere of radius r) can be obtained by integrating
equation (1) over the spherical volume

M(r ) = Mh
ln(1 + chx) − chx/(1 + chx)

ln(1 + ch) − ch/(1 + ch)
, (2)

and used to calculate the circular velocity profile, V 2
c(r ) = GM(r )/r ,

and the one-dimensional velocity dispersion σ (r) (Kolatt et al. 2000)

σ 2(r ) = 75.53V 2
c (2.15Rh/ch)(chx)(1 + chx)2I(chx) (3)

I(x) =
∫ ∞

x

[
ln(1 + y)

y3(1 + y)2
− 1

y2(1 + y)3

]
dy.

The gravitational potential of a NFW halo can be written as

φ(r ) = −V 2
c (r ) + V 2

h

ch/(1 + ch) − ch/(1 + chx)

ln(1 + ch) − ch/(1 + ch)
, (4)
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where V h is the value of the circular velocity at the virial radius Rh.
The orbits in this potential can be determined using the planar polar
coordinates r (t) and θ (t), solving for the equation of motion (Binney
& Tremaine 1987). The motion of a satellite is then determined by
the initial specific angular momentum J and orbital energy E, or
equivalently by the radius r c(E) of the circular orbit having the
same energy E, and by the circularity ε = J/J c, where J c = V h

(r c) r c(E).
We define a generalized orbital eccentricity

e = rapo − rper

rapo + rper
, (5)

where r apo and r per are the roots of the orbit equation

1

r 2
+ 2[φ(r ) − E]

J 2
= 0 (6)

(Binney & Tremaine 1987), and these are the apocentre and the
pericentre radii of the orbit, respectively. Using equation (6) it is
possible to derive a relation between e and the orbital parameters,1

so that for each value of r c(E) and ε we can determine the apocentre
and pericentre distances of the orbit. We introduce the dimensionless
radius of the circular orbit xc(E) ≡ r c(E)/Rh.

From equation (6), the orbital period is

Porb = 2

∫ rapo

rper

dx√
2[0.5V 2

c (rc) + φ(rc) − φ(x)] − J 2/x2
. (7)

A satellite, described by a NFW profile, has subscript ‘s’ in all the
corresponding halo properties. The satellite, before mass loss, has
a mass M s,0 inside its virial radius Rs,0.

2.1 The theory of linear response

The TLR is a relatively novel approach to the study of DF in
the non-uniform stellar background of a spherical self-gravitating
halo (Colpi & Pallavicini 1998; Colpi 1998; CMG99; see also
Weinberg 1989 for a study of DF in a self-gravitating medium).
The dissipative force on the satellite is computed by tracing, in a
self-consistent way, the collective, global response of the particles
to the gravitational perturbation excited by the satellite. The force
includes the tidal deformation in the density field (absent in an infi-
nite uniform medium), the trailing density wave which is evolving
in time, and the shift of the barycentre of the primary. We omit here
the complex expression of the force referring to Colpi & Pallavicini
(1998) and CMG99 for details. We only remark that the frictional
force at the current satellite position 	R(t) can be written formally as
an integral upon space and time

	FDF(t) = −G Ms,0

∫
d3	r

∫ t

−∞
dt ′�ρ(	r , t − t ′)

	R(t) − 	r (t)

| 	R(t) − 	r (t)|3 (8)

where �ρ(r , t − t ′) maps of the time-dependent disturbances in the
density field created, over time, by the satellite in its motion. We
estimate the force specifically for the NFW density profile. The TLR
does not contain any free parameter (no Coulomb logarithm) except
the mass and the radius of the satellite. Equation (8) describes the
sinking of satellites moving along orbits of arbitrary eccentricity
even outside the primary halo.

1 For a singular isothermal profile (SIP) the eccentricity is only a function
of ε (van den Bosch et al. 1999).

3 N U M E R I C A L S I M U L AT I O N S

The simulations, the results of which are analysed in the forthcom-
ing sections of this paper, have been performed with PKDGRAV, a fast
parallel binary-tree code widely used to study structure formation
and galactic dynamics (e.g. Power et al. 2003; Ghigna et al. 1998;
Mayer et al. 2001a,b; Stadel 2002). The force calculation is per-
formed using a binary tree and using the Barnes–Hut criterion for
evaluating the multipoles up to the hexadecapole order; an opening
angle θ = 0.7 was used in all the runs. The code uses a leapfrog
integrator and has multistepping capabilities. The simulations em-
ploying a rigid satellite use a NFW primary halo resolved by either
100 000 or 1 million particles; the satellite is modelled as in van
den Bosch et al. (1999) and CMG99, i.e. it is represented by a point
mass softened using a spline kernel (the same kernel adopted for all
the particles in the simulations). The softening of the particles in the
primary halo is 200 pc; that of the rigid satellite is 3.5 kpc in the ref-
erence case where the latter has a mass M s,0 = 0.05Mh. Satellites of
different masses have a softening scaled ∼M1/3

s,0 . In the simulations
for ‘live’ (i.e. mass-losing) satellites, these are resolved by either
20 000 or 50 000 particles (the same resolutions hold in runs of live
satellites moving in a fixed external potential) while the primary
halo is resolved using 100 000 particles. The particle softening for
satellites of different masses is rescaled as for the rigid satellites and
the same scaling holds also between these particles and those of the
primary halo (as a reference, for a satellite of 0.05Mh the softening
is 74.4 pc). We note that the softening of the rigid satellite is fixed
in such a way that a deformable satellite having high concentration
(c = 20) has roughly the same half-mass radius than the correspond-
ing rigid satellite of the same mass; this ensures that a comparison
between runs with rigid and deformable satellites is meaningful (the
decay rate depends on the softening of the rigid satellite at a given
mass; see, for example, Van Albada 1987). By comparing runs with
different resolutions for the primary halo we verified the robustness
of the obtained orbital decay rate in absence stripping. By com-
paring runs having deformable satellites with different resolutions
we tested whether artificial heating due to two-body collisions was
playing a role in the determining the actual mass-loss rate. The simu-
lations employed time-steps as small as 105 years in the inner regions
of the haloes, namely more than an order of magnitude smaller than
the local orbital time; as a result, energy was conserved to better than
1 per cent.

4 T H E S I N K I N G O F A R I G I D S AT E L L I T E
I N A N F W P RO F I L E

In this section, we explore the evolution of a rigid satellite of mass
M s,0 orbiting inside a halo with a NFW density profile, using the
TLR. The halo is scaled to the Milky-Way mass Mh = 1012 M�,
and has a tidal radius Rh = 200 kpc and concentration ch = 7 or 14,
within the spread of cosmological values (Eke, Navarro & Steinmetz
2001).

Fig. 1 shows the DF time τ df,rig as a function of the satellite mass
M s,0 (expressed in units of Mh); the satellite moves on a circular
orbit at x c(E) = 0.5. We find no significant dependence of τ df,rig

on the halo concentration. The fit in the figure tries to single out
the dependences of τ df,rig on the mass of the satellite and its initial
orbit in a simple way and ties to the familiar expression of the DF
time-scale, derived in the local approximation, for the case of an
isothermal sphere (Binney & Tremaine 1987). If we again use the
expression of the frictional force, given by Chandrasekhar (1943),
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Figure 1. DF time-scale τ df,rig versus Ms,0/Mh for a satellite in a Milky-
Way-like halo with xc(E) = 0.5 and ε = 1. Filled symbols are from the
TLR, while open symbols are from the local approximation of DF as given
by solving equation (9). Dots refer to ch = 7 while squares denote ch =
14. The solid line corresponds to the fit τ df,rig ∼ 1.3 R2

hV hx2
c/[GMs,0 ln �]

where ln � = ln(1 +Mh/Ms,0).

treating the background density and dispersion velocity as local
quantities (evaluated at the satellite current position),2 the evolution
equation of a satellite spiraling down on circular orbits in a NFW
main halo is

1

r

d[r Vc(r )]

dt
= −4π ln �G2 Ms,0

ρ(r, ch)

V 2
c (r )

[
erf(Y ) − 2

Y√
π

e−Y 2

]
(9)

where Y = Vc(r )/
√

2σ (r ). This equation can be integrated grouping
all quantities depending on r, on the left-hand side of equation (9)
to give∫ 0

xc

�(x, ch) dx = − G Ms,0 ln �

R2
h Vh

τdf,rig, (10)

where x c is the initial radius of the circular orbit.
The function �(x , ch) has an analytical expression that can be

fitted, with an average error of one part over 1000, as

�(x, ch) � f (ch)x0.97, (11)

leading to a DF time-scale for circular orbits

τdf,rig ∼ 0.6 f (ch)
R2

h Vh

G Ms,0

x1.97
c

ln �
for ε = 1, (12)

where ln � = ln (1 +Mh/M s,0), and f (ch) is

f (ch) = 1.6765 + 0.0446ch. (13)

2 Dynamical friction is the result of a ‘long-range’ disturbance (Hernquist
& Weinberg 1999; Colpi & Pallavicini 1998; CMG99). Treating it as local
is conceptually incorrect. The error that results, which is difficult to quan-
tify unless the whole treatment is included, is customarily absorbed in the
Coulomb logarithm.

Figure 2. DF time τ df,rig versus circularity ε for Ms/Mh = 0.02, 0.05 and
0.1, where xc(E) = 0.5. Points are the TLR data and the solid lines are the
model results τ df,rig ∝ εα where τ df,rig is given by equation (12) and we
estimate α using equation (15).

This simple analysis explains that a fit similar to that for a singular
isothermal sphere (see Fig. 1 and its caption) is acceptable even in
a NFW profile.

The frictional time is also a function of the initial orbital circu-
larity ε. Thus we have explored the dependence of τ df,rig(ε) as the
accretion of satellites in a main halo occurs preferentially along
rather eccentric orbits. This dependence has been already discussed
in Lacey & Cole (1993), van den Bosch et al. (1999), and CMG99
for isothermal profiles, giving

τdf,rig(ε) ∼ τdf,rig(ε = 1)εα. (14)

CMG99 noticed that, for a fixed satellite mass (M s,0 �Mh), the
time-scale varies with the orbital energy, suggesting for α a depen-
dence on x c(E) (see CMG99 for the suggested values of α).

In a NFW halo, we find that α depends on x c(E), and on M s,0/Mh.
We find that, although relatively heavy satellites decay on a time
almost independent of ε, lighter satellites decay on much shorter
times when ε → 0. This is shown in Fig. 2. A useful fit to α as a
function of orbital energy and mass ratio is

α(xc, Ms,0/Mh) � 0.475

{
1− tanh

[
10.3

(
Ms,0

Mh

)0.33

−7.5xc

]}
.

(15)

As in CMG99, we used high-resolution N-body simulations to fol-
low the orbital decay of a rigid satellite (using up to 106 particles to
sample the halo mass distribution) and we found a very close match
with the theory of linear response. The two approaches agree in a
number of details on the evolution, the most remarkable being the
temporary rise of the orbital angular momentum observed during
the final stages of the decay. This is a manifestation of the fact that
in the background medium, no longer uniform, the satellite moves
inside or close to its distorted wake that, near pericentre distance,
induces a positive torque (Colpi M. et al., in preparation).

C© 2003 RAS, MNRAS 341, 434–448

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/341/2/434/1103988 by guest on 21 August 2022



438 G. Taffoni et al.

As a final remark, we notice that initial eccentric orbits that decay
by DF do not chance significantly their degree of circularity with
time, as was also found in isothermal profiles (van den Bosch et al.
1999; CMG99).

5 T H E DY NA M I C A L E VO L U T I O N
O F A L I V E S AT E L L I T E

The evolution of a rigid object is determined by the frictional drag
force and its survival time corresponds to the DF time τ df,rig. How-
ever, a real satellite is not a rigid point mass but a deformable distri-
bution of particles moving inside a halo. Its life is then dramatically
influenced by the tidal perturbations induced by the gravitational
field of the primary halo. The global effect of the tidal perturbation
is the progressive evaporation of the satellite. This process takes
place during the orbital evolution and it is generally sensitive to the
internal properties of the satellite and of the surrounding halo.

Our aim is to model realistically the tidal effects in order to eval-
uate the mass that remains bound to the satellite, M s(t), each time
along the orbit.

We distinguish two tidal effects: a tidal truncation (tidal cut),
originated by the average tidal force exerted by the main halo at the
distance of the satellite, and an evaporation effect induced by the
rapidly varying tidal force near pericentre radii for satellites moving
on eccentric orbits. In the latter case, we speak of tidal shocks – short
impulses are imparted to bound particles within the satellite, heating
the system and causing its dissolution.

5.1 The tidal truncation

A tidally limited satellite is truncated at its tidal radius Rs,tid, which,
loosely speaking, corresponds to the distance (relative to the satellite
centre) at which the mean density of the satellite is of the order of
the mean density of the hosting halo, at the satellite position r:

ρ̄s(Rs,tid) ≈ ρ̄h(r ). (16)

The evaluation of the tidal radius requires a relation between
Rs,tid and r which is customarily derived from the force equivalence
between internal gravity and external tides leading to the implicit
equation (Tormen, Diaferio & Seyer 1998):

Rs,tid = r

{
Ms(Rs,tid)

(2 − ∂ ln Mh/∂ ln r )Mh(r )

}1/3

. (17)

The mass tidally lost, �M s,tid is thus computed subtracting spher-
ical shell above Rs,tid, using equation (2). While strictly valid for
a satellite moving on a circular orbit (where the combined poten-
tial over the system is static in the satellite frame) Rs,tid gives, if
evaluated at every single point r (Binney & Tremaine 1987), an ap-
proximate expression for the instantaneous tidal radius in the case
of non-circular motion. This implies that, on stable orbits, �M s,tid

is maximum at the first pericentre passage; the mass of the satellite
would then remain constant. In Fig. 3 we give the residual mass af-
ter instantaneous tidal cut, as a function of circularity, as computed
using equation (17).

Tidal stripping, however, does not occur instantaneously and, fol-
lowing the suggestion of TB, we model mass loss, over a few orbital
periods, adopting the expression

dM

dt
� �Ms,tid(t)

2π/ω(t)
(18)

where ω(t) is the instantaneous orbital angular velocity. This is com-
pared with results from numerical simulations. Fig. 5 gives the satel-
lite mass as a function of time for a selected run. We find that mass

Figure 3. The residual mass of a satellite at the first pericentre passage as
a function of the orbital parameters, when cs/ch = 2. We assume that the
‘tidal cut’ instantaneously reduces the satellite mass. Each curve is labelled
with the residual mass in units of the initial mass. The vertical dotted line is
the most probable value of the eccentricity in a cosmological environment
(Tormen 1997), the dashed vertical lines are the 1σ variance.

loss by tidal cut, as described by equation (18), reproduces the result
of our N-body simulation only in the early phase; the satellite loses
mass at a pace larger than predicted by equation (18) (we refer to
the dashed line of Fig. 5). We believe that this is due to the action
of tidal shocks (and not a numerical artefact).

The number of particles in the N-body simulations is chosen
in order to avoid as much as possible numerical two-body relax-
ation which could increase, artificially, the overall evaporation rate
(Gnedin & Ostriker 1999; Moore et al. 1996). Numerical relaxation
disperses satellite particles over a time-scale related to the number
of particles N

trh = 0.138
M0.5

s R1.5
hm

G0.5m∗ ln(0.4N )
, (19)

where Rhm is the half-mass radius, m∗ is the particle mass, and Ms =
m∗ N . As shown in Table 1, the initial relaxation time is ∼100 Gyr
and remains longer than 10 Gyr as mass loss continues. This is an
indication that numerical two-body relaxation is unimportant. We
thus proceed to model mass loss with the inclusion of tidal shocks.
In the next section, we estimate the shock-induced evaporation time

Table 1. The characteristic time-scales.

Model cs/ch t sh (Gyr) Porb (Gyr) t rh (Gyr)

Low concentration
ε = 0.7 xc = 0.5 0.5 12.6 4.7 176.4
ε = 0.5 xc = 0.3 0.5 0.7 2.6 173.6
Intermediate concentration
ε = 0.7 xc = 0.5 1.0 93.6 4.7 119.2
ε = 0.5 xc = 0.3 1.0 2.0 2.6 112.6
High concentration
ε = 0.7 xc = 0.5 2.0 130.0 4.7 80.7
ε = 0.5 xc = 0.3 2.0 6.6 2.6 73.8

C© 2003 RAS, MNRAS 341, 434–448

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/341/2/434/1103988 by guest on 21 August 2022



On the life and death of satellite haloes 439

and show that, for NFW satellites, it can be shorter than cosmic
age.

5.2 Heating and evaporation

The description of the dynamical evolution of a satellite must include
also tidal heating due to compressive tidal shocks.

The theory of shock heating was developed by Ostriker, Spitzer &
Chevalier (1972) and Spitzer (1987) to model the evolution of glob-
ular clusters. Recent works by Gnedin & Ostriker (1997) and GHO
extend this theory also to tidal perturbation on satellites moving on
eccentric orbits inside an extended mass distribution. We use the
GHO model to treat tidal shocks on satellites orbiting specifically
inside a NFW halo. At each pericentre passage, satellites cross the
denser regions of the main halo; the rapidly varying tidal force in-
duces a gravitational shock inside the satellite. The shock increases
the velocities of satellite particles, and reduces the satellite binding
energy. As a result the satellite expands.

The amount of heating is a function of the orbital parameters and
of the concentration of the main halo:

〈�E〉 = F (ch, xc[E], ε) A(xτ )R2
s , (20)

The shock is more intense in the outer layers, as it depends also on
the satellite radius Rs (see Appendix A for details of the calcula-
tion). As suggested by GHO, we use an adiabatic correction A(x τ ) =
(1 + x2

τ )γ with γ =−5/2 (Weinberg 1995). Here, x τ ≡ωτ is the adi-
abatic parameter, τ is the duration of the shock and ω = σ s(Rs)/Rs,
where σ s is the velocity dispersion of particles in the satellite at
radius Rs. The value of τ is related to the pericentre crossing time;
we assume τ = 0.5/ωper, where ωper is the orbital angular veloc-
ity at pericentre distance. The adiabatic correction accounts for the
fact that the susceptibility of a system to the tidal shocks will also
depend on its internal dynamics; when the internal orbital time is
very short, a particle in the satellite will receive two opposite tidal
kicks of nearly the same magnitude and the net effect will be small
(Binney & Tremaine 1987).

We introduce a characteristic shock time-scale computed, after
each pericentre passage, as

tsh′ = Porb

2

E0

〈�Ehm〉 , (21)

where E0 = 0.25GMs,per/Rs,hm is the binding energy of the tidally
truncated satellite of mass M s,per evaluated according to equa-
tion (18) at the time of pericentric passage. Both E0 and 〈�Ehm〉
are evaluated at the half-mass radius Rs,hm which is a function of
the satellite concentration. A second-order energy change due to
shock heating is responsible for increasing the internal velocity dis-
persion, and allows additional particles to leave the satellite. To
account for this second-order perturbation, we assume that t sh =
0.43 t sh′ (Gnedin, Lee & Ostriker 1999, hereafter GLO). Table 1
shows the shock time for the satellite modelled at first pericentre
passage. The number of pericentre passages roughly necessary to
unbind the satellite is t sh/Porb. Lastly, we notice that 〈�E〉 increases
linearly with the halo concentration ch, because in highly concen-
trated haloes the gradient of the gravitational force is steeper.

The amount of heating is also a function of the orbital param-
eters; in Fig. 4 we study the energy gain as a function of x c(E)
for different values of the circularity. The fast growth of 〈�E〉 for
small values of x c(E) confirms that shocks on radial orbits are more
intense; a satellite moving on a circular orbit is not subject to any
heating.

Figure 4. The amount of shock heating as a function of the circular radius
xc(E). 〈�E〉 is normalized to the value of 〈�E〉 when xc(E) = 0.5 and
ε = 0.6. We consider three different values of the circularity: ε = 0.4 (solid
line), ε = 0.6 (dotted line) and ε = 0.8 (dashed line). The satellite and halo
concentrations are chosen such as cs/ch = 2.

5.3 Modelling the mass loss

Tidal shocks are events leading to the escape of particles. To model
the induced mass loss, we introduce the so-called escape probabil-
ity function ξ sh, analogue of ξ e customarily used to describe glob-
ular cluster evaporation by two-body relaxation processes (Spitzer
1987).

Mass loss can be predicted using the dimensionless rate of escape

ξe ≡ − trh

M(t)

dM

dt
. (22)

Similarly, here we define

ξsh ≈ − tsh

M(t)

dM

dt
. (23)

For the case of escape by two-body relaxation, ξ sh is a constant
known to vary from 7.4 × 10−3 for an isolated halo to 0.045 for a
tidally truncated halo (Spitzer 1987). In contrast, when tidal shocks
are present and dominate, the escape probability becomes a function
of time; ξ sh peaks just after each pericentre passage (GLO), rapidly
decreasing until the next shock event. ξ sh is then a periodic function
of period Porb and we find that it can be fitted using both simulations
and results by GLH as

ξsh(t) ∝
( t − tper

ttr

)−0.5

exp −
( t − tper

ttr

)0.5

, (24)

where t tr � 13 t sh and tper is the pericentre time. The shock escape
probability is equal to unity at t = tper + tdyn where tdyn is the
dynamical time of the satellite. The shock time must be evaluated
at each pericentre passage as it varies according to the current orbit
and mass of the satellite.

The orbital time-scale is some time shorter that the shock time-
scale so that the satellite suffers. If it becomes unbound, further
dispersal of the last particles occurs on the crossing time of the
damaged system.
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5.4 Testing the model for a live satellite

The dynamical evolution of a satellite is described using a semi-
analytical code which accounts for both DF and mass loss. In this
context, we use the expression of the drag force as given in equa-
tion (9), as it is much faster, and closely matches the TLR (see
Section 3). At each time-step, we upgrade the satellite mass ac-
cording to equations (18) and (23). To test the ability of our code
to follow the evolution of a NFW satellite, we compare the results
with those derived from a selected set of N-body simulations.

5.4.1 Tidal perturbations on stable orbits

To isolate and study the effect of a pure tidal perturbation we ex-
plore the dynamical evolution of a low-concentration satellite on an
unperturbed orbit. In this case, the heating by tidal shocks varies
solely as a consequence of the progressive reduction of the satellite
half-mass radius. For this reason, we expect a progressive reduction
of the shock destructive power as time passes. In Fig. 5 we show
the evolution of a satellite with mass M s,0 = 0.01Mh. The orbital
parameters are chosen to reflect a typical cosmological orbit: ε =
0.65 and x c(E) = 0.5. The bottom panel shows a low cs/ch satellite,
disrupted after the second passage to the pericentre. The top panel
shows the evolution of a higher cs/ch satellite surviving for more
than 12 Gyr, despite having lost more than the 99 per cent of its
mass. Until the first pericentre passage only the tidal cut accounts
for the mass loss. The good agreement between the simulation and
the code before the first pericentre passage suggests that the recipe
of TB is accurate enough to reproduce the mass loss before (or in
absence of) the shock heating.

5.4.2 The combined effect of DF and tidal stripping

The dynamical evolution of a satellite is driven by the combined
effect of DF that drives the satellite to the centre of the main halo,
and the tidal perturbation which reduces its mass. The two processes
are intimately connected as the drag force is strongly related to the
mass and size of the satellite.

In Fig. 6 we compare the semi-analytical model with the results of
N-body simulations for satellites with cs/ch = 2. The initial orbital
parameters are ε = 0.7, and x c(E) = 0.5. We study two different
cases: a light satellite of mass M s,0 = 0.02Mh and a massive satellite
with M s = 0.1Mh. The mass-loss rate and the orbital evolution
are well reproduced in both cases. The massive satellite loses mass
during evolution, yet a core of bound particles survives, having 5 per
cent of its initial mass, but sinks to the centre merging with the main
halo in three orbital periods. In contrast, the light satellite loses 99
per cent of its mass but a bound core remains which moves on an
inner orbit stable against DF, following mass loss.

6 T H E FAT E O F S AT E L L I T E S

6.1 The recipe

We now use our semi-analytical model to quantify how mass loss
affects the orbital decay. In Fig. 7 we give, as a function of M s,0/Mh,
the ratio of the DF time of a rigid satellite τ df,rig to the same time
for a homologous live satellite τ df,live.3 In taking the ratio we mainly

3 We use highly concentrated satellites (cs/ch = 2) that are not rapidly
disrupted by tidal interactions.

Figure 5. Bound mass in units of the initial mass as a function of time,
for a satellite moving on a stable orbit. The orbital parameters are ε = 0.65
and xc(E) = 0.5. The concentration ratio is cs/ch = 0.7 (top panel) and
cs/ch = 0.4 (bottom panel). The symbols are the N-body data and the solid
line shows the semi-analytical model. Stars identify each pericentre passage.
The dashed line is the bound mass that would remain if we apply only the
tidal cut using equation (18) over a few orbital periods.

quantify the importance of mass loss in affecting the lifetime of a
satellite. Fig. 7 shows that massive satellites (M s,0/Mh > 0.1) sink
to the centre of the main halo on a time-scale τ df,life ∼ τ df,rig as if
they were rigid.

In the mass range M s,0 � 0.005–0.1Mh the satellites sink toward
the centre of the main halo by DF and so lose mass efficiently.
Accordingly, the DF time τ df,live is a few to several times longer
than τ df,rig. At lower masses, M s,0 ∼ <0.005Mh, orbits are less
perturbed by friction and mass stripping becomes less important.
Thus the ratio τ df,rig/τ df,life starts to rise again.
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Figure 6. We plot the time evolution of the mass, in units of the initial mass (left panels), and orbital angular momentum scaled to the initial mass (right
panels). The adopted values are Ms,0 = 0.1Mh and Ms,0 = 0.02Mh. The concentration ratio and orbital parameters are cs/ch = 2, ε = 0.7 and xc(E) = 0.5,
respectively. Points are from N-body runs and the solid line is from our semi-analytical model.

We now estimate the DF time-scale for a live satellite in three
different regimes.

For massive satellites, M s,0 � 0.1Mh, the DF time is not affected
by the mass loss, so

τdf,live ∼ τdf,rig � 0.5
R2

h Vh

G Ms
Arig

[
Ms,0

Mh
, ch, xc(E)

]
, (25)

where

Arig

[
Ms,0

Mh
, ch, xc(E)

]
= f (ch)

x1.97
c (E)

ln(1 + Mh/Ms,0)
, (26)

and f (ch) is given by equation (13). In this case, the DF time depends
weakly on ε; the exponent α ≈ 0, as indicated by equation (15).

For 0.007Mh < M s,0 < 0.08Mh, we provide a fit of the form

τdf,live ∼ R2
h Vh

G Ms,0
Alive

[
Ms,0

Mh
,

cs

ch
, xc(E), ε

]
. (27)

For ε = 1

Alive

(
Ms,0

Mh
,

cs

ch
, xc, ε = 1

)
=

[
0.25

(cs/ch)6
− 0.07

cs

ch
+ 1.123

]

×
[

B(xc)

(
Ms,0

Mh

)0.12

+ C(xc)

(
Ms,0

Mh

)2
]

, (28)

where

B(xc) = −0.050 + 0.335xc + 0.328x2
c , (29)

C(xc) = 2.151 − 14.176xc + 27.383x2
c . (30)

This fit reproduces the semi-analytical estimate of the decay time
of a live satellite on circular orbits with an error of >� 9per cent, for
0.2 < x c(E) < 1.

For eccentric orbits we find that

Alive

(
Ms,0

Mh
,

cs

ch
, xc, ε

)
= Alive

(
Ms,0

Mh
,

cs

ch
, xc, ε = 1

)

×
[

0.4 + Q
(

Ms,0

Mh
, xc

)
× (ε − 0.2)

]
, (31)

where

Q
(

Ms,0

Mh
, xc

)
= 0.9 + 108

(
12.84 + 3.04xc − 23.4x2

c

)

×
(

Ms,0

Mh
− 0.0077

1 − 1.08xc
− 0.0362

)6

.
(32)

This formula holds when 0.3 < x c < 0.9 and 0.3 < ε < 0.8 and
reproduces the semi-analytical data within an error of 15 per cent
(see Fig. 8).

Interestingly, we notice that for an eccentric orbit the decay time
can be longer that the DF time on the circular orbit with the same
initial orbital energy, because mass loss on an eccentric orbit is
higher because of the tidal shock.
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Figure 7. We have plotted the ratio of the DF time of a non-deformable
satellite to the same time for a live satellite of equal mass, initially, as a
function of Ms,0/Mh. The concentration ratio is cs/ch = 2, and xc(E) = 0.5.
We vary the circularity which is labelled with different symbols. We notice
that symbols for ε = 0.3 refer to a different orbital energy: xc(E) = 0.3.

Figure 8. The DF time of life satellites as a function of the satellite initial
mass. Symbols are the results obtained from the semi-analytical code, lines
are the prescription of the fitting formulae (from equations 27–32). We set
the circularity ε = 0.7 and the relative concentration cs/ch = 2 and we vary
the orbital energy: xc(E) = 0.5 (solid line and squares), xc(E) = 0.7 (dotted
line and stars), xc(E) = 0.3 (dashed line and circles).

For ε > 0.8,Alive we use the interpolation of equations (31) and
(28). If 0.08Mh < M s,0 < 0.1Mh, we suggest the linear interpolation
of equations (25) and (27).

Satellites Ms,0
<� 0.007Mh evolve on slightly perturbed orbits;

the DF time-scale in this case is at least two times longer than for
the rigid satellite (CMG99 similarly found an increase of a factor e

for M s,0 = 0.02Mh). We suggest the use of equation (12) for τ df,life,
in this mass range, increased by a factor of ∼2.73, together with
equation (15) for the exponent α, to account for the correction to
circularity. For very light satellites (M s,0 < 10−4 Mh) equation (14)
holds.

In Appendix B we give a simple expression for the disruption time
tdis, which can be used for a comparison with other time-scales.

6.2 Merging, disruption or survival

We here investigate the dynamical evolution of a population of satel-
lites, in a given halo. An individual satellite is labelled by four pa-
rameters: x c (E) and ε identify the orbit, while initial mass M s,0 and
concentration cs identify the internal properties. Each combination
of the four parameters leads to a different final state for the satellite:
rapid merging toward the centre of the main halo (M), disruption
(D), or survival (S) (when a residual mass M s remains bound and
maintains its identity, orbiting in the main halo for a time longer
than the Hubble time).

An important role is played by the concentration ratio as shown
by the life diagrams in Fig. 9. These predict the final fate of a
satellite with M s,0 = 0.01Mh, as a function of cs/ch and of the orbital
parameters. The fractional area in this parameter space leading to
disruption, survival or decay is an estimate of the relative importance
of these processes in determining the fate of the satellite. Disruption
due to the tidal perturbation is the fate of those satellites that initially
move on close orbits despite cs/ch. Satellites moving along typical
(plunging) cosmological orbits survive over a Hubble time only if
they had a concentration higher than that of the main halo at the
time of their infall.

In Fig. 10 we have drawn the probability distribution relative to
the three final states: direct merging (by DF), which dominates at
large masses, survival and/or disruption, which is the most likely
end for satellites with M s,0 < 0.01Mh. In producing Fig. 10 we
have generated evolutionary paths (ending after a time equal to the
Hubble time) for satellites starting from a flat distribution of orbital
parameters and concentrations.

Our study suggests that those satellites that survive have lost
memory of their initial state; DF perturbs the orbit and tidal stripping
reduces the satellite mass. In Fig. 11 we compute the mass of the
satellites that remains after a Hubble time. The figure refers to a
high-concentration case, but we extend our analysis also to low-
concentration satellites, as shown in Fig. 12, where we compute the
cumulative mass distribution for all the initial orbital parameters.
On average, much less than 10 per cent of the initial mass remains
bound. Of course, in general, circular orbits do not cause serious
damages to the satellite as shock heating is less intense (an exception
is represented by satellites on very tightly bound orbits). In Fig. 11,
dots show the final mass just prior to evaporation. As expected,
radial orbits can more easily dissolve a satellite.

The strength of the orbital decay can be estimated measuring the
reduction of the apocentre distance. In Fig. 13 we plot the distri-
bution of apocentre radii for a satellite with M s,0 = 0.01Mh after
15 Gyr of orbital evolution. The strength of the drag force reduces
the apocentre distance by a factor of 2 for cosmological orbits and
it is not significantly affected by the concentration.

6.3 Cosmological examples

Now, we apply our analysis to some cosmologically relevant ex-
amples. We discuss the evolution of different satellites which orbit
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Figure 9. The life diagram of a satellite with Ms,0 = 0.01Mh. Each plot is labelled with the value of xc(E). We identify the region of the parameter space
where the satellite sinks to the centre of the main halo (M), evaporates in the background (D) or survives (S).

Figure 10. Probability distribution for the three final endpoints: merging
(M), disruption (D) or survival (S) as a function of the initial satellite mass.
The thick solid line refers to the case of a rigid satellite.

in cluster-like and galaxy-like haloes. The cluster halo is a Coma-
like cluster with mass Mh = 5 × 1015 M� and concentration ch =
3.44. The Milky-Way-like galaxy halo has Mh = 1012 M� and
ch = 10.44. For all cases, the initial orbital parameters are chosen
as ε = 0.6 and x c(E) = 0.5.

6.3.1 Group in Coma

We consider a massive group-like satellite of mass M s,0 = 3 ×
1013 M� and cs = 7.5, which enters the Coma-like halo at z = 0.5.
In a �CDM cosmology it evolves for ∼4.8 Gyr inside the halo until
z = 0.

As suggested by the high value of cs/ch, the satellite is not dis-
rupted. Because M s,0 = 0.006Mh, the orbit is stable and, with this
choice of the initial orbital parameters, the satellite evolves for
∼1.5Porb. The final apocentre radius is r apo � 0.85r apo,0 and its
final mass is M s = 7.2 × 1012 M�.

cs/ch=1cs/ch=1cs/ch=1cs/ch=1cs/ch=1cs/ch=1cs/ch=1cs/ch=1cs/ch=1cs/ch=1cs/ch=1cs/ch=1cs/ch=1cs/ch=1cs/ch=1cs/ch=1cs/ch=1cs/ch=1cs/ch=1cs/ch=1cs/ch=1cs/ch=1cs/ch=1cs/ch=1cs/ch=1
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Figure 11. The mass that remains as a function of the orbital parameters
after more than a Hubble time, for a satellite with Ms,0 = 0.01Mh. Dots
identify the regions where the satellite is disrupted. The contour lines on the
xy-plane identify the loci where Ms/Ms,0 = 0.1. This figure is in colour on
Synergy, in the online version of the journal.

6.3.2 Milky Way in Coma

A Milky-Way-like satellite has mass M s,0 = 1012 M� and cs =
10.44. If it enters the Coma-like halo at z = 0.5 it evolves for
∼1.5Porb. The orbit remains almost unperturbed (r apo � 0.99r apo,0)
because the strength of the drag force is extremely weak as M s,0 =
0.0002Mh. Due to the extremely high relative concentration, cs/ch �
3, the satellite does not evaporate and its final mass at z = 0 is M s =
2.5 × 1011 M�.

6.3.3 Large Magellanic Cloud in Milky Way

A Large Magellanic Cloud halo has M s,0 = 1011 M� and cs = 11.9.
As expected, because of its relative high mass, the satellite merges
with the Milky Way in ∼4 Gyr. Before merging, the satellite loses
97 per cent of its mass that is dispersed in the Milky-Way halo.

6.3.4 Dwarf in Milky Way

We consider a Dwarf-like satellite of mass M s,0 = 5 × 109 M�
and concentration cs = 13.6. If it enters the Milky-Way-like halo at
z = 0.5 it evolves on an almost unperturbed orbit for ∼2Porb and its
final mass is M s = 2 × 108 M�.
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Figure 12. The distribution of the final mass of a satellite of initial mass
Ms = 0.01Mh after more than a Hubble time. Histograms are derived starting
from a uniform distribution of orbital parameters, for two values of the
concentration ratio: cs/ch = 2 (filled grey area) and cs/ch = 1.

6.3.5 Dwarf in Milky Way at high redshift

A Dwarf-like satellite enters a Milky-Way-like halo at z = 2, when
the Milky Way has mass Mh = 1011 M� and concentration ch =
6.15. The satellite has M s,0 = 5 × 109 M� and cs = 6.8. The dwarf
evolves for ∼11 Gyr. Due to its low relative concentration, it loses
99 per cent of its initial mass during the first orbital period; its orbit
then becomes stable (r apo � 0.36 r apo,0). Note that here we do not
take into account the evolution of the main halo which grows in
mass during the remaining 11 Gyr before z = 0, but the influence
of accreted mass on the dynamics of the central region should be
relatively small (Helmi, White & Springel 2002) Finally, we notice
that our Milky-Way model does not account for the presence of a
disc. Penarrubia, Kroupa & Boily (2002) suggest that orbital evolu-
tion changes when the potential well has a flattened component, and
DF is more efficient for satellites with low-inclination orbits (with
respect to the disc); the orbital decay is accelerated and the orbital
plane decays over the disc plane. They also find instead that DF en-
hances the survival time of satellites when they move on near-polar
orbits.

7 S U M M A RY A N D C O N C L U S I O N S

We have coupled together two successful models for DF and
tidal stripping and we have compared their predictions with high-
resolution N-body simulations to address the evolution and ultimate
fate of satellite haloes within cosmic structures. Under the assump-
tion that haloes are well described by a NFW profile, we are able
to predict whether a satellite of given mass, orbital eccentricity and
infall redshift, will merge, evaporate or survive under the simulta-
neous action of DF and tidal mass loss.

We emphasize that we have obtained a complete predictive
scheme for the fate of satellites whose masses at the time of infall
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Figure 13. The apocentre radius in units of its initial value for a satellite
Ms,0 = 0.01Mh evaluated after more than a Hubble time (we terminate at
15 Gyr). The two plots refer to cs/ch = 2 (bottom) and cs/ch = 1 (top).
Dots identify satellites that evaporate before 15 Gyr. The contour lines on
the xy-plane select the regions where the relative reductions of r apo are 0.1
(dotted lines) and 0.5 (dashed lines). This figure is in colour on Synergy, in
the online version of the journal.

into the main halo are known (below we refer to typical cosmolog-
ical orbits):

(i) High-mass satellites (M s,0 > 0.1Mh) sink rapidly towards the
centre of the main halo without significant mass dispersal. The DF
time-scale for a rigid satellite (equation 25) gives the correct time-
scale of merging.

(ii) For satellites of mass 0.01Mh < M s,0 < 0.1Mh, DF is still
strong and drives the satellite towards the centre where tidal mass
loss becomes severe. Low-concentration satellites are disrupted,
while high-concentration satellites, severely pruned by the tidal
field, survive with masses 0.01 M s,0, and settle into inner orbits
with a typical reduction of the apocentre radii of a factor of ∼0.1
lower relative to the initial value. The DF time-scale for these
satellites is longer than for their rigid counterpart, and is given by
equation (27).

(iii) Light satellites with mass M s,0 < 0.01Mh are almost unaf-
fected by DF which operates on a rather long time-scale. Mass loss
by the tidal field, which is not severe on these cosmological orbits,
further stabilizes the orbit.
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(iv) Low-concentration satellites below 0.1Mh can be disrupted
by tides before their orbital decay is complete. A comparison of
the DF time-scale and the disruption time-scale, as provided in this
paper, allows us to find the actual lifetime of satellite haloes.

We predict that, because of the combined action of stripping and
DF, a primary halo at z = 0 will host preferentially satellites with
mass M s/Mh � 0.01, as the heavier satellites would have been
accreted or/and dispersed in the background, leaving a ‘depression’
in the mass function of substructure above 0.01M s/Mh (of course,
we are neglecting effects due to the evolution of the main halo itself).
This feature should be more evident in Milky-Way-size haloes than
in cluster haloes, as in the former bound satellites have more time
to evolve.

Because the destructive power of the tidal field (and in particular
of tidal shocks) depends sensitively on the degree of circularity of
the satellite orbit, a large galaxy halo like that of the Milky Way
(>1012 M�) should host satellites moving preferentially on circu-
lar orbits as a consequence of the selective action of the tidal field.
Also, because DF seems unable to render the satellite orbit circular
(van den Bosch et al. 1999; CMG99), the low eccentricities should
have been already present as initial conditions. This ‘selection ef-
fect’ will be extremely weak for smaller satellites (below 0.01–
0.001 M�) because their orbit barely decays and thus will have,
in general, long survival times – only low-concentration satellites
could disappear quickly but they are not common in CDM models
(see, for example, Eke et al. 2001; Bullock et al. 2001). This mass
regime corresponds to that of the dwarf spheroidal satellites of the
Milky Way. On the other hand, the Magellanic Clouds, the dwarf
elliptical satellites of M31 and perhaps the dwarf spheroidal For-
nax are all massive enough to fit in the intermediate regime where
destruction is still possible; thus these galaxies could have survived
because their host haloes had nearly circular orbits. In the case of
the Magellanic Clouds, a nearly circular orbit is indeed measured
(Kroupa & Bastian 1997). There is, however, at least one caveat
to this interpretation, namely that both the dwarf ellipticals of M31
and the Magellanic Clouds could be dense enough to survive shocks
on even very eccentric orbits (Mayer et al. 2001b). Only when all
the orbits of the satellites are accurately determined, will we know
whether eccentricity or internal structure is more important in de-
termining their survival.

The calculations described in this paper can become a useful tool
when coupled to cosmological simulations. The final goal is to find
an appropriate description of the dynamical evolution of substruc-
ture in a halo. Increasing computing power and code performances
has recently allowed us to carry out extremely high-resolution simu-
lations that follow the evolution of substructure in dark matter haloes
(Ghigna et al. 1998, 2000; Mayer L. et al., in preparation). These
represent the new ground where CDM models are being tested and
their predictions compared to observations. However, these simu-
lations remain costly and usually only one system at a time can be
simulated down to very small scales. On the other hand, resolving
the mass function of substructure in depth is important in light of
the problem of the overabundance of satellites (Moore et al. 1999a;
Klypin et al. 1999). Such mass function can be viewed as the con-
volution of the mass function of satellites at an earlier epoch with
an evolutionary filter function that depends on the dynamical mech-
anisms analysed in this work. Therefore, our results can allow us to
address the substructure problem, in a statistical way, orders of mag-
nitude faster than with N-body simulations. As an example, we can
explore a large number of dynamical histories by randomly varying
the orbital and structural parameters in the range typical of CDM

cosmogonies, and work is in progress (Taffoni, Monaco & Theuns
2002). Here we make a first attempt starting with uniform distribu-
tions. Clearly the time-dependent potential of the growing primary
halo, whether it is a galaxy or a cluster, is an additional ingredi-
ent that only simulations can incorporate and which could affect
the orbital dynamics of the satellites. However, the latter limitation
can be partially overcome by using the merger tree extracted from
a low-resolution simulation, as done within some semi-analytical
models (Somerville & Primack 1999; Kauffmann et al. 1999; Cole
et al. 2000) or using analytical merger trees providing a good ap-
proximation to the latter (Taffoni et al. 2002; Monaco et al. 2002).

A key result of our analysis, and one that is in agreement with
the high-resolution cosmological simulations from which the initial
orbits were drawn, is that the inner, most bound part of small satel-
lites as concentrated as expected in CDM models (Eke et al. 2001;
Bullock et al. 2001) survive for time-scales comparable to or longer
than the age of the Universe. This residual has a size corresponding
to a few per cent of the initial virial radius; this is comparable to
the scale of the baryonic component in galaxies, so we can argue
that galaxies will mostly survive within the main halo. This result
is also confirmed by high-resolution smoothed particle hydrody-
namics (SPH) simulations of the formation of a Milky-Way-like
galaxy (Governato et al. 2002). Indeed, dissipation could make the
inner part of the haloes even more robust against tides (Navarro
& Steinmetz 2000). On the other hand, additional tidal shocks oc-
curring during encounters between substructure haloes, i.e. galaxy
harassment (Moore et al. 1996, 1998), might have a counteracting
effect and could actually increase mass loss. However, detailed sim-
ulations of this mechanism have shown that only very fragile, low
surface brightness (LSB) type galaxies would be severely damaged
by harassment (Moore et al. 1999b). Halo profiles of these galaxies
likely correspond to the low-concentration satellites studied in this
paper (van den Bosch & Swaters 2001) which we have shown are
easily disrupted even by the tides of the primary halo alone. Thus,
adding harassment would only accelerate the disruption of a few
satellites while not affecting the survival of the majority of them
which, in CDM models, have high concentrations. Hence, the pic-
ture emerging from the life diagrams of the satellites shown in this
paper is robust. Satellites close to disruption at the present time,
such as Sagittarius in the Milky-Way subgroup, must have been
much bigger in the past in order for DF to drag them to an inner or-
bit where dissolution can easily take place. Alternatively, they could
have entered the halo at fairly high redshift, which would place them
naturally on an inner, tightly bound orbit (Mayer et al. 2001b). In
clusters, dwarf galaxies cannibalized by giant central dominant (cD)
galaxies might also trace an early population.

Satellites infalling at redshift one or lower in the main haloes
will complete several orbits and eventually undergo morpholog-
ical changes by tidal stirring (Mayer et al. 2001a,b) and harass-
ment (Moore et al. 1996, 1998). These will produce diffuse streams
of stars while they are orbiting (Helmi & White 1999; Johnston,
Sigurdsson & Hernquist 1999), contributing to the build-up of an
extended stellar halo population. Such population should be present
out to more than 200 kpc in the Milky-Way halo, as the plunging
orbits of satellites seen in cosmological simulations go this far out.
On the contrary, a less extended stellar halo should be expected if
DF were more efficient in dragging satellites to the centre. The
amount of stellar halo substructure out to large distances could
thus reveal the original mass function of observed dwarf spheroidal
galaxies in the Local Group. Components decoupled in their kine-
matics as well as in the metallicity and age of their stars should
be present, but tracking such properties might be a daunting task
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observationally if enough phase mixing occurs (Ibata et al. 2001a,b).
However, while in the inner halo fast orbital precession and heating
by other clumps might blur the streams, the phase space distribution
of the outer halo material should still carry the memory of the initial
orbits of the satellites (Mayer et al. 2002).

The prescriptions for the decay and disruption rates obtained in
this work provide a complete framework which can improve the
predictive power of semi-analytical models of galaxy formation.
They enable us to follow the complex evolution of substructures in
hierarchical models in a straightforward manner.

AC K N OW L E D G M E N T S

The authors would like to thank Tom Quinn and Joachim Stadel
for providing us with PKDGRAV. Thanks go to Marta Volonteri and
Pierluigi Monaco for useful discussions, and to Valentina D’odorico
for the critical reading of the manuscript. Simulations have been car-
ried out at the CINECA Supercomputing Centre (Bologna) and on a
dual-processor ALPHA workstation at the University of Washing-
ton. LM was supported by the National Science Foundation (NSF
Grant 9973209).

R E F E R E N C E S

Binney J., Tremaine S., 1987, Galactic Dynamics. Princeton, Princeton Univ.
Press

Bullock J. S., Kolatt T. S., Sigad Y., Somerville, R. S., Kravtsov, A. V.,
Klypin, A. A., Primack, J. R., Dekel, A., 2001, MNRAS, 321, 559

Chandrasekhar S., 1943, ApJ, 97, 255
Cole S., Lacey C. G., Baugh C. M., Frenk C. S., 2000, MNRAS, 319, 168
Colpi M., 1998, ApJ, 502, 167
Colpi M., Pallavicini A., 1998, ApJ, 502, 150
Colpi M., Mayer L., Governato F., 1999, ApJ, 525, 720 (CMG99)
Eke V. R., Navarro J. F., Steinmetz M., 2001, ApJ, 554, 114
Fukushige T., Makino J., 2001, ApJ, 557, 533
Ghigna S., Moore B., Governato F., Lake G., Quinn T., Stadel J., 1998,

MNRAS, 300, 146
Ghigna S., Moore B., Governato F., Lake G., Quinn T., Stadel J., 2000, ApJ,

544, 616
Gnedin O. Y., Ostriker J. P., 1997, ApJ, 474, 223
Gnedin O. Y., Ostriker J. P., 1999, ApJ, 513, 626
Gnedin O. Y., Hernquist L., Ostriker J. P., 1999, ApJ, 514, 109 (GHO)
Gnedin O. Y., Lee H. M., Ostriker J. P., 1999, ApJ, 522, 935 (GLO)
Governato F., Babul A., Quinn T., Tozzi P., Baugh C. M., Katz N., Lake G.,

1999, MNRAS, 307, 949
Governato F., Ghigna S., Moore B., 2001, in Von Hippel T., Simpson C.,

Manset N., eds, ASP Conf. Ser. Vol. 245, Astrophysical Ages and Time
Scales. Astron. Soc. Pac., San Francisco, p. 469

Governato F. et al., preprint (astro-ph/0207044)
Hayashi E., Navarro F. J., Taylor J. E., Stadel J., Quinn T., 2003, ApJ, 584,

541
Helmi A., White S. D. M., 1999, MNRAS, 307, 495
Helmi A., White S. D. M., Springel V., 2002, Phys. Rev. D, 66f3502
Hernquist L., Weinberg M. D., 1999, MNRAS, 238, 407
Huang S., Carlberg R. G., 1997, ApJ, 480, 503
Ibata R., Irwin M., Lewis G., Ferguson A. M. N., Tanvir N., 2001a, Nat, 412,

49
Ibata R., Lewis G. F., Irwin M., Totten E., Quinn T., 2001b, ApJ, 551, 294
Jing Y. P., Suto Y., 2000, ApJ, 529, L69
Johnston K. V., Sigurdsson S., Hernquist L., 1999, MNRAS, 302, 771
Kauffmann G., White S. D. M., Guiderdoni B., 1993, MNRAS, 264, 201
Kauffmann G., Colberg J. M., Diaferio A., White S. D. M., 1999, MNRAS,

303, 188
Klypin A., Kravtsov A. V., Valenzuela O., Prada F., 1999, ApJ, 522, 82
Kolatt T. S., Bullock J. S., Dekel A., Primack J. R., Sigad Y., Kravtson A.

V., Klypin A. A., 2000, submitted (astro-ph/0010223)
Kroupa P., Bastian U., 1997, New Astron., 2, 77

Lacey C., Cole S., 1993, MNRAS, 262, 627
Lewis G. F., Babul A., Katz N., Quinn T., Hernquist L., Weinberg D. H.,

2000, ApJ, 536, 623
Mayer L., Governato F., Colpi M., Moore B., Quinn T., Wadsley J., Stadel

J., Lake G., 2001a, ApJ, 547, L123
Mayer L., Governato F., Colpi M., Moore B., Quinn T., Wadsley J., Stadel

J., Lake G., 2001b, ApJ, 559, 754
Mayer L., Moore B., Quinn T., Governato F., Stadel J., 2002, MNRAS, 336,

119
Monaco P., Theuns T., Taffoni G., Governato F., Quinn T., Stadel J., 2002,

ApJ, 564, 8
Moore B., Katz N., Lake G., Dressler A., Oemler Jr A., 1996, Nat, 379, 613
Moore B., Lake G., Katz N., 1998, MNRAS, 495, 139
Moore B., Lake G., Quinn T., Stadel J., 1999a, MNRAS, 304, 465
Moore B., Ghigna S., Governato F., Lake G., Quinn T., Stadel J., Tozzi P.,

1999b, ApJ, 524, 19
Naab T., Burkert A., Hernquist L., 1999, ApJ, 523, 133
Navarro J. F., Steinmetz M., 2000, ApJ, 528, 607
Navarro J. F., Frenk C. S., White S. D. M., 1996, ApJ, 462, 563
Navarro J. F., Frenk C. S., White S. D. M., 1997, ApJ, 490, 493
Ostriker J. P., Spitzer L. J., Chevalier R. A., 1972, ApJ, 176, 51
Penarrubia J., Kroupa P., Boily C. M., 2002, MNRAS, 333, 779
Power C., Navarro S. F., Jenkins A., Frenk C. S., White S. D. M., Springel

V., Stadel J., Quinn T., 2003, MNRAS, 338, 14
Sheth R. K., Lemson G., 1999, MNRAS, 304, 767
Somerville R. S., Kolatt T. S., 1999, MNRAS, 305, 1
Somerville R. S., Primack J. R., 1999, MNRAS, 310, 1087
Spitzer Jr L., 1987, Dynamical Evolution of Globular Clusters. Princeton,

Princeton Univ. Press
Stadel J., 2002, PhD thesis, Univ. Washington, Source DAI-B 62/08, p. 3657
Taffoni G., Monaco P., Theuns T., 2002, MNRAS, 333, 623
Taylor J., Babul A., 2001, ApJ, 559, 735
Tormen G., 1997, MNRAS, 290, 411
Tormen G., Diaferio A., Syer D., 1998, MNRAS, 299, 728
Van Albada T. S., 1987, IAUS, 127, 291
van den Bosch F. C., Lewis G. F., Lake G., Stadel J., 1999, ApJ, 515, 50
van den Bosch F. C., Swaters R. A., 2001, MNRAS, 325, 1017
Velázquez H., White S. D. M., 1999, MNRAS, 304, 254
Weinberg M. D., 1989, MNRAS, 239, 549
Weinberg M. D., 1994, AJ, 108, 1398
Weinberg M. D., 1995, ApJ, 455, 31
Zhang B., Wyse R. F. G., Stiavelli M., Silk J., 2002, MNRAS, 332, 647

A P P E N D I X A : C A L C U L AT I O N O F T H E T I DA L
E N E R G Y F O R A N F W P RO F I L E

At each pericentre passage, the satellite crosses very rapidly the
central and more concentrated regions of the primary halo. The
duration of those encounters is fast compared with the dynamical
time of the object. Such types of interactions are called tidal shocks
(Spitzer 1987). We use the results derived by GHO to describe the
amount of heating due to tidal shocks on a satellite moving inside
an extended mass distribution.

During an orbital period Porb the tidal force f s,tid per unit mass
produces a global variation on the velocity of the internal fluid

�v =
∫ Porb

0

f tid dt, (A1)

where we have applied the impulse approximation with the hypoth-
esis that the time-scale of interaction is short compared with the
dynamical time of the satellite (t = 0 refers to the initial satellite
position at apocentre distance).

In a spherically symmetric system of mass Mh, the tidal force per
unit mass exerted by the background on a dark matter particle of the
satellite is
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f tid = G Mh

R3
h

[(3µ − µ′)(r̂ · Rs)r̂ − µRs], (A2)

where r̂ = r/Rh is the direction to the centre of mass of the satellite
(CMS), Rs is the position of the particle respect to CMS. Note that
Rh is the virial radius of the main system. Here

µ(r ) = M(r )

Mh
(A3)

is the adimensional mass profile, and

µ′(r ) = dµ(r )

d ln r
. (A4)

For a NFW profile µ and µ′ are functions of the normalized radius
x = r/Rh and of the concentration ch of the primary halo:

µ(x, ch) = ln(1 + chx) − chx/(1 + chx)

ln(1 + ch) − ch/(1 + ch)
, (A5)

and

µ′(x, ch) = 1

ln(1 + ch) − ch/(1 + ch)

( chx

1 + chx

)2

. (A6)

In the case of stable orbits, the angular momentum J is conserved
and we can use the identity

dt = (r 2/J ) dθ (A7)

to re-write equation (A1) into components (GHO)

�v = G Mh

r J
{(B1 − B3)x, (B2 − B3)y, −B3z}, (A8)

where

B1(ch) =
∫ −θm

−θm

F1(x, ch) cos2 θ dθ (A9)

B2(ch) =
∫ −θm

−θm

F1(x, ch) sin2 θ dθ (A10)

B3(ch) =
∫ −θm

−θm

µ(x, ch)

x
dθ, (A11)

Here, θm is the maximum value of the position angle, and

F1(x, ch) = 3
[ln(1 + chx) − chx/(1 + chx)] − [chx/(1 + chx)]2

x[ln(1 + ch) − ch/(1 + ch)]
.

(A12)

This velocity changes cause a reduction of the binding energy of the
system:

〈�E〉 =
〈

1

2
|�v|2

〉
. (A13)

Averaging over an ensemble of dark matter particles in a spheri-
cally symmetric satellite we have that 〈x2〉 = 〈y2〉 = 〈z2〉 = R2

s /2,
and, using equation (A8), the tidal energy gained by the satellite
becomes

〈�E〉 =
(

G Mh

J Rh

)2 [
(B1 − B3)2 + (B2 − B3)2 + B2

3

6

]
R2

s . (A14)

In the previous expression, the contribution due to the halo and the
orbital parameters (ε and x2

c[E]) is confined in the function

� [ch, xc(E), ε] =
(

G Mh

R2
h Vh

)2
1

x2
c (E)ε2

×
[

(B1 − B3)2 + (B2 − B3)2 + B2
3

6

]
, (A15)

where V h is the circular velocity of the main halo at virial radius.
It is then useful to write the shock energy as

〈�E〉 = � [ch, xc(E), ε] R2
s . (A16)

When the frictional drag force is active, it is not possible to
change the integration variable according to equation (A7). The
energy change becomes

〈�E〉 =
(

G Mh

R3
h

)2 [
(A1 − A3)2 + (A2 − A3)2 + A2

3

6

]
R2

s .

(A17)

Here

A1(ε, xc[E]) =
∫ Porb

0

F2(x, ch) cos2 θ dt (A18)

A2(ε, xc[E]) =
∫ Porb

0

F2(x, ch) sin2 θ dt (A19)

A3(ε, xc[E]) =
∫ Porb

0

µ(x, ch)

x3
dt, (A20)

with

F2(x, ch) = F1(x, ch)

x2
. (A21)

Once again we separate the contribution due to the environment:

F [ch, xc(E), ε] =
(

G Mh

R3
h

)2[
(A1 − A3)2 + (A2 − A3)2 + A2

3

6

]
.

(A22)

For an unstable orbit

〈�E〉 = F [ch, xc(E), ε] R2
s . (A23)

The shock energy in this case must be evaluated along the perturbed
orbit. As the drag force drives the satellite in the internal region of
the halo, 〈�E〉 increases (Fig. A1).

A P P E N D I X B : A N A P P ROX I M AT E E S T I M AT E
O F T H E D I S RU P T I O N T I M E - S C A L E

Because the lifetime of light satellites is mostly set by tidal disrup-
tion, we estimate here the disruption time. If the main halo density
profile is isothermal (ISO), then GHO have shown that the shock
energy change is

〈�E〉ISO =
(

Vh

Rh

)2
2 sin2 θm + 4θ 2

m

6(εxc)2
A(xτ )R2

s , (B1)

where θm is the maximum value of the position angle which varies
from π/2 to π. Using the orbit equation (equation 6) we can evaluate
θm

θm = 2εxc

∫ rapo

rper

dx

x2
√

ln(rc/x)2 − (rc/x)2ε2 − 1
(B2)

and the orbital period

Porb = 2
Rh

Vh

∫ rapo

rper

dx√
ln(rc/x)2 − (rc/x)2ε2 − 1

. (B3)

The shock in the ISO profile equals the shock of a NFW case
when ch = 30. We then have

〈�E〉NFW ∼ 〈�E〉ISO × (0.029ch + 0.13). (B4)
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Figure A1. The intensity of the tidal force | f tid(t)| normalized to its value
at the first periastron | f tid,per|. We plot the module of the tidal force (equation
A2) as a function of time for a satellite of mass Ms,0 = 0.01Mh and ε =
0.7, xc(E) = 0.5. The solid line refers to a stable orbit, the dashed line to an
unstable one. When the drag force is active, the intensity of the tidal force,
and consequently of the shock energy, grows with time.

At each pericentre passage, the satellite is shock heated and its
radius Rs is reduced by a factor �R. As an approximation �R ∼
Rs,0/N , where N is the number of pericentre passages necessary to
destroy the satellite. Then, we have an implicit equation for N

N + 1

N

N−1∑
i=1

i2 = E0

〈�E〉NFW,0
, (B5)

where E0 = 0.5 GMs/Rs,0, and 〈�E〉NFW,0 is evaluated at the initial
half-mass radius. Because
N−1∑
i=1

i2 = N (N − 1)(2N − 1)

6
(B6)

for large N equation (B5) would give

N ≈
√

48
E0

〈�E〉NFW,0
. (B7)

The disruption time can then be written as

tdis ∼ Porb N . (B8)

This formula provides a simple estimate of the disruption time valid
on cosmological relevant orbits with a precision of 25 per cent.
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