
QUARTERLY OF APPLIED MATHEMATICS

VOLUME LXXIII, NUMBER 4

DECEMBER 2015, PAGES 773–796

http://dx.doi.org/10.1090/qam/1410

Article electronically published on September 11, 2015

ON THE LIFESPAN AND THE BLOWUP MECHANISM OF

SMOOTH SOLUTIONS TO A CLASS OF 2-D NONLINEAR WAVE

EQUATIONS WITH SMALL INITIAL DATA

By

DING BINGBING (Department of Mathematics and IMS, Nanjing University, Nanjing 210093,
People’s Republic of China),

INGO WITT (Mathematical Institute, University of Göttingen, Bunsenstr. 3-5, D-37073 Göttingen,
Germany),

and

YIN HUICHENG (Department of Mathematics and IMS, Nanjing University, Nanjing 210093,
People’s Republic of China)

Abstract. This paper is concerned with the lifespan of and the blowup mechanism for

smooth solutions to the 2-D nonlinear wave equation ∂2
t u−

∑2
i=1 ∂i(c

2
i (u)∂iu) = 0, where

ci(u) ∈ C∞(Rn), ci(0) �= 0, and (c′1(0))
2+(c′2(0))

2 �= 0. This equation has an interesting

physical background as it arises from the pressure-gradient model in compressible fluid

dynamics and also in nonlinear variational wave equations. Under the initial condition

(u(0, x), ∂tu(0, x)) = (εu0(x), εu1(x)) with u0(x), u1(x) ∈ C∞
0 (R2), and ε > 0 is small,

we will show that the classical solution u(t, x) stops to be smooth at some finite time

Tε. Moreover, blowup occurs due to the formation of a singularity of the first-order

derivatives ∇t,xu(t, x), while u(t, x) itself is continuous up to the blowup time Tε.
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774 DING BINGBING, INGO WITT, AND YIN HUICHENG

1. Introduction and main result. In this paper, we are concerned with the lifespan

Tε of and the blowup mechanism for classical solutions to the 2-D nonlinear wave equation⎧⎪⎨⎪⎩ ∂2
t u−

2∑
i=1

∂i(c
2
i (u)∂iu) = 0,

(u(0, x), ∂tu(0, x)) = (εu0(x), εu1(x))

(1.1)

with small initial data, where ci(u) ∈ C∞(Rn), ci(0) �= 0, and (c′1(0))
2+(c′2(0))

2 �= 0. In

addition, u0(x), u1(x) ∈ C∞
0 (R2) and ε > 0 is sufficiently small.

In case c1(u) = c2(u) = eu/2, (1.1) has a background in physics as it arises from the

pressure-gradient model in compressible Euler systems and is rather analogous to the 2-D

variational wave equation ∂2
t u−

∑2
i=1 c(u)∂i(c(u)∂iu) = 0 (for the physical backgrounds

of the variational wave equation and its mathematical treatment, see [2, 10, 15, 24] and

the references therein).

Here is a derivation of the pressure-gradient model with small initial data: As pointed

out in [1, 30, 31], the pressure-gradient system is a simplified version of the compressible

Euler equations which arises from splitting the compressible Euler system (i.e., the inertia

terms div(ρU), div(ρU ⊗ U) and the pressure p are considered separately). It has the

form ⎧⎨⎩
∂tρ = 0,

∂t(ρU) +∇p = 0,

∂t(ρE) + div(pU) = 0,

(1.2)

where ρ is density, U = (u1, u2) is velocity, p is pressure, E =
1

2
|U |2 + 1

γ − 1

p

ρ
is energy,

and γ is the adiabatic exponent with 1 < γ < 3.

For simplicity, as in [19, 20, 25], we assume ρ ≡ 1 in (1.2). In this case, (1.2) becomes{
∂tU +∇p = 0,

∂tE + div(pU) = 0.
(1.3)

It follows from the transformation p = (γ − 1)P , t =
T

γ − 1
and (1.3) that

{
∂TU +∇P = 0,

∂TP + P divU = 0.
(1.4)

Let us consider the following Cauchy problem for (1.4):⎧⎨⎩
∂TU +∇P = 0,

∂TP + P divU = 0,

U |T=0 = εU0(x), P |T=0 = 1 + εP0(x),

(1.5)

where ε > 0 is small and U0(x) = (u0
1(x), u

0
2(x)) ∈ C∞

0 (R2), P0(x) ∈ C∞
0 (R2) are

supported in the disc B(0,M). One then obtains that P satisfies the nonlinear wave

equation

∂T

(
∂TP

P

)
−ΔP = 0. (1.6)
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SMOOTH SOLUTIONS OF 2-D NONLINEAR WAVE EQUATIONS 775

Let v(T, x) = lnP . Then it follows from (1.6) and the initial data in (1.5) that⎧⎪⎪⎪⎨⎪⎪⎪⎩
∂2
T v − div(ev∇v) = 0,

v(0, x) = ln(1 + εP0(x)) = εP0(x) + ε2
∞∑

n=2

(−1)n−1 ε
n−2

n!
Pn
0 (x),

∂tv(0, x) = −εdivU0(x).

(1.7)

In (1.7), use t and u(t, x) in place of T and v(T, x), respectively. As a nonlinear problem

equivalent to (1.7), one can then consider⎧⎨⎩
∂2
t u− div(eu∇u) = 0, (t, x) ∈ [0,∞)× R

2,

u(0, x) = εu0(x),

∂tu(0, x) = εu1(x),

(1.8)

where u0(x) = P0(x) and u1(x) = − divU0(x). In this way we have given a brief deriva-

tion on the nonlinear wave equation in the form (1.1) from the fundamental equations of

compressible fluid dynamics.

Without loss of generality, we will assume that ci(0) = 1 (i = 1, 2) in (1.1). Since

third-order terms like O(u2D2u) and O(u|Du|2) will not have an essential influence on

the blowup behavior of small data solutions to problem (1.1), (1.1) is basically equivalent

to ⎧⎪⎨⎪⎩ ∂2
t u−

2∑
i=1

∂i ((1 + ciu)∂iu) = 0, (t, x) ∈ [0,∞)× R
2,

(u(0, x), ∂tu(0, x)) = (εu0(x), εu1(x)),

(1.9)

where c1 = 2c′1(0), c2 = 2c′2(0), and c21 + c22 �= 0.

We introduce polar coordinates (r, θ) in R
2,{

x1 = r cos θ,

x2 = r sin θ,

where r =
√
x2
1 + x2

2, θ ∈ [0, 2π], and ω ≡ (ω1, ω2) = (cos θ, sin θ). Later we will need

the function

F0(σ, θ) ≡
1

23/2π

∫ +∞

σ

R(s, ω;u1)− ∂sR(s, ω;u0)√
s− σ

ds, (1.10)

where σ ∈ R, and R(s, ω; v) is the Radon transform of the smooth function v(x), i.e.,

R(s, ω; v) =
∫
x·ω=s

v(x) dS. From Theorem 6.2.2 and (6.2.12) of [14], one has that the

function F0(σ, θ) �≡ 0 unless u0(x) ≡ 0 and u1(x) ≡ 0. Moreover, F0(σ, θ) ≡ 0 for σ ≥ M

and lim
σ→−∞

F0(σ, θ) = 0. Therefore,

min
σ,θ

[∂σF0(σ, θ)(c1 cos
2 θ + c2 sin

2 θ)] < 0

exists as long as (u0(x), u1(x)) �≡ 0.

We will assume throughout this paper that there is a unique point (σ0, θ0) such that{
∂σF0(σ

0, θ0)(c1 cos
2 θ0 + c2 sin

2 θ0) = min
σ∈R, θ∈[0,2π]

[∂σF0(σ, θ)(c1 cos
2 θ + c2 sin

2 θ)],

the Hessian matrix ∇2
σ,θ[∂σF0(σ, θ)(c1 cos

2 θ + c2 sin
2 θ)]|(σ,θ)=(σ0,θ0) > 0.

(1.11)

Let Tε denote the lifespan of the smooth solution to (1.9). Then one has:
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776 DING BINGBING, INGO WITT, AND YIN HUICHENG

Theorem 1.1. Let u0(x), u1(x) ∈ C∞
0 (R2) be supported in the disc B(0,M) and let

assumption (1.11) hold. Then

(1)

lim
ε→0

ε
√

Tε = τ0 ≡ − 1

∂σF0(σ0, θ0)(c1 cos2 θ0 + c2 sin
2 θ0)

> 0. (1.12)

(2) There exists a point Mε = (Tε, xε) and a positive constant C independent of ε

such that

(a) u(t, x) ∈ C([0, Tε]× R
2) and ‖u‖L∞([0,Tε]×R2) ≤ Cε.

(b) u ∈ C2([0, Tε]× R
2 \ {Mε}), and, for t < Tε, it satisfies

‖∇t,xu(t, ·)‖L∞(R2) ≤
C

Tε − t
, (1.13)

‖∂tu(t, ·)‖L∞(R2) ≥
1

C(Tε − t)
. (1.14)

Remark 1.2. Compared with the “lifespan theorems” of [4, 5], Theorem 1.1 states

that the solution u(t, x) to (1.9) is continuous up to the blowup time t = Tε, while its first-

order derivatives ∇t,xu develop a singularity at t = Tε. In the terminology of [4, 5], this

corresponds to an “ODE blowup”. On the contrary, the blowup result of [4, 5] on small

data solutions to the 2-D nonlinear wave equation ∂2
t v−Δxv+

∑
0≤i,j,k≤2 g

k
ij∂kv ∂

2
ijv = 0,

where the nonlinearity depends on the derivatives of v but not v itself, shows that the

solution v(t, x) is C1 up to the blowup time Tε, while the second-order derivatives ∇2
t,xv

develop a singularity at t = Tε. In the terminology of [4,5], this is a “geometric blowup”.

Remark 1.3. One readily obtains u(t, x) ∈ C∞(([0, Tε]× R
2) \ {Mε}) from u(t, x) ∈

C2(([0, Tε] × R
2) \ {Mε}) in Theorem 1.1. Since u(t, x) ∈ C∞([0, Tε) × R

2), this in

fact follows from the property of finite propagation speed which holds for hyperbolic

equations.

Remark 1.4. In particular, for the 2-D pressure-gradient model ∂2
t u−

∑2
i=1∂i(e

u∂iu) =

0 with small initial data (u(0, x), ∂tu(0, x)) = (εu0(x), εu1(x)) and (u0(x), u1(x)) �≡ 0,

it follows from Theorem 1.1 that the lifespan Tε of the smooth solution u(t, x) satisfies

lim
ε→0

ε
√
Tε = − 1

min
σ∈R, θ∈[0,2π]

∂σF0(σ, θ)
under an assumption on the function ∂σF0(σ, θ)

that is analogous to (1.11). We thus have extended the blowup result of [21], valid for

the rotationally symmetric case, to this now more general situation. In addition, return-

ing to the original pressure-gradient system (1.5), one obtains that ∂tP and divU develop

a singularity at time t = Tε. This corresponds to the formation of a shock emanating

from the blowup point as shown in [26] for the compressible Euler system.

Remark 1.5. The nonlinear equation (1.9) can be rewritten as ∂2
t u−(1+u)Δu = |∇u|2

when c1 = c2 = 1. For the 3-D equation ∂2
t u − (1 + u)Δu = 0 with small initial data

(u(0, x), ∂tu(0, x)) = (εu0(x), εu1(x)), in [6,23] it was shown that smooth solutions exist

globally. On the other hand, for the n-dimensional nonlinear wave equation (n = 2, 3)

with coefficients depending on the derivatives of the solution, ∂2
t u − c2(∂tu)Δu = 0

and, more generally,
∑n

i,j=0 gij(∇u)∂2
iju = H(∇u), where t = x0, x = (x1, . . . , xn),

gij(∇u) = cij + O(|∇u|), H(∇u) = O(|∇u|2), and the linear part
∑n

i,j=0 cij∂
2
iju is

strictly hyperbolic with respect to time t, it is known that small data smooth solutions
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SMOOTH SOLUTIONS OF 2-D NONLINEAR WAVE EQUATIONS 777

exist globally if related null conditions hold (see [8,14] and others). Otherwise small data

smooth solutions blow up in finite time (see [4, 5, 13, 17, 22] and others). We point out

that in the case considered here the coefficients of the nonlinear equation (1.9) depend

on both the solution u and its derivatives.

Near the blowup point Mε one can give a more accurate description of the behavior of

the solution u(t, x), which is similar to statements in the “geometric blowup theorems”

of [4, 5].

Theorem 1.6. Assume that the constants τ1, A0, A1 and δ0 satisfy 0 < τ1 < τ0,

A0 < σ0 < A1 < M and that δ0 > 0 is sufficiently small. Moreover, assume that A0 and

A1 are close to σ0. Denote by D the domain

D ≡ {(s, θ, τ ) | A0 ≤ s ≤ A1, θ
0 − δ0 ≤ θ ≤ θ0 + δ0, τ1 ≤ τ ≤ τε},

where τε = ε
√
Tε. Then there exist a subdomain D0 of D containing a point mε =

(sε, θε, τε) and functions φ(s, θ, τ ), v(s, θ, τ ) ∈ C3(D0) with the following properties:

(1) In the domain D0, φ satisfies{
∂sφ(s, θ, τ ) ≥ 0, ∂sφ(s, θ, τ ) = 0 ⇐⇒ (s, θ, τ ) = mε,

∂2
τsφ(mε) < 0, ∇s,θ∂sφ(mε) = 0, ∇2

s,θ∂sφ(mε) > 0.
(H)

(2) It holds that

v(mε) �= 0. (1.15)

Moreover, let the function G(σ, θ, τ ) be defined by G(Φ) = v(s, θ, τ ) in the domain Φ(D0),

where Φ is a map such that Φ(s, θ, τ ) = (φ(s, θ, τ ), θ, τ ). Then

u(t, x) =
ε√
r
G(r − t, θ, ε

√
t)

solves (1.9).

Remark 1.7. Theorem 1.6 provides a more accurate description of the solution near

the blowup point Mε = Φ(mε) than Theorem 1.1. First, one has that G(σ, θ, τ ) ∈
C(Φ(D0)) because of φ, v ∈ C3(D0) and (H) of Theorem 1.6. To prove this assertion,

we are only required to show that G is continuous at the point Mε = (σε, θε, τε) ≡
(φ(mε), θε, τε). To this end, let (σn, θn, τn) ∈ Φ(D0) be such that (σn, θn, τn)→(σε, θε, τε)

as n → ∞. It then follows from (H) that there is a unique point (sn, θn, τn) ∈ D0 such

that σn = φ(sn, θn, τn). By Taylor’s formula, one has σn−σε = ∇θ,τφ(mε) · (θn−θε,

τn − τε)+
1

2
∂2
sτφ(mε)(sn − sε)(τn − τε)+

1

2
(θn − θε, τn − τε)∇2

θ,τφ(mε)(θn−θε, τn − τε)
T

+
1

6
∂3
sφ(mε)(sn−sε)

3+o(|sn−sε|3)+o(|θn−θε|+ |τn−τε|). Together with ∂3
sφ(mε) > 0,

this yields sn → sε as n → ∞. Therefore, one obtains G ∈ C(Φ(D0)) from G(Φ) = v

and the continuity of v, φ in D0. It follows that

u(t, x) =
ε√
r
G(r − t, θ, ε

√
t) ∈ C

([
τ21
ε2

, Tε

]
× R

2

)
∩ C1

(([
τ21
ε2

, Tε

]
× R

2

)
\ {Mε}

)
and ‖u‖L∞ ≤ Cε2 in a neighborhood of Mε. Regarding the other properties of u(t, x)

near Mε stated in Theorem 1.1, see §4 below for details.
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778 DING BINGBING, INGO WITT, AND YIN HUICHENG

There are some interesting papers on the Riemann problem for the pressure-gradient

system (1.5) and (1.6), respectively, with special discontinuous initial data, with either

a mathematical treatment or a numerical simulation (see [1, 19, 20, 25, 29–31] and the

references therein). There are also many results on the blowup of classical solutions and

the global existence and uniqueness of weak solutions, respectively, to 1-D variational

wave equations (see [2, 7, 10–12, 16, 27, 28] and the references therein). In the multi-

dimensional case of (1.1), however, except for the rotationally symmetric case where in

[9,21] blowup results have been established, until now there were no results on the finite-

time blowup of smooth solutions to (1.1) or even on mechanisms of this blowup. In this

paper, we shall focus on these two problems; i.e., we will establish the precise lifespan Tε

in Theorem 1.1 and determine the blowup mechanism in Theorem 1.6.

Let us comment on the proofs of Theorems 1.1 and 1.6. First we derive the required

lower bound on the lifespan Tε for solutions to problem (1.9). As in [14, Chapter 6] and

[13], by constructing a suitable approximate solution ua(t, x) to (1.9) and then consid-

ering the difference of the exact solution u(t, x) and ua(t, x), applying the Klainerman-

Sobolev inequality, and further establishing a delicate energy estimate, we obtain this

lower bound on the lifespan Tε. Next we derive the required upper bound on Tε. Mo-

tivated by the “geometric blowup” method of [4, 5], we introduce the blowup system

of (1.9) to study simultaneously the lifespan Tε and blowup mechanism of smooth so-

lution u. That is, by introducing a singular change of coordinates Φ in the domain

D = {(σ, θ, τ ) | −C0 ≤ σ ≤ M, 0 ≤ θ ≤ 2π, 0 < τ1 ≤ τ ≤ τε},

(s, θ, τ ) → (φ(s, θ, τ ), θ, τ ), where φ(s, θ, τ1) = s and ∂sφ = 0 holds at some point,

where σ = r − t, τ = ε
√
t, and C0 > 0 is a fixed constant, and setting G(Φ) = v(s, θ, τ ),

we obtain a nonlinear system for (φ, v) from the ansatz u(t, x) =
ε√
r
G(r − t, θ, ε

√
t)

and the equation in (1.9). This blowup system for (1.9) has a unique smooth solution

(φ, v) for τ ≤ τε, where the couple (φ, v) satisfies properties (H) and (1.15) of Theorem

1.6. This enables us to determine the blowup point at time t = Tε for the solution u of

(1.9) and give a complete asymptotic expansion of Tε as well as a precise description of

the behavior of u(t, x) close to the blowup point. In order to treat the resulting blowup

system, as in [4, 5], we use the Nash-Moser-Hörmander iteration method to overcome

the difficulties introduced by the free boundary t = Tε and the inherent complexity of

the nonlinear blowup system. To this end, the linearized system is solved first. Thanks

to the energy estimates established in [4, 5], we are then able to complete the proof of

Theorem 1.6.

The paper is organized as follows: In §2, as in [9,21], we construct a suitable approxi-

mate solution ua(t, x) to (1.9) and establish related estimates, which allows us to obtain

the required lower bound on the lifespan Tε. In §3, the blowup system for (1.9) is solved,

which allows us to prove Theorem 1.6. Then, in §4, we conclude the proof of Theorem

1.1 based on Theorem 1.6.
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SMOOTH SOLUTIONS OF 2-D NONLINEAR WAVE EQUATIONS 779

Notation. Throughout the paper, we will use the following notation: Z denotes one

of the Klainerman vector fields in R
+
t × R

2, i.e.,

∂t, ∂i, Γ0 = t∂t +
2∑

j=1

xj∂j , Hi = xi∂t + t∂i, i = 1, 2, R = x1∂2 − x2∂1,

∂ stands for ∂t or ∂i (i = 1, 2), and ∇x stands for (∂1, ∂2).

2. Lower bound on the lifespan Tε. In this section, we establish the lower bound

of Tε for a smooth solution to the Cauchy problem (1.9).

Let τ = ε
√
1 + t be the slow time variable and assume the solution to (1.9) can be

approximated by
ε√
r
V (σ, θ, τ ), r > 0,

where σ = r − t, (x1, x2) = (r cos θ, r sin θ) with θ ∈ [0, 2π].

The function V (σ, θ, τ ) solves the equation⎧⎨⎩
∂2
στV + (c1 cos

2 θ + c2 sin
2 θ)V ∂2

σV + (c1 cos
2 θ + c2 sin

2 θ)(∂σV )2 = 0,

V (σ, θ, 0) = F0(σ, θ),

suppV (·, θ, τ ) ⊆ {σ ≤ M},
(2.1)

where F0(σ, θ) has been defined in (1.10).

For problem (2.1), one has:

Lemma 2.1. Equation (2.1) admits a C∞ solution for 0 ≤ τ < τ0 with the number τ0
being given in (1.12).

Proof. Set U(σ, θ, τ ) = ∂σV (σ, θ, τ ). Then it follows from (2.1) that{
∂τU + (c1 cos

2 θ + c2 sin
2 θ)V ∂σU + (c1 cos

2 θ + c2 sin
2 θ)U2 = 0,

U(σ, θ, 0) = ∂σF0(σ, θ).
(2.2)

The characteristic curve σ = σ(s, θ, τ ) of (2.2) starting at the point (s, θ, 0) is defined

by ⎧⎨⎩
dσ

dτ
(s, θ, τ ) = (c1 cos

2 θ + c2 sin
2 θ)V (σ(s, θ, τ ), θ, τ ),

σ(s, θ, 0) = s.
(2.3)

Along this characteristic curve, it follows from (2.2) that, for τ < τ0,

U(σ(s, θ, τ ), θ, τ ) =
∂σF0(s, θ)

1 + (c1 cos2 θ + c2 sin
2 θ)∂σF0(s, θ)τ

. (2.4)

Because of U(σ, θ, τ ) = ∂σV (σ(s, θ, τ ), θ, τ ), from (2.3)-(2.4) one then obtains that⎧⎨⎩ ∂2
τsσ(s, θ, τ ) =

(c1 cos
2 θ + c2 sin

2 θ)∂σF0(s, θ)

1 + (c1 cos2 θ + c2 sin
2 θ)∂σF0(s, θ)τ

∂sσ(s, θ, τ ),

∂sσ(s, θ, 0) = 1.

This gives ∂sσ(s, θ, τ ) = 1+(c1 cos
2 θ+ c2 sin

2 θ)∂σF0(s, θ)τ > 0 for 0 ≤ τ < τ0 and then

σ(s, θ, τ ) = σ(M, θ, τ ) + s−M + (c1 cos
2 θ + c2 sin

2 θ)F0(s, θ)τ (2.5)
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780 DING BINGBING, INGO WITT, AND YIN HUICHENG

and

V (σ(s, θ, τ ), θ, τ ) =
∂τσ(M, θ, τ )

c1 cos2 θ + c2 sin
2 θ

+ F0(s, θ). (2.6)

Note that σ(M, θ, τ ) = M such that V (σ, θ, τ ) satisfies the boundary condition V |σ=M =

0. This, together with (2.5)-(2.6), yields V (σ, θ, τ ) = F0(s, θ) and σ = s + (c1 cos
2 θ +

c2 sin
2 θ)F0(s, θ)τ . By the implicit function theorem, one then has that s = s(σ, θ, τ ) is a

smooth function of σ, θ, τ for τ < τ0. Therefore, V (σ, θ, τ ) = F0(s(σ, θ, τ ), θ) is a smooth

solution of (2.1) for 0 ≤ τ < τ0 as claimed. �
From [14, Chapter 6], one has that F0(σ, θ) ∈ C∞(R) is supported in (−∞,M ] and

obeys the estimates ∣∣∂k
σ∂

l
θF0(σ, θ)

∣∣ ≤ Ckl (1 + |σ|)−1/2−k, k ∈ N0. (2.7)

From (2.7), we now derive a decay estimate of V (σ, θ, τ ) in (2.1) for τ < τ0 and

σ → −∞.

Lemma 2.2. For any positive constant b < τ0, one has that, in the domain

{(σ, θ, τ ) | −∞ < σ ≤ M, 0 ≤ θ ≤ 2π, 0 ≤ τ ≤ b},

and for r ≥ t/3, the smooth solution V to (2.1) obeys the estimates

|Zα∂l
τ∂

m
σ V (σ, θ, τ )| ≤ Clm

αb (1 + |σ|)−1/2−l−m, α, l,m ∈ N0, (2.8)

where Clm
αb are positive constants depending on b and α, l,m.

Proof. When τ ≤ b, it follows from (2.5) and the support property of F0(σ, θ) that
|s|
2

≤ |σ| ≤ 2|s| for large |s|. Together with (2.6), this yields

|V (σ, θ, τ )| ≤ Cb (1 + |σ|)−1/2, |∂σV (σ, θ, τ )| ≤ Cb (1 + |σ|)−3/2. (2.9)

By (2.6) and (2.4), one has

∂σs(σ, θ, τ ) =
1

1 +
(
c1 cos2 θ + c2 sin

2 θ
)
∂sF0(s, θ)τ

and

∂2
σV (σ(s, θ, τ ), θ, τ ) =

∂2
sF0(s, θ)

(1 +
(
c1 cos2 θ + c2 sin

2 θ
)
∂sF0(s, θ)τ )3

,

which yields

|∂2
σV (σ, θ, τ )| ≤ Cb (1 + |σ|)−5/2. (2.10)

Further, it follows from (2.1) and (2.10) that

|∂2
τσV (σ, θ, τ )| ≤ Cb (1 + |σ|)−3

and then

|∂τV (σ, θ, τ )| ≤ Cb (1 + |σ|)−2. (2.11)

Based on (2.9)–(2.11), by an inductive argument one arrives at

|∂l
τ∂

m
σ V (σ, θ, τ )| ≤ Clm

b (1 + |σ|)−1/2−l−m, l,m ∈ N0.
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Because of

Γ0 = σ∂σ +
εt

2
√
1 + t

∂τ , H1 = −σ cos θ∂σ +
εx1

2
√
1 + t

∂τ − x2t

r2
∂θ,

H2 = −σ sin θ∂σ +
εx2

2
√
1 + t

∂τ +
x1t

r2
∂θ, R = ∂θ,

one analogously obtains

|Zα∂l
τ∂

m
σ V (σ, θ, τ )| ≤ Clm

αb (1 + |σ|)−1/2−l−m, α, l,m ∈ N0,

which completes the proof of Lemma 2.2. �
Next, we construct an approximate solution ua to (1.9) for 0 ≤ τ = ε

√
1 + t < τ0.

Let w0 be the solution of the linear wave equation{
∂2
tw0 −�w0 = 0,

w0(0, x) = u0(x), ∂tw0(0, x) = u1(x).

It follows from [14, Theorem 6.2.1] that, for any constants l > 0 and 0 < m < 1,∣∣Zα(w0(t, x)− r−1/2F0(σ, θ))
∣∣ ≤ Cαl (1 + t)−3/2(1 + |σ|)1/2, r ≥ lt, (2.12)∣∣∂kw0(t, x)

∣∣ ≤ Ckm (1 + t)−1−|k|, r ≤ mt. (2.13)

Choose a C∞ function χ(s) such that χ(s) = 1 for s ≤ 1 and χ(s) = 0 for s ≥ 2. For

0 ≤ τ = ε
√
1 + t < τ0, we take the approximate solution ua to (1.9) to be

ua(t, x) = ε
(
χ(εt)w0(t, x) + r−1/2(1− χ(εt))χ(−3εσ)V (σ, τ )

)
. (2.14)

By Lemma 2.2 and [14, Theorem 6.2.1], one has that, for a fixed positive constant b < τ0,

|Zαua(t, x)| ≤ Cαb ε(1 + t)−1/2(1 + |σ|)−1/2, τ ≤ b. (2.15)

Set Ja = ∂2
t ua − (1 + c1ua)∂

2
1ua − (1 + c2ua)∂

2
2ua − c1(∂1ua)

2 − c2(∂2ua)
2.

Lemma 2.3. One has ∫ b2/ε2−1

0

‖ZαJa(t, ·)‖L2 dt ≤ Cαb ε
3/2.

Proof. We divide the proof into three parts.

(A) 0 ≤ t ≤ 1

ε
. In this case, χ(εt) = 1 and ua = εw0. This yields

Ja = −ε2w0c1∂
2
1w0 − ε2w0c2∂

2
2w0 − ε2c1(∂1w0)

2 − ε2c2(∂2w0)
2.

It follows from (2.15) and a direct computation that, for 0 ≤ t ≤ 1

ε
,

‖ZαJa(t, ·)‖L2 ≤ C ε2(1 + t)−1/2. (2.16)

(B)
1

ε
≤ t ≤ 2

ε
. We now rewrite ua as

ua = εw0(t, x) + ε(1− χ(εt))
(
r−1/2χ(−3εσ)V (σ, θ, τ )− w0(t, x)

)
.

Then

Ja = J1 + J2 + J3 + J4, (2.17)
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where

J1 = −c1ua∂
2
1ua − c2ua∂

2
2ua − c1(∂1ua)

2 − c2(∂2ua)
2,

J2 = ε(∂2
t −Δ)

[
(1− χ(εt))r−1/2χ(−3εσ)

(
V (σ, θ, τ )− F0(σ, θ)

)]
,

J3 = ε(∂2
t −Δ)

[
(1− χ(εt))χ(−3εσ)

(
r−1/2F0(σ, θ)− w0(t, x)

)]
,

J4 = ε(∂2
t −Δ) [(1− χ(εt))(χ(−3εσ)− 1)w0(t, x)] .

We treat each term Ji (1 ≤ i ≤ 4) in (2.17) separately. From (2.15) one obtains

‖ZαJ1(t, ·)‖L2 ≤ Cαb ε
2(1 + t)−1/2. (2.18)

Since

J2 =εr−1/2(∂t − ∂r)(∂t + ∂r)
[
(1− χ(εt))χ(−3εσ)

(
V (σ, θ, τ )− F0(σ, θ)

)]
− ε

4
r−5/2(1− χ(εt))χ(−3εσ)

(
V (σ, θ, τ )− F0(σ, θ)

)
− εr−5/2∂2

θ

[
(1− χ(εt))χ(−3εσ)

(
V (σ, θ, τ )− F0(σ, θ)

)]
and V (σ, θ, τ )− F0(σ, θ) =

∫ τ

0
∂τV (σ, θ, s)ds, one has

‖ZαJ2(t, ·)‖L2 ≤ Cαb ε
2(1 + t)−1/2. (2.19)

Note that − 2

3ε
≤ σ ≤ M holds on the support of J3, which implies r ≥ 1

3
t. This,

together with (2.12), yields

‖ZαJ3(t, ·)‖L2 ≤ Cα ε2(1 + t)−1/2. (2.20)

Analogously, together with (2.13), one arrives at

‖ZαJ4(t, ·)‖L2 ≤ Cαb ε
2(1 + t)−1. (2.21)

Collecting (2.18)-(2.21) yields

‖ZαJa(t, ·)‖L2 ≤ Cαb ε
2(1 + t)−1/2,

1

ε
≤ t ≤ 2

ε
. (2.22)

(C)
2

ε
≤ t ≤ b2

ε2
− 1. A direct computation yields

Ja =− ε2r−1/2∂2
τσV̂

(
1√
1 + t

− r−1/2

)
− ε2r−1

(
∂2
τσV̂ + (c1 cos

2 θ + c2 sin
2 θ)V̂ ∂2

σV̂ + (c1 cos
2 θ + c2 sin

2 θ)(∂σV̂ )2
)

+O(ε2) (1 + t)−3/2(1 + |σ|)−1/2,

(2.23)

where V̂ (σ, θ, τ ) = χ(−3εσ)V (σ, θ, τ ). It follows from (2.1) that

ε2r−1

(
∂2
τσV̂ + (c1 cos

2 θ + c2 sin
2 θ)V̂ ∂2

σV̂ + (c1 cos
2 θ + c2 sin

2 θ)(∂σV̂ )2
)

= O(ε2) (1 + t)−3/2(1 + |σ|)−3/2;

(2.24)
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here we have used the fact that χ(−3εσ)(1 − χ(−3εσ) is supported in the interval

[− 2

3ε
,− 1

3ε
]. Substituting (2.24) into (2.23) yields

‖ZαJa(t, ·)‖L2 ≤ Cαbε
2(1 + t)−3/4. (2.25)

Consequently, combining (2.16), (2.22), and (2.25) yields∫ b2/ε2−1

0

‖ZαJa(t, ·)‖L2 dt ≤ Cαb ε
3/2,

which completes the proof of Lemma 2.3. �

Lemma 2.4. For sufficiently small ε and 0 ≤ τ = ε
√
1 + t ≤ b < τ0, (1.9) admits a C∞

solution u which satisfies the estimate

|Zκ∂(u− ua)| ≤ Cb ε
3/2(1 + t)−1/2(1 + |t− r|)−1/2 (2.26)

for |κ| ≤ 2.

Proof. Set v = u− ua. Then{
∂2
t v − (1 + c1u)∂

2
1v − (1 + c2u)∂

2
2v = F,

v(0, x) = ∂tv(0, x) = 0,
(2.27)

where

F = −Ja + c1v∂
2
1ua + c2v∂

2
2ua + c1(∂1v)

2 + c2(∂2v)
2 + 2c1(∂1v)(∂1ua) + 2c2(∂2v)(∂2ua).

(2.28)

We will use continuous induction to prove (2.26). To this end, we assume that, for some

T ≤ b2

ε2
− 1,

|Zκ∂v| ≤ ε (1 + t)−1/2(1 + |t− r|)−1/2, |κ| ≤ 2, t ≤ T, (2.29)

holds and subsequently we prove that

|Zκ∂v| ≤ ε

2
(1 + t)−1/2(1 + |t− r|)−1/2, |κ| ≤ 2, t ≤ T. (2.30)

Note that from (2.29) one has

|Zκv| ≤ Cε (1 + t)−1/2(1 + |t− r|)1/2, |κ| ≤ 2, t ≤ T. (2.31)

Applying Zα to both sides of (2.27) yields, for |α| ≤ 4,(
∂2
t − (1 + c1u)∂

2
1 − (1 + c2u)∂

2
2

)
Zαv = G

≡
∑

|β|≤|α|
CαβZ

βF +
[
Zα, c1u∂

2
1 + c2u∂

2
2)]v +

∑
|β|<|α|

C ′
αβZ

β
(
c1u∂

2
1v + c2u∂

2
2v
)
, (2.32)

where the commutator relation [Zα, ∂2
t −�] =

∑
|β|<|α|

C ′′
αβZ

β(∂2
t −�) was used, and Cαβ ,

C ′
αβ, C

′′
αβ are suitable constants.

Next we derive from (2.32) an estimate of ‖∂Zαv(t, ·)‖L2 . Define the energy

E(t) =
1

2

∑
|α|≤4

∫
R2

(|∂tZαv|2 + (1 + c1u)(∂1Z
αv)2 + (1 + c2u)(∂2Z

αv)2) dx.
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Multiplying both sides of (2.32) by ∂tZ
αv (|α| ≤ 4), integrating by parts in R

2, and noting

that |∂u| = |∂ua + ∂v| ≤ Cbε(1 + t)−1/2 from the construction of ua and assumption

(2.29), one arrives at

E′(t) ≤ Cbε√
1 + t

E(t) +
∑
|α|≤4

∫
R2

|G| · |∂tZαv| dx. (2.33)

Moreover, due to the inductive hypothesis (2.29) and (2.15), one has

|Zκu| ≤ Cbε (1 + t)−1/2(1 + |σ|)1/2 ≤ Cbε, |κ| ≤ 2, t ≤ T. (2.34)

We now treat each term in the sum
∑

|α|≤4

∫
R2 |G| · |∂tZαv| dx separately.

(A) Estimation of
∑

|β|<|α|
∫
R2 |Zβ

(
c1u∂

2
1v + c2u∂

2
2v
)
| · |∂tZαv| dx. It follows from

(2.34) that, for |β| < |α|, i = 1, 2,∫
R2

|Zβ(u∂2
i v)| · |∂tZαv| dx

≤ Cb

∑
|β1|+|β2|=|β|

∫
R2

|Zβ1u| · |Zβ2∂2
i v| · |∂tZαv| dx

≤ Cb

∑
|β1|+|β2|=|β|

∫
R2

|Zβ1v| · |Zβ2∂2
i v| · |∂tZαv| dx

+ Cb

∑
|β1|+|β2|=|β|

∫
R2

|Zβ1ua| · |Zβ2∂2
i v| · |∂tZαv| dx.

(2.35)

Due to

∂t =

tΓ0 −
2∑

i=1

xiHi

t2 − r2
, ∂1 =

x2R+ tH1 − x1Γ0

t2 − r2
, ∂2 =

−x1R + tH2 − x2Γ0

t2 − r2
,

one then has

|Zβ2∂2
i v| ≤

2

1 + |t− r|
∑

|β′
2|=|β2|+1

|Zβ′
2∂v|.

Because of |β| < |α| ≤ 4, (2.29), and the fact that
∥∥(1 + |t− r|−1f)(t, ·)

∥∥
L2 ≤ ‖∂f(t, ·)‖L2

for the function f(t, x) ∈ C1(R+ × R
2) with suppf ⊆ {r ≤ M + t} (this inequality can

be found in [22]), the first term in the right-hand side of (2.35) can be estimated as∫
R2

|Zβ1v| · |Zβ2∂2
i v| · |∂tZαv| dx

≤ Cb

∑
|β′

2|=|β2|+1

∫
R2

1

1 + |t− r| |Z
β1v| · |Zβ′

2∂v| · |∂tZαv| dx

≤ Cbε√
1 + t

E(t).

(2.36)

Analogously, ∫
R2

|Zβ1ua| · |Zβ2∂2
i v| · |∂tZαv| dx ≤ Cbε√

1 + t
E(t).
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Therefore, one obtains

∑
|β|<|α|

∫
R2

|Zβ
(
c1u∂

2
1v + c2u∂

2
2v
)
| · |∂tZαv| dx ≤ Cbε√

1 + t
E(t). (2.37)

(B) Estimation of

∫
R2

∣∣[Zα, c1u∂
2
1 + c2u∂

2
2 ]v
∣∣ · |∂tZαv| dx. For i = 1, 2,

∫
R2

∣∣[Zα, u∂2
i ]v
∣∣ · |∂tZαv| dx

≤ Cb

∑
|α1|+|α2|=|α|

|α1|≥1

∫
R2

|Zα1u| · |Zα2∂2
i v| · |∂tZαv| dx+

∫
R2

|u| ·
∣∣[Zα, ∂2

i ]v
∣∣ · |∂tZαv| dx

≤ Cb

⎛⎜⎜⎝ ∑
|α1|+|α2|=|α|

|α1|≥1

∫
R2

|Zα1ua| · |Zα2∂2
i v| · |∂tZαv| dx

+
∑

|β|<|α|

∫
R2

|u| · |∂2Zβv| · |∂tZαv| dx

+
∑

|α1|+|α2|=|α|
|α1|≥1

∫
R2

|Zα1v| · |Zα2∂2
i v| · |∂tZαv| dx

⎞⎟⎟⎠ .

By the same argument as in (2.37), one then has

∫
R2

∣∣[Zα, c1u∂
2
1 + c2u∂

2
2 ]v
∣∣ · |∂tZαv| dx ≤ Cbε√

1 + t
E(t). (2.38)

Next we treat each of the terms

∫
R2

|ZβF | · |∂tZαv| dx, |β| ≤ |α|, which are included

in
∑

|α|≤4

∫
R2 |G| · |∂tZαv| dx.

(C) Estimation of

∫
R2

|ZβJa| · |∂tZαv| dx. In this case, one has

∫
R2

|ZβJa| · |∂tZαv| dx ≤ ‖ZβJa‖L2

√
E(t). (2.39)
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(D) Estimation of

∫
R2

|Zβ
(
c1v∂

2
1ua + c2v∂

2
2ua

)
| · |∂tZαv| dx. Due to (2.34) a direct

computation yields, for i = 1, 2,∫
R2

|Zβ
(
v∂2

i ua

)
| · |∂tZαv| dx

≤ Cb

∑
|β1|+|β2|=|β|

∫
R2

|Zβ1v| · |Zβ2∂2
i ua| · |∂tZαv| dx

≤ Cb

∑
|β1|+|β2|=|β|
|β′

2|=|β2|+1

∫
R2

1

1 + |t− r| |Z
β1v| · |Zβ′

2∂ua| · |∂tZαv| dx

≤ Cbε√
1 + t

E(t).

(2.40)

(E) Estimation of

∫
R2

|Zβ
(
c1(∂1v)

2 + c2(∂2v)
2
)
| · |∂tZαv| dx. Similar to (D), one

has ∫
R2

|Zβ
(
c1(∂1v)

2 + c2(∂2v)
2
)
| · |∂tZαv|dx ≤ Cbε√

1 + t
E(t). (2.41)

(F) Estimation of

∫
R2

|Zβ
(
c1(∂1v)(∂1ua) + c2(∂2v)(∂2ua)

)
| · |∂tZαv| dx. It follows

by direct computation that, for i = 1, 2,∫
R2

|Zβ
(
(∂iv)(∂iua)

)
| · |∂tZαv| dx

≤ Cb

∑
|β1|+|β2|≤|β|

∫
R2

|Zβ1∂v| · |Zβ2∂ua| · |∂tZαv| dx

≤ Cbε√
1 + t

E(t).

(2.42)

Substituting (2.37)-(2.42) into (2.33) yields

E′(t) ≤ Cbε√
1 + t

E(t) +
∑
|β|≤4

‖ZβJa(t, ·)‖L2

√
E(t).

Thus, by Lemma 2.3 and Gronwall’s inequality, one obtains

‖∂Zαv(t, ·)‖L2 ≤ Cb ε
3/2, |α| ≤ 4,

and further

‖Zα∂v(t, ·)‖L2 ≤ Cb ε
3/2, |α| ≤ 4. (2.43)

By (2.43) and the Klainerman-Sobolev inequality (see [14, 18]), one has

|Zκ∂v| ≤ Cb ε
3/2(1 + t)−1/2(1 + |t− r|)−1/2, |κ| ≤ 2, t ≤ T, (2.44)

which means that, for small ε,

|Zκ∂v| ≤ ε

2
(1 + t)−1/2(1 + |t− r|)−1/2, |κ| ≤ 2, t ≤ T.

This completes the proofs of (2.29) and (2.26). �
Let us give the proof of the lower bound on Tε.
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Proof. Lemma 2.4 implies that lim
ε→0

ε
√
1 + Tε ≥ τ0 holds for the lifespan Tε of smooth

solutions to (1.9). Hence,

lim
ε→0

ε
√

Tε ≥ τ0, (2.45)

which finishes the first part of the proof of Theorem 1.1. �

3. Proof of Theorem 1.6. We will use polar coordinates (r, θ, t) instead of (x, t) to

study the problem (1.9) and set

σ = r − t, τ = ε
√
t.

Set u(t, x) =
ε√
r
G(σ, θ, τ ) for r > 0. In this case, it follows from direct computation

that (1.9) takes the form

P (G) ≡ − ε2√
rt

∂2
στG− ε2

r

(
c1 cos

2 θ + c2 sin
2 θ
)
G∂2

σG− ε2

r

(
c1 cos

2 θ + c2 sin
2 θ
)
(∂σG)2

− ε2

2r3
(
(2c1 − c2) cos

2 θ + (2c2 − c1) sin
2 θ
)
G2 − ε2

4t3/2r1/2
∂τG+

ε3

4tr1/2
∂2
τG

− ε2

r3
(
c1 sin

2 θ + c2 cos
2 θ
)
(∂θG)2 +

2ε2

r2
sin θ cos θ(c1 − c2)(∂θG)(∂σG)− ε

r5/2
∂2
θG

− ε

4r5/2
G− 4ε2

r3
(c1 − c2) sin θ cos θG∂θG− ε2

r3
(
c1 sin

2 θ + c2 cos
2 θ
)
G∂2

θG

+
ε2

r2
(
2c1 + 2c2 − 3c1 sin

2 θ − 3c2 cos
2 θ
)
G∂σG+

2ε2

r2
sin θ cos θ(c1 − c2)G∂2

σθG

= 0.

(3.1)

We introduce an unknown transformation Φ by

Φ(s, θ, τ ) = (σ, θ, τ ), (3.2)

where σ = φ(s, θ, τ ), and set

G(Φ) = v. (3.3)

Therefore, as ∂σG = ∂sv/∂sφ, if we can find smooth functions φ and v satisfying condi-

tion (H) and (1.15) of Theorem 1.6, then we will be able to show that the solution u to

(1.9) blows up. Under the transformation (3.2) and (3.3), (3.1) takes still another form,

which is explicitly given in the following lemma:

Lemma 3.1. Let R = 1 +
ε2φ

τ2
. Then one has

− r

ε2
P (G) ≡ ∂2

sφ∂sv

(∂sφ)3
I0 +

1

(∂sφ)2
I1 +

1

∂sφ
I2 + I3 = 0,
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where

I0 = −(c1 cos
2 θ + c2 sin

2 θ)v − ε4

R2τ4
(c1 sin

2 θ + c2 cos
2 θ)v(∂θφ)

2

− 2ε2

Rτ2
(c1 − c2) sin θ cos θv∂θφ+R1/2∂τφ+

ε2R1/2

4τ
(∂τφ)

2 − ε2

R3/2τ3
(∂θφ)

2,

I1 = −∂s(∂svI0),

I2 = Z1∂sv + ε2∂svNφ+ ε2∂svh1(ε, θ, τ, v, ∂θv, φ, ∂θφ, ∂τφ),

I3 = −ε2Nv + ε2h2(ε, θ, τ, v, ∂θv, ∂τv, φ),

(3.4)

h1, h2 are smooth functions the explicit expression of which is not required, and the first-

order differential operator Z1 and the second-order differential operator N , respectively,

are of the form

Z1 = R1/2
(
1 +

ε2

2τ
∂τφ
)
∂τ − 2ε2

Rτ2

(
ε2

Rτ2
(c1 sin

2 θ + c2 cos
2 θ)v∂θφ+ sin θ cos θ(c1 − c2)v

+
∂θφ

R1/2τ

)
∂θ

≡ δ1∂τ + ε2δ2∂θ,

N =
R1/2

4τ
∂2
τ − 1

R3/2τ3

(
1 +

ε2

R1/2τ
(c1 sin

2 θ + c2 cos
2 θ)v

)
∂2
θ

≡ N1∂
2
τ +N2∂

2
θ ,

where

δ1 = R1/2
(
1 +

ε2

2τ
∂τφ
)
,

δ2 = − 2ε2

Rτ2

(
ε2

Rτ2
(c1 sin

2 θ + c2 cos
2 θ)v∂θφ+ sin θ cos θ(c1 − c2)v +

∂θφ

R1/2τ

)
,

N1 =
R1/2

4τ
,

N2 = − 1

R3/2τ3

(
1 +

ε2

R1/2τ
(c1 sin

2 θ + c2 cos
2 θ)v

)
.

It follows from Lemma 3.1 that, in order to solve the nonlinear equation P (G) = 0, it

suffices to solve the system {
I0 = 0,

I2 + ∂sφI3 = 0,
(3.5)

which is also called the blowup system for (1.9) in the terminology of [4, 5] (where non-

linear wave equations such as ∂2
t v −Δxv +

∑
0≤i,j,k≤2 g

k
ij∂kv∂

2
ijv = 0 are dealt with).

The related process is divided into six parts.

(A) Local existence of a solution to (3.5). From the explicit expression of I0, one

has that
∂I0

∂(∂τφ)
= R1/2 +

ε2R1/2

2τ
∂τφ > 0 for ε > 0 small and φ a smooth function. By
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the implicit function theorem, one then obtains from the equation I0 = 0 that

∂τφ = E(ε, θ, τ, v, φ, ∂θφ), (3.6)

where E is a smooth function of its arguments.

By §2, for C0 > 0 large enough and η > 0 sufficiently small, one also has that the

equation P (G) = 0 can be solved for G in a strip

DS =
{
(σ, θ, τ ) | σ ∈ [−C0,M ], θ ∈ [θ0 − δ0, θ

0 + δ0], τ ∈ [τ1, τ1 + η]
}

with initial data

√
r

ε
u(t, x) given at time t = (τ1/ε)

2 (since (1.9) has a unique smooth

solution there). Here, τ1 > 0 is a fixed constant satisfying τ1 < τ0, and δ0 > 0 and

0 < η < τ0 − τ1 are sufficiently small.

For η > 0 sufficiently small, (3.5) then has a unique solution φ with initial data

φ(s, θ, τ1) = s (note that the smooth solution u(t, x) of (1.9) exists for t ≤ ((τ1 + η)/ε)2,

as G(σ, θ, τ ) exists for τ ≤ τ1 + η).

Setting v = G(φ, θ, τ ) in the strip DS , one hence gets a local solution to the blowup

system (3.5). Moreover, from the uniqueness result on the solution u(t, x) to (1.9) for

t ∈
[
0, ((τ1 + η)/ε)2

]
, one has that v and φ− s are smooth and flat on {s = M}.

(B) Choice of the domain and the scalar equation for φ. As in [4,5], in order to

obtain a weighted energy estimate on the linearized system of (3.5) on a suitable domain

D, we choose a “nearly horizontal” surface Σ through {τ = τ1, s = M} as part of the

boundary of D, where Σ is the characteristic surface of the operator Z1∂s − ε2∂sφ̄N , the

coefficients of which are computed using (v, φ). Let τ = ψ(s, θ) + τ1 be the equation of

Σ, where ψ(M, θ) = 0. Then, in view of part (A) and for small ε > 0, ∇α
s,θψ = O(ε2)

and ∂sψ ≤ 0 holds in DS for α ∈ N
2
0.

We choose a cutoff function χ ∈ C∞(R) with χ(p) = 1 for p ≤ 1
2 , and χ(p) = 0 for

p ≥ 1 and make the change of variables

X = s, Y = θ, T = τ − τ1 − ψ(s, θ)χ

(
τ − τ1

η

)
. (3.7)

The surface Σ then becomes {T = 0}. We will work in the domain

D1 = {(X,Y, T ) | −C0 ≤ X ≤ M, θ0 − θ0 ≤ Y ≤ θ0 + θ0, 0 ≤ T ≤ τε − τ
}
.

Note that D1 is actually unknown at the moment, as we do not know the precise value

of τε yet.

Next we derive from (3.5) a scalar equation for φ in the new coordinate system (3.7).

Since ∂vI0 �= 0 for small ε > 0, it follows from I0 = 0 that v can be expressed as

v = F (ε, θ, τ, φ, ∂θφ, ∂τφ), (3.8)

where F is a smooth function of its arguments. Substituting (3.8) into the second and

third equations of (3.5) and going through the direct computations yield

L(φ) ≡ Z̃1SF − ε2(Sφ)ÑF + ε2(SF )Ñφ+ ε2(SF )h̃1 + ε2(Sφ)h̃2 = 0, (3.9)
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where

Z̃1 = δ̃1∂T + ε2δ̃2∂Y , Ñ = Ñ1∂
2
T + 2ε2Ñ2∂

2
Y T + Ñ3∂

2
Y ,

h̃1 = h1 −N1ψχ
′′∂Tφ/η

2 −N2∂
2
θψχ∂Tφ,

h̃2 = h2 +N1ψχ
′′∂TF/η

2 +N2∂
2
θ1ψχ∂TF,

S = ∂s = ∂X − ∂sψχ∂T ,

where

δ̃1 = δ1∂τT + ε2δ2∂θT, δ̃2 = δ2,

Ñ1 = N1(∂τT )
2 +N2(∂θT )

2, Ñ2 = ε−2N2∂θT, Ñ3 = N2.

In order to solve the blowup system (3.5), one only needs to solve (3.9) because of

(3.8). As in [4,5], we will use the Nash-Moser-Hörmander iteration method to solve (3.9)

under the restriction (H) of Theorem 1.6.

(C) The construction of an approximate solution to (3.9) and the condition

(H). As a first step to use the Nash-Moser-Hörmander iteration method, one needs to

construct an approximate solution φa to (3.9) such that φa satisfies (H) of Theorem 1.6

near some point mε.

For ε = 0, the blowup system (3.5) becomes

(c1 cos
2 Y + c2 sin

2 Y )v = ∂Tφ, ∂T v = 0 (3.10)

with the initial value conditions

φ(X,Y, 0) = X, v(X,Y, 0) = F0(σ(X,Y, τ1), Y ) (3.11)

and the boundary condition

v|X=M = 0, (3.12)

where the function σ(X,Y, τ1) in (3.11) is determined by

X = σ + F0(σ, Y )τ1(c1 cos
2 Y + c2 sin

2 Y ).

From (3.10)-(3.12), one finds a solution to (3.9) for ε = 0, namely

φ0(X,Y, T ) = X + T (c1 cos
2 Y + c2 sin

2 Y )F0(σ(X,Y, τ1), Y ). (3.13)

Note that (3.9) admits a local solution φ for 0 ≤ T ≤ η, the existence of which has

been proven in part (A). Upon glueing φ and φ0 one obtains an approximate solution to

(3.9), namely

φa(X,Y, T ) = χ

(
T

η

)
φ(X,Y, T ) +

(
1− χ

(
T

η

))
φ0(X,Y, T ). (3.14)

By a direct verification, one has L(φa) = fa, where fa is smooth, flat on {X = M},
and zero near {T = 0}.

In addition, under the assumption (1.11), one can show that φa satisfies (H) at the

point (σ̄0, θ0, τ0 − τ1) with σ̄0 = σ0 + (c1 sin
2 θ0 + c2 cos

2 θ0)F0(σ
0, θ0)τ1:

Lemma 3.2. The approximate solution φa constructed in (3.14) satisfies (H) near the

point (σ̄0, θ0, τ0 − τ1).
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Proof. Note that

φ0(X,Y, T ) = X + T (c1 cos
2 Y + c2 sin

2 Y )F0(σ(X,Y, τ1), Y ),

where σ(X,Y, τ1) is determined from X = σ + F0(σ, Y )τ1(c1 cos
2 Y + c2 sin

2 Y ) (this

follows as in the proof of Lemma 2.1).

Set W (X,Y ) = F0(σ(X,Y, τ1), Y )(c1 cos
2 θ + c2 sin

2 θ). First, we assert that

∂XW (σ̄0, θ0) = min ∂XW (X,Y ). (3.15)

Indeed, it follows from (1.11) and a direct computation that

∇X,Y ∂XW (σ̄0, θ0) = 0,

∇2
X∂XW (σ̄0, θ0) =

(c1 cos
2 θ0 + c2 sin

2 θ0)∂3
σF0(σ

0, θ0)

(1 + τ1(c1 cos2 θ0 + c2 sin
2 θ0)∂σF0(σ0, θ0))4

,

∇2
XY ∂XW (σ̄0, θ0)

= −τ1∂θ((c1 cos
2 θ + c2 sin

2 θ)F0)(σ
0, θ0)∂3

σF0(σ
0, θ0)

(1 + τ1(c1 cos2 θ0 + c2 sin
2 θ0)∂σF0(σ0, θ0))4

(c1 cos
2 θ0 + c2 sin

2 θ0)

+
∂θ
(
∂2
σF0(c1 cos

2 θ + c2 sin
2 θ)
)
(σ0, θ0)

(1 + τ1(c1 cos2 θ0 + c2 sin
2 θ0)∂σF0(σ0, θ0))3

and

∇2
Y ∂XW (σ̄0, θ0)

=
τ21
(
∂θ((c1 cos

2 θ + c2 sin
2 θ)F0)(σ

0, θ0)
)2

(1 + τ1(c1 cos2 θ0 + c2 sin
2 θ0)∂σF0(σ0, θ0))4

(c1 cos
2 θ0 + c2 sin

2 θ0)∂3
σF0(σ

0, θ0)

− 2τ1∂θ((c1 cos
2 θ + c2 sin

2 θ)F0)(σ
0, θ0)

(1 + τ1(c1 cos2 θ0 + c2 sin
2 θ0)∂σF0(σ0, θ0))3

∂θ((c1 cos
2 θ + c2 sin

2 θ)∂2
σF0)(σ

0, θ0)

+
∂2
θ ((c1 cos

2 θ + c2 sin
2 θ)∂σF0)(σ

0, θ0)

(1 + τ1(c1 cos2 θ0 + c2 sin
2 θ0)∂σF0(σ0, θ0))2

.

This, together with ∇2
σ,θ[∂σF0(σ, θ)(c1 cos

2 θ + c2 sin
2 θ)]|(σ,θ)=(σ0,θ0) > 0, yields by a

direct but tedious computation

∇2
X,Y ∂XW (σ̄0, θ0) > 0. (3.16)

Thus, the assertion (3.15) has been shown. Moreover, by the uniqueness of the minimum

point of the function ∂σF0(σ, θ)(c1 cos
2 θ + c2 sin

2 θ), one has that (σ̄0, θ0, τ1) is also the

unique minimum point of ∂XW (X,Y ).

We now establish that φa satisfies (H) near the point (σ̄0, θ0, τ0 − τ1).

(1) By ∂Xφ(X,Y, 0) = 1 and the smallness of η > 0, one can assume that, for T ≤ η,

∂Xφ(X,Y, T ) > 0.

In addition,

∂Xφ0(X,Y, T ) = 1 + T∂XW (X,Y ). (3.17)
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If ∂XW (X,Y ) ≥ 0 at some point (X,Y, τ1), then ∂Xφ0(X,Y, T ) ≥ 1. If

∂XW (X,Y ) < 0 at some point (X,Y, τ1), due to

T ≤ T0 = −min
1

∂X
(
F0(σ(X,Y, τ1))

) (
c1 cos2 Y + c2 sin

2 Y
) = τ0 − τ1,

then one has from (3.17) that

∂Xφ0(X,Y, T ) ≥ 1 + ∂XW (X,Y )T0 ≥ 0.

Consequently, ∂Xφa(X,Y, T ) ≥ 0 holds.

On the other hand, ∂Xφa(X,Y, T ) = 0 holds if and only if T ≥ η and

∂Xφ0(X,Y, T ) = 0, which gives

∂Xφa(X,Y, T ) = 0 ⇐⇒ (X,Y, T ) = (σ̄0, θ0, τ0 − τ1).

(2) It follows from the expression for φa and the smallness of η > 0 that in the

neighborhood of (σ̄0, θ0, τ0 − τ1),

φa(X,Y, T ) = X + TW (X,Y ), (3.18)

which gives

∂2
XTφa(σ̄

0, θ0, τ0 − τ1) < 0.

In addition, in view of ∇X,Y ∂XW (X,Y )(σ̄0, θ0) = 0, (3.16), and (3.18), one

readily obtains

∇X,Y ∂Xφa(σ̄
0, θ0, τ0 − τ1) = 0, ∇2

X,Y ∂Xφa(σ̄
0, θ0, τ0 − τ1) > 0.

Collecting all the assertions above concludes the proof of Lemma 3.2. �
(D) Goursat problem for the nonlinear equation (3.9) on a fixed domain.

In order to adjust the height of the domain D1 as in [4] we perform a change of variables

depending on a parameter λ close to zero,

X = x, Y = y, T = T (ρ, λ) = (τ0 − τ1)(ρ+ λρ(1− χ1(ρ))), (3.19)

where χ1 is 1 near 0 and 0 near 1. From now on we will be working on a fixed subdomain

of D1,

D2 =
{
(x, y, ρ) | −C0 ≤ x ≤ M, θ0 − δ0 ≤ y ≤ θ0 + δ0, 0 ≤ ρ ≤ 1

}
and write (3.9) as

L(λ, φ) = 0. (3.20)

For λ = λ0 = 0, the approximate solution to (3.20) is

φ0(x, y, ρ) = φa(x, y, T (ρ, 0)) = φa(x, y, (τ0 − τ1)ρ),

where L(λ0, φ0) = f0(x, y, ρ) = fa(x, y, (τ0 − τ1)ρ). Moreover, φ0 satisfies (H) in D2 at

some point (x0, y0, 1) by part (C).

On the characteristic surfaces {x = M} and {ρ = 0} of (3.20), we impose the natural

boundary conditions

φ is flat on {x = M} and φ− φ0 is flat on {ρ = 0}, respectively. (3.21)

(E) Linearizing (3.20) under the condition (H). In order to solve (3.20) together

with (3.21) in the domain D2 under the condition (H), we are required to linearize (3.20)

suitably.
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Denote the linearized operator of L by

L′(λ, φ)(λ̇, φ̇) = ∂λL(λ, φ)λ̇+ ∂φL(λ, φ)φ̇ = ḟ . (3.22)

In addition, if L(λ, φ) = f , then taking the derivative with respect to the variable λ

yields

∂λL(λ, φ) + ∂φL(λ, φ)

(
∂ρφ

∂λT

∂ρT

)
= ∂ρf

∂λT

∂ρT
. (3.23)

Therefore, if one wants to solve L(λ, φ) = f for a small right-hand side f , then it follows

from the standard Nash-Moser-Hörmander iteration method that we are only required to

solve the linearized equation L′(λ, φ)(λ̇, φ̇) = ḟ and provide the needed tame estimate (see

[3]). From (3.22)-(3.23), one has L′(λ, φ)(λ̇, φ̇) = ∂φL(λ, φ)

(
φ̇− λ̇∂ρφ

∂λT

∂ρT

)
+ λ̇∂ρf

∂λT

∂ρT
.

Setting Φ̇ = φ̇− λ̇∂ρφ
∂λT

∂ρT
, it suffices to solve the equation{

∂φL(λ, φ)Φ̇ = ḟ ,

Φ̇ is flat on both {x = M} and {ρ = 0} (3.24)

for a right-hand side ḟ which is also flat on both {x = M} and {ρ = 0}, since the

second-order error term (here λ̇∂ρf
∂λT

∂ρT
) does not play an essential role in the Nash-

Moser-Hörmander iteration (see [3]).

It follows from a direct but tedious computation concerning ∂φLi(λ, φ) that from (3.24)

one obtains {
P Φ̇ ≡ ZSZΦ̇− ε2(Sφ)QZΦ̇ + ε2l(Φ̇) = ḟ ,

Φ̇ is flat on both {x = M} and {ρ = 0} (3.25)

as the linearized problem of (3.20), where

Z = ∂ρ + ε2z0∂y, S = ∂x + ε2s0∂ρ, Q = Q1Z
2 + 2ε2Q2Z∂y +Q3∂

2
y ;

here z0, s0, and Qi are smooth. More specifically,

z0 = z0(x, ρ, λ, φ, ∂yφ, ∂ρφ), s0 = s0(x, y, ρ, λ),

Q1 =
1

4(τ1 + T )∂ρT
+O(ε2), Q3 = − ∂ρT

(τ1 + T )3
+O(ε2),

and l is a second-order operator which is a linear combination of id, S, Z, ∂y, SZ, Z
2,

Z∂y, ∂
2
y and whose coefficients depend on the derivatives of φ up to third order.

(F) The tame estimate and solvability of (3.24). Comparing the operator P̄

in (3.25) with the operator ∂φL(λ, φ) in Proposition IV.1 of [4], one sees that P̄ is of

the form of ∂φL(λ, φ) with B ≡ 0 and b0 ≡ 0. By carefully checking the proofs of

Proposition IV.2.2, Proposition IV.3.1, and Proposition IV.4 of [4], one then has under

condition (H) on the function φ near some point (x̄0, ȳ, 1):

Lemma 3.3. There exists a subdomain D0 of D2 which is a domain of influence domain

for the first-order differential operator Z̃1 in (3.9) that contains the point (x̄0, ȳ, 1) and

that is bounded by the planes {x = −C0}, {x = M}, {ρ = 0}, {ρ = 1} with the following

property: If |φ − φ0|C7(D3) ≤ ε0 with ε0 a small positive constant and if f ∈ C∞(D3)
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is flat on both {x = M} and {ρ = 0}, then (3.25) has a unique smooth solution in D3.

Moreover, one has the energy estimate (i.e., tame estimate)

|Φ̇|s ≤ Cs

(
|ḟ |s+n0

+ |ḟ |n0
(1 + |φ|s+n0

)
)
, (3.26)

for any s ∈ N, where | · |s = ‖ · ‖Hs(D3) and n0 ∈ N is some fixed integer.

Based on Lemma 3.3 and the standard Nash-Moser-Hörmander iteration method (see

[3–5]), and using ∂Xv(σ̄0, θ0) �= 0 in (3.11) and the Sobolev imbedding theorem, we have

now completed the proof of Theorem 1.6.

4. Proof of Theorem 1.1. Using Theorem 1.6, we now conclude the proof of The-

orem 1.1.

Recall that so far we have obtained the C3 solution φ to (3.20), (3.21) in the domain

D0. By (3.8), we immediately obtain v in D0. Indeed, we have solved the modified

blowup system (3.5) in D0. Therefore, the solution to (1.9) is obtained in the domain

Φ(D0) in the coordinate system (s, θ, τ ); hence ‖u‖C(Φ(D0)) ≤ Cε2. Now we go back

to the original coordinate system (r, θ, t) so that the conclusions of Theorem 1.1 can be

obtained.

For (s, θ, τ ) ∈ D0 close to the point mε given in Theorem 1.6, by Taylor’s formula and

condition (H) in Theorem 1.6, there exists a point (s̄, θ̄, τ̄) = (λ̄s + (1 − λ̄)sε, λ̄θ + (1 −
λ̄)θε, λ̄τ + (1− λ̄)τε) with 0 < λ̄ < 1 such that

∂sφ(s, θ, τ ) = ∂2
sτφ(mε)(τ − τε)

+
1

2
(s− sε, θ − θε, τ − τε)∇2

s,θ,τ∂sφ(s̄, θ̄, τ̄ )(s− sε, θ − θε, τ − τε)
T .

(4.1)

In addition, we may assume −2c0 ≤ ∂2
sτφ ≤ −c0 in D0 since ∂2

sτφ(mε) < 0 and φ ∈
C3(D0); here c0 > 0 is a constant. Together with ∇2

s,θ∂sφ(mε) > 0, for (s, θ, τ ) ∈ D0,

this yields

∂sφ(s, θ, τ ) ≥ c0(τε − τ ) = c0ε
Tε − t√
Tε +

√
t
≥ c0ε

4
· Tε − t√

t
. (4.2)

Furthermore, if |(s− sε, θ − θε)| < τε − τ , then

|∂sφ(s, θ, τ )| ≤ 3c0(τε − τ ) ≤ c0ε
Tε − t√

t
. (4.3)

From the expression for u =
ε√
r
v, one has

∂1u = −ε cos θ

2r3/2
v − ε√

r

(
∂θv −

∂sv

∂sφ
∂θφ

)
sin θ

r
,

∂2u = −ε sin θ

2r3/2
v +

ε√
r

(
∂θv −

∂sv

∂sφ
∂θφ

)
cos θ

r
,

∂tu =
ε2

2
√
rt

(
∂τv −

∂sv

∂sφ
∂τφ

)
.
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Substituting (4.2)-(4.3) into these formulas yields

1

C (Tε − t)
≤ ‖∂tu‖L∞(Φ(D0)) and ‖∇t,xu(t, ·)‖L∞(Φ(D0)) ≤

C

Tε − t
. (4.4)

Owing to assumption (1.11), outside Φ(D0) and for t ≤ Tε, the smooth solution of

(2.1) does not blow up in ({t ≤ Tε} × R
3) \ Φ(D0). Therefore, similar to the proof of

Lemma 2.4, one obtains in ({t ≤ Tε} × R
3) \ Φ(D0) that

|∂u| ≤ Cε (1 + t)−1/2 and |u| ≤ Cε.

Finally, by Theorem 1.6 and the related Nash-Moser-Hörmander iteration process, one

concludes that lim
ε→0

τε = τ0 for the solution u(t, x) when the variables (r− t, θ, ε
√
t) lie in

Φ(D0). This implies that the lifespan Tε satisfies

lim
ε→0

ε
√
T ε ≤ τ0. (4.5)

Together with (2.45), this yields

lim
ε→0

ε
√
T ε = τ0,

which completes the proof of Theorem 1.1.
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