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Abstract

In most cases 2D (or bivariate) wavelets are constructed
as a tensor product of 1D wavelets. Such wavelets are
called separable. However, there are various applications,
e.g. in image processing, for which non-separable 2D
wavelets are preferable. In this paper, we are concerned
with the class of compactly supported 2D wavelets that was
introduced by Belogay and Wang [2]. A characteristic fea-
ture of this class of wavelets is that the support of the cor-
responding filter comprises only two rows. As a result, the
2D wavelets in this class are intimately related to some un-
derlying 1D wavelet. We explore this relation in detail, and
we explain how the 2D decompositions can be realized by
a lifting scheme, and hence allow an efficient implementa-
tion. We also desrcibe an easy way to construct wavelets
with more rows and shorter columns.

1. Introduction

Wavelets do not need any introduction. They have be-
come part of the basic toolbox of any applied mathemati-
cian or electrical engineer [8] in the same way as the Fourier
transform has belonged to this toolbox for many decades.
There are some major differences between both tools, how-
ever. Basically, there exists only one Fourier transform.
Wavelets, however, occur in many different tastes. They
may be orthogonal [5] or biorthogonal [4], they may have
compact support or not, they may have different accura-
cies, they may show different degrees of regularity, they
may be separable or not (in higher dimensions), they may
be integer-, real-, or complex-valued, and they may even be
nonlinear. It is this diversity that has made wavelets into
such a practical and flexible tool. It is also this diversity
that makes wavelets into a fascinating research area.

In this paper, we will be concerned with 2D (or bivari-
ate) wavelets. Wavelets in two and higher dimensions are
often constructed as tensor products of 1D wavelets, result-
ing in so-called separable wavelets. But the tensor product
approach has several drawbacks. In fact, this approach is
only suited for basic square grids, and cannot cope with

∗Supported by EU project MASCOT: Metadata for Advanced Scalable
Video Coding Tools.

arbitrary sampling lattices offering more degrees of free-
dom. On the other hand, construction of non-separable 2D
wavelets is far from trivial [7]. The spectrum factorization
method that has been used with great success in the 1D
case, is hard to extend to two dimensions. In [2], Belogay
and Wang have constructed a family of 2D non-separable
orthogonal wavelets related to the dilation matrix

(
0 2
1 0

)
in

which the spectrum factorization method can be used thanks
to the special structure of the wavelet filters. Furthermore,
the members of this wavelet family can have any prescribed
accuracy.

In this paper, which presents some generalizations to the
results in [2], we investigate the relation between 2D or-
thonormal wavelets with the aforementioned dilation matrix
and 1D wavelets with scaling factor 2. We also show how
to design lifting schemes for this family of 2D wavelets.
Then we develop an easy way to construct wavelets with
more rows and shorter columns. More precisely, for a given
accuracyr, the support of the two-row filters constructed
in [2] lie within the range[0, 4r − 1] × [0, 1] whereas the
support of the filters with more rows lie within the range
[0, 2r − 1]× [0, r].

2. Subband schemes and wavelet transforms

2.1. Subsampling with dilation matrices

Wavelets are known to have a tight relation with subband
schemes, also known as filter banks. From now on, we are
mainly concerned with filter banks for 2D signals with two
bands.

A square matrixD with integer entries is said to be a
dilation matrix if the absolute values of its eigenvalues are
larger than 1. In subband schemes, dilation matrices are
used to specify the subsampling lattice. Note that for the
two-band system, we have|detD| = 2.

In the sequel, any element inZ2, denoted as a column
vector, indicates a point, a vector or an index. Lete1 =
(1, 0)T ande2 = (0, 1)T , whereT stands for the vector
transpose.

LetD = (dij) be a2× 2 dilation matrix with|detD| =
2. SupposeadjD is theadjugateof D, defined byD−1 =
adjD/(detD). One can easily show thatD, and hence



adjD, must have an odd entry. We give the following result
without proof.

Lemma 1 Suppose thatD is a dilation matrix and that
adjD has an odd entry at position(l, k). Takeu = ek and
v = (eT

l adjD)T , i.e.,vT is thel-th row ofadjD. Then

1. The setZ2 can be divided into two disjoint setsDZ2

andDZ2 + u;

2. vT u is odd andvTDn is even for anyn ∈ Z2.

We introduce some further notation. For a signalx ∈
`2(Z2) we define thez-transform by

X(z) =
∑
n∈Z2

xnzn ,

wherezn = zn1wn2 for z = (z, w) andn = (n1, n2)T . It’s
conjugate isX̄(z) =

∑
xnz−n.

The outputy after downsamplingx with dilation matrix
D is y = D↓(x), i.e.,yn = xDn. The outputy after upsam-
pling x with dilation matrixD is y = D↑(x), i.e.,yn = xk,
if n = Dk andyn = 0 otherwise. Define

C(z) = C((−1)v1z, (−1)v2w)

for a z-form C(z), wherev = (v1, v2)T is defined in
Lemma 1. Then the compositionD↑D↓ has the following
compact formulation:

D↑D↓ : X 7→ (X +X)/2

Obviously,z̄ = z−1 if |z| = 1. Therefore, we will usēz
andz−1 interchangeably.

2.2. Wavelets and subband schemes

A wavelet is a functionψ ∈ L2(R2) so that{ψj,n :
j ∈ Z,n ∈ Z2} is an orthonormal basis ofL2(R2), where
fj,n(x) = 2j/2f(Djx − n). In a multiresolution analysis
(MRA) setting, the waveletψ is uniquely related to a so-
calledscaling functionφ satisfying the dilation relation

φ(x) = 21/2
∑
n∈Z2

hnφ(Dx− n) .

Under some properties, the wavelet is then defined by

ψ(x) = 21/2
∑
n∈Z2

gnφ(Dx− n) .

LetH(z) =
∑

n∈Z2 hnzn andG(z) =
∑

n∈Z2 gnzn. Then

G = αH̄, (1)

whereα is a monomial withα = −α. For simplicity, we
can assume thatα(z) = zµ whereµ is an odd number.

The orthogonality ofH, and hence alsoG, is specified
by

H̄H + H̄H = 2. (2)

-x

H̄ h↓ h↑ H

Ḡ h↓ h↑ G

-e y

Figure 1. Subband schemes with two bands.
Here ↓ denotes down-sampling and ↑ denotes
up-sampling.

These results are captured by the 2-band filter bank depicted
in Figure 2.2, whereH andG are the low-pass and high-
pass filters respectively. Define themodulation matrix

M =
(
H H
G G

)
.

Now the perfect reconstruction condition can be formulated
as

MT M̄ = 2I, (3)

whereI is the identity matrix.

3. Non-separable orthonormal wavelets

In the sequel all filters are assumed to have finite sup-
ports. Thus theirz-forms are Laurent polynomials, i.e., they
have finitely many terms. The construction in§3.1 and§3.2
below is close in spirit to the one in [2], but our approach is
slightly different.

3.1. Construction

From now on, we will restrict ourselves to the dilation
matrix

D =
(

0 2
1 0

)
. (4)

ThusdetD = −2 andadjD =
(

0 −2
−1 0

)
has an odd entry

−1 at location(2, 1). By Lemma 1,u = e1 = (1, 0)T and
v = (−1, 0)T . Let S(z) be an arbitrary Laurent polyno-
mial. For the dilation matrixD given by (4) we have

S(z, w) = S(−z, w) . (5)

Therefore, ifS(z) = S(z) thenS(z) = S(−z), and if
S(z) = S(w) thenS(z) = S(w).

In [2], Belogay and Wang construct 2D orthonormal
wavelets whose main restriction concerns the support of the
underlying filters. In fact, they assume that the low-pass
filter H has only two rows, i.e., it has az-transform

H(z) = a(z) + (w − 1)b(z) . (6)



By substituting (6) into (2) and using (5), we get

|a|2 + |a|2 = 2 (7)

(ā− b̄)b+ (ā− b̄)b = 0. (8)

Assume that we have a univariate Laurent polynomial
P (z) =

∑N2
n=N1

pnz
n with degreedegP = N2 −N1. If P

is nontrivial, i.e.,degP > 0, thenP can be factorized as

P (z) = pN2z
N1

r1∏
n=1

(z2 − γ2
n)

r2∏
n=1

(z − ηn) ,

where bothγn and−γn are roots ofP for n = 1, · · · , r1,
andηn, n = 1, · · · , r1, are the other roots ofP. Therefore
it is easy to see thatP can be written asP (z) = s(z)q(z),
where the factors(z) is even inz and has maximal degree,
and whereq(z) andq(−z) have no common nontrivial fac-
tors.

Now consider condition (8). Assume

a(z)− b(z) = s(z2)l(z), b(z) = q(z2)g(z) ,

where l(z) and g(z) are Laurent polynomials such that
neither l(z) and l(−z) nor g(z) and g(−z) have com-
mon nontrivial factors. Combining this with (8), we ob-
tain g(z) = β(z)l̄(z) whereβ(z) is a monomial inz such
thatβ(−z) = −β(z). For simplicity, we can assume that
β(z) = zν whereν is an odd number.

Therefore, condition (8) is equivalent to

a(z)− b(z) = s(z2)l(z), b(z) = zνq(z2)l̄(z) , (9)

whereν is odd.
Substituting (9) into (7), we have

(|l(z)|2 + |l(−z)|2)(|q(z2)|2 + |s(z2)|2) = 2

in which both factors are necessarily monomials. Without
loss of generality, we may assume

|l(z)|2 + |l(−z)|2 = 2 (10)

|q(z2)|2 + |s(z2)|2 = 1. (11)

To computel from (10), we may simply use the results from
the one-dimensional case.

3.2. Accuracy ofH

A scaling functionφ is said to haveaccuracyr if the
space spanned by integer translatesφ(x − k), wherek ∈
Z2, contains all polynomials of degreer − 1 or less. There
exist several equivalent formulations of this property. For
us, the “sum rules” on the filter coefficients [2, 3] is the
most interesting. It says that the filterH has accuracyr if

∂p+q

∂zp∂wq
H(−1, 1) = 0 , for all p, q ≥ 0 with p+ q < r.

where(−1, 1) comes from(−1)v = ((−1)v1 , (−1)v2).

Lemma 2 If H is of the form given in (6) and has accuracy
r + 1, thena andb can be written as

a =
(

1 + z

2

)r+1

a0, b =
(

1 + z

2

)r

b0, (12)

wherea0, b0 are Laurent polynomials.

Ther-accuracy ofa, b in combination with (9) yields

q(z2) =
(

1 + z

2

)r (
1− z

2

)r

q0(z2), (13)

or alternatively

q(z) =
(

1− z

4

)r

q0 , (14)

and

l(z) =
(

1 + z

2

)r

l0(z) , (15)

whereq0, l0 are Laurent polynomials.
Further, fora to have accuracyr + 1, we need

(−1)νq0(1)l0(1) + s(1)l0(−1) = 0.

Notice thatq(1) = 0 and hences(1) = ±1 by (11). Thus
we arrive at the following result.

Theorem 1 Let l given by (15), wherel0 is a Laurent poly-
nomial, be a 1D low-pass filter of accuracyr satisfying (10)
and l0(1) =

√
2. Letq be given by (14) whereq0 is a Lau-

rent polynomial withq0(1) = l0(−1)/
√

2, and lets be a
Laurent polynomial such that (11) holds ands(1) = 1.
ThenH given by (6), wherea, b are given by (9), defines
a 2D low-pass filter with accuracyr + 1.

If we use the canonical definition ofl given in [5], then

|l0(z)|2 = 2
r−1∑
k=0

(
r + k − 1

k

) (
2− z − z−1

4

)k

, (16)

then we have

[q0(1)]2 =
r−1∑
k=0

(
r + k − 1

k

)
.

3.3. Modulation matrices

In this subsection we derive a new factorization for the
modulation matrix. Later we will see how this factorization
can be used to design a lifting scheme.

From the above deduction, we have

M =
(
H H
G G

)
=

(
sl + βql̄w sl − βql̄w
α[s̄l̄ − β̄q̄lw̄] −α[s̄l̄ + β̄q̄lw̄]

)
=

(
1 0
0 w̄

)
S(z2)

(
1 0
0 w

)
L(z) , (17)



whereα(z) = zµ, β(z) = zν ,

Q(z) = z(ν−µ)/2q(z), (18)

S(z) =
(
s(z) Q(z)
−Q̄(z) s̄(z)

)
, (19)

L(z) =
(

l(z) l(−z)
α(z)l(−z−1) −α(z)l(z−1)

)
. (20)

Recall that bothµ andν are odd, and therefore(ν − µ)/2
is an integer. Interestingly, the matrix in (20) is nothing but
the modulation matrix of a 1D subband scheme. Therefore,
we can follow Daubechies’ construction in [5] to obtainl.
We will not give any further details here. Note also that the
matrixS in (19) depends only on the variablez. Thus (17)
means that the filters with 2-row support can be factorized
as a composition of one-dimensional filters.

3.4. Non-separability in a2× 2 sampling lattice

2D wavelets are a popular tool in image processing ap-
plications such as denoising and compression. As observed
before, the sampling lattice is2Z×2Z in most cases, corre-
sponding with the dilation matrix2I, whereI is the identity
matrix. This gives rise to four different subbands, one ap-
proximation and three details. It’s not easy to construct fil-
ters with dilation matrix2I directly; instead, tensor product
of 1D filters are being used in most cases. In the analysis
stage, the input image is filtered first row by row and then
column by column. These two steps correspond with ma-
tricesD1 =

(
2 0
0 1

)
andD2 =

(
1 0
0 2

)
respectively. Note that

these two matrices are not 2D dilation matrices according to
the definition in§2.1; each of them has only one sampling
direction. The resulting filters are therefore separable.

Interchanging the two columns ofD1 or, alternatively,
the two rows ofD2, one gets the dilation matrix

D = D1

(
0 1
1 0

)
=

(
0 1
1 0

)
D2 =

(
0 2
1 0

)
. (21)

Notice thatD2 = 2I. This shows that we may use dila-
tion matrixD twice to obtain 2D filters with dilation matrix
2I. However, the filters derived in this way can be non-
separable in contrast to those derived from the tensor prod-
uct method, which are always separable. See Figure 2 for an
illustration, and Figure 3 for a decomposition of the Lenna
image.

The two-row filterH discussed before is non-separable
if and only ifa is not a divisor ofb. The only separable filter
devised in this context corresponds with the caser = 0.

4. Lifting scheme

4.1. Polyphase representation

Recall that the monomialα(z) = zµ in (1) is odd inz.
We may assume without loss of generality (and for the sake
of simplicity) thatα(z) = z−1, i.e.,µ = −1.

original -row L H -column

HL HH

LL LH

2-D tensor product wavelet transform

original -stage 1

H

L

-stage 2

HL HH

LL LH

2D wavelet transform with dilation matrixD

Figure 2. 2D wavelet transforms using a ten-
sor product (top) and a dilation matrix D (bot-
tom). Here L stands for the low-pass band
and H for the high-pass band.

We split the univariatez-form l(z) into two parts:

l(z) = le(z2) + z−1lo(z2),

wherele contains the even coefficients andlo the odd. If
p(z) = z−1l(−z−1), then

pe(z) = −po(z−1), po(z) = le(z−1).

Therefore the modulation matrixL in (20) can be written as

L = P1

(
1 1
z −z

)
with P1 =

(
le lo
−l̄o l̄e

)
.

Note thatP1 is the 1D polyphase matrix.
Analogously to the 1D case, the bivariate Laurent poly-

nomial H(z, w) = a(z) + wb(z) can be split into the
odd partHo(z, w) = ao(z) + wbo(z) and the even part
He(z, w) = ae(z) + wbe(z). Now the following relation
holds:

H(z, w) = Ho(z2, w) + z−1Ho(z2, w).

SupposeH is the two-row filter defined in§3. It has
polyphase matrix

P (z) =
(
ae + wbe ao + wbo
−āo − w̄b̄o āe + w̄b̄e

)
(22)

It is easy to show that

M = P

(
1 1
z−1 −z−1

)
.

Using thatMT M̄ = 2I (see (3)) we find thatP is unitary.
We obtain from (17) that

P (z, w) =
(

1 0
0 w

)
S(z)

(
1 0
0 w̄

)
P1(z). (23)



Thanks to this factorization, we can design an algorithm for
the 2D transform(x, y) of a signalx0 that is based on the
underlying 1D wavelet transforms. Below the algorithm is
given only for the forward transform, in which case we must
useP̄ rather thanP . In the following, ‘?R’ denotes row-
wise convolution.

1. Let (x1, y1) be the row-wise wavelet transform ofx0

with a 1D wavelet of given accurayr; this corresponds
with the matrixP1(z) in (23).

2. Apply forward vertical shift toy1; this corresponds
with the diagonal matrix

(
1 0
0 w̄

)
3a. Computex2 = x1 ?R s̄+ y1 ?R Q̄;

3b. Computey2 = −x1 ?R Q+ y1 ?R s;
Note that these two expressions correspond with the
multiplication with matrixS in (19).

4. Apply backward vertical shift toy2.

5. Definex = xT
2 andy = yT

2 . This step is necessary
because of the transpose in dilation matrixD.

Figure 3. Wavelet transforms of the Lenna im-
age in two stages with dilation matrix D.

4.2. Lifting schemes

Any 1D wavelet transform using finite impulse response
(FIR) filters can be factorized into lifting steps by means of
the Euclidean algorithm [6]. One of the advantages of the
lifting scheme factorization is that it enables a fast and ef-
ficient implementation. Unfortunately, the factorization re-
sults for the 1D case do not have a straightforward general-
ization to the general nonseparable 2D case(see [9]). How-
ever, for the two-row filters explored in this paper, we can
use the factorization in (23) to design a lifting scheme fac-
torization of the matricesP1 andS. We consider the case
r = 1 as an example. Here,

P1 =
1√
2

(
1 1
−1 1

)
andS =

1
4

(
γ + ηz −1 + z
1− z−1 γ + ηz−1

)
with γ = 2−

√
3 andη = γ−1 = 2+

√
3. Then, after some

manipulations, we derive

P =
(√

2 0
0 1√

2

) (
1 0
0 w

) (
1 −2η
0 1

) (
1 0

1−z
2 1

)
×

(
1 2ηz−1

0 1

) (
1 0
0 w−1

) (
1 1/2
0 1

) (
1 0
−1 1

)
For an inputx, split it, according to dilation matrixD, into
low-bandL and high-bandH, force the predict, update, shift
and scaling operations with respect to matrices in (23) from
right to left. Then the lifting scheme based onP is realized.

5. Shorter filters with more rows

6. Filters having more than two rows

In general we chooseq0 in (14) constant, for simplic-
ity. Therefore, for given accuracyr, we havedeg q =
deg s = r. If we use the canonical definition ofl given
by (15) with (16), we havedeg l = 2r − 1, and hence
deg a = deg b = 4r − 1. Thus in this case the filters have
a support stretched along the horizontal direction. Here we
will given an alternative factorization with filters that are
less stretched. Towards this goal we replaceS(z) in factor-
ization (23) byS(w). Thus we get a polyphase matrix

P (z, w) =
(

1 0
0 w̄

)
S(w)

(
1 0
0 w

)
P1(z). (24)

This matrix corresponds to the 2D low-pass filter

H(z, w) = A(z, w) + wB(z, w) (25)

whereA andB are 2D Laurent polynomials defined simi-
larly as in (9):

A(z, w) = s(w)l(z), B(z, w) = zνq(w)l̄(z) . (26)

Here l satisfies (10),q is the same as in (14), but withz
replaced byw, ands is given by the following modification
of (11):

|q(w)|2 + |s(w)|2 = 1. (27)

The factors
(

1+z
2

)r
of l(z) and

(
1−w

2

)r
of q(w) ensure

that the filterH as defined in (25) is of accuracyr. But
∂r

∂zrH(−1, 1) = 0 results ins(1) = 0, which is not possi-
ble. This means that, unlike the two row case, the filter (25)
connot have accuracyr + 1.

We can prove the following analogue of Theorem 1.

Theorem 2 Let l given by (15), wherel0 is a Laurent poly-
nomial, be a 1D low-pass filter of accuracyr satisfying (10)
and l0(1) =

√
2. Letq be given by (14) whereq0 is a Lau-

rent polynomial withq0(1) = l0(−1)/
√

2, and lets be a
Laurent polynomial such that (27) holds ands(1) = 1.
ThenH given by (25), whereA,B are given by (26), de-
fines a 2D low-pass filter with accuracyr.

For a 2D Laurent polynomial

A(z, w) =
∑

I1≤i≤I2

∑
J1≤j≤J2

aijz
iwj ,

we can define the degree ofA as

degA = (I2 − I1, J2 − J1).

It is trivial that under the assumptions in Theorem 2,

degA = degB = (2r − 1, r).



If we compare the expressions forA,B in (26) with those
for a, b in (9), we see thats(z2) has been replaced bys(w).
A similar substitution should be used when we compute the
modified modulation matrix. However, in the polyphase
matrix in (24) we encounter the matrixS(w) whereas in
(23), the matrixS(z) occurs. The algorithm at the end of
§4.1 remains unchanged except for steps 3a and 3b which
have to be changed into

3a’. Computex2 = x1 ?C s̄+ y1 ?C Q̄;

3b’. Computey2 = −x1 ?C Q+ y1 ?C s;

here ‘?C’ denotes column-wise convolution.

7. Conclusion

We have investigated the class of 2D filters that was in-
troduced by Belogay and Wang in [2], and we have derived
a new factorization of the corresponding modulation ma-
trix. We have shown that, for any accuracy, the two-row or-
thonormal filters can be realized from 1D filters and allows
an efficient implementation based on the lifting scheme. We
have also given a modification of the Belogay-Wang ap-
proach that usesr+1 rows and2r columns for a decompo-
sition with accuracyr.
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