
Soc Choice Welf (2017) 48:717–745
DOI 10.1007/s00355-017-1033-0

ORIGINAL PAPER

On the likelihood of single-peaked preferences

Marie-Louise Lackner1 · Martin Lackner2

Received: 20 May 2015 / Accepted: 27 January 2017 / Published online: 7 March 2017
© The Author(s) 2017. This article is published with open access at Springerlink.com

Abstract This paper contains an extensive combinatorial analysis of the single-
peaked domain restriction and investigates the likelihood that an election is single-
peaked. We provide a very general upper bound result for domain restrictions that
can be defined by certain forbidden configurations. This upper bound implies that
many domain restrictions (including the single-peaked restriction) are very unlikely
to appear in a random election chosen according to the Impartial Culture assumption.
For single-peaked elections, this upper bound can be refined and complemented by
a lower bound that is asymptotically tight. In addition, we provide exact results for
elections with few voters or candidates. Moreover, we consider the Pólya urn model
and the Mallows model and obtain lower bounds showing that single-peakedness is
considerably more likely to appear for certain parameterizations.

1 Introduction

The single-peaked restriction (Black 1948) is an extensively studied domain restriction
in social choice theory. An election, i.e., a collection of preferences represented as
total orders on a set of candidates, is single-peaked if the candidates can be ordered
linearly—on a so-called axis—so that each preference is either strictly increasing
along this ordering, or strictly decreasing, or first increasing and then decreasing. See
Fig. 1 for examples and Sect. 2 for formal definitions. Intuitively, the axis reflects the
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axis
c1 c2 c3 c4 c5 c6 c7

Fig. 1 The vote V1 : c4 > c5 > c6 > c3 > c2 > c7 > c1, shown as a solid line, is single-peaked with
respect to the axis c1 < c2 < c3 < c4 < c5 < c6 < c7. The vote V2 : c3 > c5 > c4 > c2 > c6 > c1 > c7,
depicted as a dashed line, is not single-peaked with respect to this axis since both c3 and c5 form a peak.
However, note that both votes are single-peakedwith respect to the axis c1 < c2 < c3 < c5 < c4 < c6 < c7

society’s ordering of the candidates and voters always prefer candidates that are closer
to their ideal candidate over those farther away. In political elections, for example,
this axis could reflect the left-right spectrum of the candidates or a natural ordering of
political issues such as the maximum income tax.

Single-peaked preferences have several nice properties. First, they guarantee that
a Condorcet winner exists and further that the pairwise majority relation is transitive
(Inada 1969). Thus single-peaked preferences are a way to escape Arrow’s paradox
(Arrow 1950). Second, non-manipulable voting rules exist for single-peaked pref-
erences (Moulin 1980) and hence the single-peaked restriction also offers a way to
circumvent theGibbard-Satterthwaite paradox (Gibbard 1973; Satterthwaite 1975).By
adopting an algorithmic viewpoint, a third advantage becomes apparent. Restricting
the input to single-peaked preferences often allows for faster algorithms for compu-
tationally hard voting problems (Brandt et al. 2015; Betzler et al. 2013; Walsh 2007;
Faliszewski et al. 2011b).

In this paper we perform an extensive combinatorial analysis of the single-peaked
domain. Our aim is to establish results on the likelihood that an election is single-
peaked for some axis. To be more precise, we allow the axis to be chosen depending
on the preferences and do not assume that it is given together with the election.We con-
sider three probability distributions for elections: the ImpartialCulture (IC) assumption
in which all total orders are equally likely and are chosen independently, the Pólya
urn model which assumes a certain homogeneity among voters and Mallows model
in which the probability of a vote depends on the closeness to a given reference vote
(with respect to the Kendall-tau distance).

Our main results are the following:

– Configuration definable restrictions Many domain restrictions can be character-
ized by forbidden configurations, in particular the single-peaked domain. We
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On the likelihood of single-peaked preferences 719

prove a close connection between configurations and permutations patterns. This
novel connection allows us to obtain a very general result (Theorem 8), showing
that many domain restrictions characterized by forbidden configurations are very
unlikely to appear in a random election chosen according to the Impartial Culture
assumption. More precisely, while the total number of elections with n votes and
m candidates is equal to (m!)n , the number of elections belonging to such a domain
restriction can be bounded by m! · cnm for some constant c.

– Counting single-peaked electionsWe perform a detailed combinatorial analysis of
the single-peaked domain by counting the number of single-peaked elections. The
number of single-peaked elections immediately yields the corresponding proba-
bility with respect to the Impartial Culture (IC) assumption, which is the number
of single-peaked elections divided by the total number of elections. We establish
an upper bound for the number of single-peaked elections which asymptotically
matches our lower bound result (Theorem 11). In addition, we show exact enumer-
ation results for elections with two voters or up to four candidates (Theorem 12).
Our results rigorously show that the single-peaked restriction is highly unlikely
to appear in random elections chosen according to the IC assumption. This holds
even for elections with few votes and candidates (cf. Sect. 8). Most of our results
can easily be translated to the Impartial Anonymous Culture (IAC) assumption
(Proposition 13).

– Pólya urn model In contrast to the IC assumption, single-peaked elections are
considerably more likely if elections are chosen according to the Pólya urn model.
We provide a lower bound on the corresponding likelihood (Theorem 14) and show
that, if a sufficiently strong homogeneity is assumed, the probability of an election
with n votes being single-peaked is larger than 1/n (Corollary 15).

– MallowsmodelWeencounter themost likely occurrence of single-peaked elections
underMallowsmodel.As for the Pólya urnmodelwe establish a lower bound result
on the likelihood (Theorem 16). If the dispersion parameter φ is sufficiently small ,
we are able to show that single-peaked elections are likely to appear (Corollary 17
and Table 4).

Related work Computing the likelihood of properties related to voting has been the
focus of a large body of research. Themost fundamental question in this line of research
is the choice of appropriate probability distributions, see the survey of Critchlow et al.
(1991). We would like to mention two particular properties of elections that have been
studied from a probability theoretic point of view: the likelihood of manipulability
and the likelihood of having a Condorcet winner.

An election ismanipulable if a voter or a coalition of voters is better off by not voting
sincerely but by misrepresenting their true preferences. The Gibbard-Satterthwaite
paradox (Gibbard 1973; Satterthwaite 1975) states that every reasonable voting rule
for more than two candidates is susceptible to manipulation. However, the Gibbard-
Satterthwaite paradox does not offer insight into how likely it is that manipulation
is possible. Determining this likelihood both for single manipulators and coalitions
of manipulators has been the focus of intensive research. Results have been obtained
under a variety of probability distributions: for example under the Impartial Culture
assumption (Slinko 2002a, b; Friedgut et al. 2008; Isaksson et al. 2012), the Pólya urn
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model (Lepelley and Valognes 2003), the Impartial Anonymous Culture (Favardin
et al. 2002; Slinko 2005).

The likelihood that an election has a Condorcet winner or, its converse, the like-
lihood of the Condorcet paradox has been the focus of many publications (see the
survey of Gehrlein (2006) as well as more recent work of Gehrlein et al. (2013, 2015)
for more recent research). In particular, we would like to mention that the likelihood
of an election with three candidates having a Condorcet winner under the Impartial

Anonymous Culture assumption is 15(n+3)2

16(n+2)(n+4) for odd n and 15(n+2)(n2+8n+8)
16(n+1)(n+3)(n+5) for

even n (Gehrlein 2002). We will comment on the relation between these result and
our results in Sect. 9.

Organization Preliminaries are established in Sect. 2. The results on configuration
definable restrictions can be found in Sect. 3, results on counting single-peaked elec-
tions in Sect. 4, results on the IAC assumption in Sect. 5, results on the Pólya urn
model in Sect. 6 and results on the Mallows model in Sect. 7. In Sect. 8 we provide
numerical evaluations of our results and discuss their implications. We conclude the
paper in Sect. 9 with directions for future research.

2 Preliminaries

Sets and orders Let S be a finite set. A relation on S is total if for every a, b ∈ S, either
the pair (a, b) or (b, a) is contained in the relation. A total order on S is a reflexive,
antisymmetric, transitive and total relation. Let T be a total order of S. Instead of
writing (a, b) ∈ T , we write a ≤T b or b ≥T a. We write a <T b or b >T a to
state that a ≤T b and a �= b. As a short form, we write T : s1s2s3 . . . si instead of
s1 >T s2 >T s3 >T · · · >T si for s1, s2, . . . , si in S. We write T (i) to denote the i-th
largest element with respect to T .

Permutations A permutation π of a finite set S is a bijective function from S to S.
We write π−1 for the inverse function of π . A permutation of the set {1, . . . ,m} is
called anm-permutation.We shall write anm-permutation π as the sequence of values
π(1)π(2) . . . π(m). For exampleπ = 321 is the permutationwithπ(1) = 3, π(2) = 2
and π(3) = 1. Every pair (T1, T2) of total orders on a set with m elements yields an
m-permutation p(T1, T2), which is defined as follows: i maps to j if the i-th largest
element in T1 equals the j-th largest element in T2. For T1 : bac and T2 : cab we have
p(T1, T2) = 321. Note that p(T1, T2) = p(T2, T1)−1.

Elections An (n,m)-election (C,P) consists of a size-m set C and an n-tuple P =
(V1, . . . , Vn) of total orders on C . The total orders V1, . . . , Vn represent votes or
preferences. We write V ∈ P to denote that there exists an index i ∈ [n] such that
V = Vi . Given a vote Vi ∈ P , the intuitive meaning of Vi : c j ck is that the i-th voter
prefers candidate c j to candidate ck .

We assume that candidate sets are chosen from a fixed, infinite set. When counting
elections we do not care about the specific names these candidates have. That means
when we count elections we fix the candidate set to {c1, c2, . . . , cm}. Note that the
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number of (n,m)-elections is (m!)n . Throughout the paper we only consider (n,m)-
elections with n ≥ 2 and m ≥ 2.

Probability distributions over elections We consider four probability distributions in
this paper. The first and simplest is the Impartial Culture (IC) which assumes that
in an election all votes, i.e., total orders of candidates, are equally likely and are
chosen independently. Thus, the IC assumption can be seen as the uniform distribution
over total orders on candidates. The results in our paper concerning IC do not state
probabilities but rather count the number of elections. If, e.g., the number of single-
peaked (n,m)-elections is a(n,m, SP), then the probability under the IC assumption
that an (n,m)-election is single-peaked is a(n,m,SP)

(m!)n . It is important to note that in our
paper elections contain an ordered list of votes. Thus, we distinguish elections that
consist of the same votes but these votes appear in a different order. This is in contrast
to the Impartial Anonymous Culture (IAC) assumption, in which elections contain a
multiset of votes and thus elections are not ordered. The IAC assumption is briefly
considered in Sect. 5.

In addition to the IC assumption, we consider the Pólya urn model and theMallows
model. Both distributions are generalizations of the IC assumption and generate more
structured elections. We are going to define the Pólya urn and the Mallows model in
Sects. 6 and 7, respectively.

Single-peaked preferences The single-peaked restriction assumes that the candidates
can be ordered linearly on a so-called axis and voters prefer candidates close to their
ideal point to candidates that are further away.

Definition 1 Let (C,P) be an election and A a total order of C . A vote V on C
contains a valley with respect to A on the candidates c1, c2, c3 ∈ C if A : c1 c2 c3
and V ranks c2 below c1 and c3. The election (C,P) is single-peaked with respect
to A if for every V ∈ P and for all candidates c1, c2, c3 ∈ C , V does not contain
a valley with respect to A on c1, c2, c3. We then call the total order A the axis. The
election (C,P) is single-peaked if there exists a total order A of C such that (C,P)

is single-peaked with respect to A.

Remark 1 Given an axis onm candidates, there are 2m−1 votes that are single-peaked
with respect to this axis (Escoffier et al. 2008). This can be seen as follows: The last
ranked candidate has to be one of the two outermost candidates on the axis and hence
there are two possibilities. Once we have picked this last candidate, we can iterate the
argument for the next lowest ranked candidate, where we again have two possibilities.
Thus, for all positions in the total order (except for the top ranked candidate), there
are two candidates to choose from—which yields 2m−1 possibilities in total.

3 A general result based on permutation patterns

Before we study the single-peaked domain in detail, we prove a general result that is
applicable to a large class of domain restrictions including the single-peaked domain.

123



722 M.-L. Lackner, M. Lackner

To precisely define this class of domain restrictions, we require the notion of config-
uration definability.

3.1 Configuration definable domain restrictions

Single-peaked elections may also be defined in the following way:

Theorem 2 (Ballester and Haeringer 2011) An (n,m)-election (C,P) is single-
peaked if and only if there do not exist candidates a, b, c, d ∈ C and indices i, j ∈ [n]
such that

– Vi : abc, Vi : db,
– Vj : cba and Vj : db holds

and there do not exist candidates a, b, c ∈ C and indices i, j, k ∈ [n] such that

– Vi : ba, ca (i.e., a is ranked below b and c),
– Vj : ab, cb and
– Vk : ac, bc holds.
Note that this theorem defines single-peakedness without referring to an axis.

Indeed, single-peakedness is now defined as a local property in the sense that certain
configurationsmust not be contained in the election. Similar definitions have also been
found for the single-crossing (Bredereck et al. 2013b) and group-separable (Ballester
and Haeringer 2011) domain. For other domains such as value-, worst-, medium and
best-restricted preferences, a characterization via configurations follows immediately
from the original definitions (Sen 1966; Sen and Pattanaik 1970). Let us now exactly
define what it means for a domain restriction to be configuration definable.

Definition 2 An (l, k)-configuration (S, T ) consists of a finite set S of cardinality k
and a tuple T = (T1, . . . , Tl), where T1, . . . , Tl are total orders on S. An election
(C,P) contains configuration C if there exist an injective function f from [l] into [n]
and an injective function g from S into C such that, for any x, y ∈ S and i ∈ [l], it
holds that Ti : xy implies V f (i) : g(x)g(y).

We use (S, T ) � (C,P) as a shorthand notation to denote that the election (C,P)

contains the configuration (S, T ). An election (C,P) avoids a configuration (S, T ) if
(C,P) does not contain (S, T ). In such a casewe say that (C,P) is (S, T )-restricted. If
the set S is clear from the context, we omit it and just use T to describe a configuration.

Example 3 Let us consider an election (C,P) with C = {u, v, w, x, y} and P =
(uvwxy, wyvux, yuxwv) and a configuration (S, T ) with S = {a, b, c, d} and T =
(dabc, cdba). Election (C,P) contains the configuration (S, T ) as witnessed by the
functions f : {1 �→ 1, 2 �→ 3} and g : {a �→ v, b �→ x, c �→ y, d �→ u}. In Fig. 2,
the functions f and g are depicted graphically.

By considering all linearizations of the partial orders appearing in Theorem 2 we
can now restate it as follows.
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Configuration:

d > a > b > c

c d b a> > >

f

f

Election:

u v w x y

w y v u x

y u x w v

> > > >

> > > >

> > > >

Fig. 2 The configuration on the left-hand side is contained in the election on the right-hand side aswitnessed
by f : {1 �→ 1, 2 �→ 3} and g : {a �→ v, b �→ x, c �→ y, d �→ u}

Theorem 4 (Ballester and Haeringer 2011) An election is single-peaked if and only
if it avoids

– the following (2, 4)-configurations:
(dabc, dcba), (adbc, dcba), (dabc, cdba) and (adbc, cdba)

– as well as the following (3, 3)-configurations:
(bca, acb, abc), (cba, acb, abc), (bca, cab, abc), (cba, cab, abc), (bca, acb,
bac), (cba, acb, bac), (bca, cab, bac), (cba, cab, bac).

The first four configurations correspond to the first condition in Theorem2, the remain-
ing eight correspond to the second condition.

Definition 3 Let Γ be a set of configurations. A set of elections Π is defined by Γ

if Π consists exactly of those elections that avoid all configurations in Γ . We call Π
configuration definable if there exists a set of configurations Γ which defines Π . If Π

is definable by a finite set of configurations, it is called finitely configuration definable.

By Theorem 4we know that the set of all single-peaked elections is finitely configu-
ration definable. This is also true for the set of group-separable elections (Ballester and
Haeringer 2011) and for the set of single-crossing elections (Bredereck et al. 2013b).

We are now going to characterize which sets of elections are configuration defin-
able. In the following definition, for two elections (C,P) and (C ′,P ′), we write
(C ′,P ′) � (C,P) if (C ′,P ′), considered as a configuration, is contained in (C,P).
Since every election can be seen as a configuration, the configuration containment
relation immediately translates to election containment.

Definition 4 A set of elections Π is hereditary if for every election (C ′,P ′) it holds
that if there exists an election (C,P) ∈ Π with (C ′,P ′) � (C,P), then (C ′,P ′) ∈ Π .

Proposition 5 A set of elections is configuration definable if and only if it is hereditary.

Proof Let a set of electionsΠ be defined by a set of configurationsΓ and (C,P) ∈ Π .
Let (C ′,P ′) � (C,P). Since (C,P) ∈ Π , (C,P) avoids all configurations in Γ . Due
to (C ′,P ′) � (C,P), also (C ′,P ′) avoids all configurations in Γ and is therefore
contained in Π .

For the other direction, let Π be a hereditary set of elections. We define Πc to be
the complement of Π , i.e., an election is contained in Πc if it is not contained in Π .
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We claim that Πc, considered as a set of configurations, defines Π . If (C,P) ∈ Π ,
it avoids all (C ′,P ′) ∈ Πc since if there existed a (C ′,P ′) ∈ Πc with (C ′,P ′) �
(C,P), this would imply that (C ′,P ′) ∈ Π . It remains to show that if an election
(C ′′,P ′′) avoids all (C ′,P ′) ∈ Πc, then (C ′′,P ′′) ∈ Π . This follows from noting that
(C ′′,P ′′) avoiding all (C ′,P ′) ∈ Πc implies (C ′′,P ′′) /∈ Πc, which in turn implies
(C ′′,P ′′) ∈ Π . 
�
As a consequence of Proposition 5, we know that 2D single-peaked (Barberà et al.
1993) and 1D Euclidean elections (Coombs 1964; Knoblauch 2010) are configuration
definable. However, Proposition 5 does not help to answer whether these restrictions
are finitely configuration definable. For the 1D Euclidean domain it is even known
that it is not finitely configuration definable (Chen et al. 2015). Finite configuration
definability has been crucial for establishing algorithmic results (Bredereck et al.
2013a; Elkind and Lackner 2014).

A natural example of a meaningful restriction that is not configuration definable
is the set of all elections that have a Condorcet winner. The property of having a
Condorcet winner is not hereditary and thus cannot be defined by configurations.
Another example is the “single-peaked on a tree” restriction (Demange 1982).

3.2 The connection to permutation patterns

In this section, we establish a strong link between the concept of configuration con-
tainment and the concept of pattern containment in permutations. Pattern containment
in permutations is defined as follows.

Definition 5 A k-permutation π is contained as a pattern in an m-permutation τ

if there is a subsequence of τ that is order-isomorphic to π . In other words, π is
contained in τ , if there is a strictly increasing map μ : {1, . . . , k} → {1, . . . ,m} so
that the sequence μ(π) = (

μ(π(1)), μ(π(2)), . . . , μ(π(k))
)
is a subsequence of τ .

This map μ is called a matching of π into τ . If there is no such matching, τ avoids
the pattern π .

For example, the pattern π = 132 is contained in τ = 32514 since the subsequence
254 of τ is order-isomorphic to π . However, the pattern 123 is avoided by τ . Note that
τ contains π if and only if τ−1 contains π−1.

We are going to prove two lemmas. The first lemma (Lemma 6) states that every
permutation pattern matching query can naturally be translated into a configuration
containment query. The second lemma (Lemma 7) states that for (2, k)-configurations,
a configuration containment query can naturally be translated in a permutation pattern
query.

Lemma 6 Let π be a k-permutation and τ an m-permutation. We define the corre-
sponding configuration and election as follows: Let (C,P) be a (3,m)-election with
C = {c1, . . . , cm}, P = (V1, V2, V3) and

V1 : c1c2 · · · cm V2 : c1c2 · · · cm V3 : cτ(1)cτ(2) · · · cτ(m).
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On the likelihood of single-peaked preferences 725

Furthermore, let (S, T ) be a (3, k)-configuration with S = {x1, . . . , xk}, T =
(T1, T2, T3) and

T1 : x1x2 · · · xk T2 : x1x2 · · · xk T3 : xπ(1)xπ(2) · · · xπ(k).

Then (C,P) contains (S, T ) if and only if τ contains π .

Proof Assume that we have a matching μ from π into τ . We have to find an injective
function f from {1, 2, 3} into {1, 2, 3} and an injective function g from S into C such
that, for any x, y ∈ S and i ∈ {1, 2, 3}, it holds that Ti : xy implies V f (i) : g(x)g(y).
Let f be the function {1 �→ 1, 2 �→ 2, 3 �→ 3} and g = μ. It holds for xi , x j ∈ S
that T1 : xi x j if and only if V1 : cμ(i) cμ( j) since μ is monotone. The same holds for
T2 and V2. For T3 and V3 observe that T3 : xi x j implies V3 : cμ(i) cμ( j) since μ is a
matching. Thus, the election fulfils (S, T ) � (C,P).

For the other direction, assume that (C,P) contains (S, T ). Consequently, there
exists an injective function f from {1, 2, 3} into {1, 2, 3} and an injective function g
from S intoC such that, for any x, y ∈ S and i ∈ {1, 2, 3}, it holds that Ti : xy implies
V f (i) : g(x)g(y). First, we claim that f (3) = 3. Observe that f has to map T1 and T2
to identical total orders. Thus, unless V1 = V2 = V3, f (3) = 3. In the case that V1 =
V2 = V3, we can assume without loss of generality that f (3) = 3. We will construct
a function μ and show that μ is a matching from π into τ . Let us define μ(i) = j
if g(xi ) = c j . Observe that μ is strictly increasing since for i < j , V1 : cg(i) cg( j)
and V1 : c1c2 · · · cm . In addition, μ(π) = (

μ(π(1)), μ(π(2)), . . . , μ(π(k))
)
is a

subsequence of τ since, by definition of T3 and V3 and the fact that f (3) = 3,(
g(xπ(1)), g(xπ(2)), . . . , g(xπ(k))

)
is a subsequence of

(
cτ(1), cτ(2), . . . , cτ(m)

)
. 
�

Next, we will prove the second lemma, which is essential for the main theorem of
this section (Theorem 8). As of now, we shall denote by Sm(π1, . . . , πl) the cardinality
of the set of m-permutations that avoid the patterns π1, . . . , πl .

Lemma 7 Let (S, T ) be a (2, k)-configuration with T = (T1, T2). Furthermore, let
V1 be a total order on the candidate set C = {c1, . . . , cm}. Then the number of total
orders V2 such that the election (C,P) with P = (V1, V2) avoids (S, T ) is equal to
Sm(π, π−1), where π = p(T1, T2).

Proof Let us start by proving the following statement: The configuration (S, T ) is
contained in an election (C,P) with P = (V1, V2) if and only if the permutation π or
the permutation π−1 is contained in p(V1, V2). In order to alleviate notation, we will
assume in the following that C = {1, 2, . . .m} and S = {1, 2, . . . k}.

Let μ be a matching witnessing that π is contained in p(V1, V2). We can assume
without loss of generality that T1 : 12 . . . k and V1 : 12 . . .m. Then the functions
f = {1 �→ 1, 2 �→ 2} and g = μ show that (S, T ) � (C,P) (cf. Definition 2).
If π−1 is contained in p(V1, V2) as witnessed by a matching μ, then the functions
f = {1 �→ 2, 2 �→ 1} and g = μ show that (S, T ) � (C,P).
For the other direction, let (S, T ) � (C,P). Without loss of generality we assume

that T1 : 12 . . . k. Note that renaming C does not change whether (S, T ) � (C,P).
Thus, it is safe to rename the candidates according to the f function: If f = {1 �→
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1, 2 �→ 2}, let V1 : 12 . . . n. Since f (1) = 1, g is monotonic. It is easy to verify that g
is a matching from π into p(V1, V2). If f = {1 �→ 2, 2 �→ 1}, let V2 : 12 . . . n. Now,
g is a matching from π into p(V2, V1) = (p(V1, V2))−1. This is equivalent to g being
a matching from π−1 into p(V1, V2).

It follows that (C,P) avoids the configuration (S, T ) if and only if the permutation
p(V1, V2) avoids both the patterns π and π−1. Moreover, for the fixed total order V1
and a fixed m-permutation τ , there is a single total order V2 such that p(V1, V2) = τ .
Thus the number of votes V2 such that p(V1, V2) avoids π and π−1 (and equivalently
the number of votes V2 such that (C,P) avoids (S, T )) is equal to Sm(π, π−1), the
number of m-permutations avoiding π and π−1. 
�

From this lemma follows the main theorem of this section that is applicable to any
set of configurations that contains at least one configuration of cardinality two.

3.3 Elections that avoid a (2, k)-configuration

With the help of Lemma 7, we are able to establish the following result.

Theorem 8 Let a(n,m, Γ ) be the number of (n,m)-elections avoiding a set of con-
figurations Γ . Let k ≥ 2. If a set of configurations Γ contains a (2, k)-configuration,
then it holds for all n,m ∈ N that

a(n,m, Γ ) ≤ m! · c(n−1)m
k ,

where ck is a constant depending only on k.

This result shows that forbidding any (2, k)-configuration is a very strong restric-
tion. Indeed,m!·c(n−1)m

k is very small compared to the total number of (n,m)-elections
which is (m!)n . This result allows us to bound the number of single-peaked and
group-separable elections. However, let us prove this result first before we explore
its consequences.

In order to prove this result we make use of the link between configuration avoiding
elections and pattern avoiding permutations established in Lemma 7 and profit from a
very strong result within the theory of pattern avoidance in permutations, the Marcus-
Tardos theorem (former Stanley-Wilf conjecture).

Proof We are going to provide an upper bound on the number of (n,m)-elections
avoiding a (2, k)-configuration (S, T ) with T = (T1, T2). Let us start by choos-
ing the first vote V1 of the election at random. For this there are m! possibilities.
When choosing the remaining (n − 1) votes V2, . . . , Vn , we have to make sure that
no selection of two votes contains the forbidden configuration (S, T ). We relax this
condition and only demand that for none of the pairs (V1, Vi ) with i �= 1, the elec-
tion (C, (V1, Vi )) contains the forbidden configuration. Hereby we obtain an upper
bound for a(n,m, {(S, T )}). Now Lemma 7 tells us that there are—under this relaxed
condition—Sm(π, π−1) choices for every Vi where π = p(T1, T2). Thus we have the
following upper bound:

a(n,m, {(S, T )}) ≤ m!Sm(π, π−1)n−1 ≤ m!Sm(π)n−1, (1)
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where the second inequality follows since all permutations avoiding both π and π−1

clearly avoid π .
Now we apply the famous Marcus-Tardos theorem (Marcus and Tardos 2004): For

every permutation π of length k there exists a constant ck such that for all positive
integers m we have Sm(π) ≤ ckm . Putting this together with Equation (1) and noting
that a(n,m, {(S, T )}) is an upper bound for a(n,m, Γ ), we obtain the desired upper
bound. 
�
The proof of the Marcus-Tardos theorem provides an explicit exponential formula for
the constants ck . Indeed, it holds that

Sm(π) ≤
(
152k

4(k
2
k )

)m

.

These constants are however far from being optimal and there is an ongoing effort to
find minimal values for ck with fixed k. In particular it has been shown that c2 = 1,
c3 = 4 (Simion and Schmidt 1985) and c4 ≤ 13.738 (Bóna 2014).

Let us discuss the implications of this theorem. It is applicable to all (not necessar-
ily finite) configuration definable domain restrictions that contain a configuration of
cardinality two. In particular, we obtain the following upper bounds for single-peaked
and group-separable elections.

Corollary 9 Let a(n,m, Γsp) denote the number of single-peaked (n,m)-elections.
For n,m ≥ 2 it holds that a(n,m, Γsp) ≤ m! · 4(m−1)(n−1).

Proof We know from Theorem 2 that the single-peaked domain avoids the (2, 4)-
configurations (dabc, dcba), (adbc, dcba), (dabc, cdba) and (adbc, cdba). We can
use Eq. (1) in the proof of Theorem 8 to bound a(n,m, Γsp). For this, we have to
compute the permutations and their inverses corresponding to the four configurations.
We obtain the permutations π1 = p(dabc, dcba) = 1432, π2 = p(adbc, dcba) =
4132, π3 = p(dabc, cdba) = 2431 and π4 = p(adbc, cdba) = 4231. Their inverses
are π−1

1 = π1, π−1
2 = π3, π−1

3 = π2 and π−1
4 = π4. Hence it holds that the

number of (n,m)-elections that avoid these four configurations is bounded by m! ·
Sm(π1, π2, π3, π4)

n−1. The enumeration problem for this permutation class has been
solved by Guibert (1995) in his PhD thesis with the help of the method of generating
trees. Amore direct and combinatorial approach to this permutation class can be found
in the first author’s PhD thesis (Bruner 2015). It holds that Sm(π1, π2, π3, π4) =(2m−2
m−1

)
, which, in turn, is bounded by 4m−1. 
�

This upper bound also holds for the 1D Euclidean domain (Coombs 1964; Knoblauch
2010), since this domain is a subset of the single-peaked domain. In the next section,
we will see that the growth rate of a(n,m, Γsp) is indeed of the form m! · c(m−1)(n−1)

for some constant c. However, the constant found in Corollary 9 is not optimal as
we will see by providing a better bound for the single-peaked restriction that is even
asymptotically optimal.

As another corollary of Theorem 8, we prove a bound on the number of group-
separable elections. An election is group separable if for every subset of candidates
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C ′ there exists a partition C1,C2 of C ′ such that in every vote either all candidates
in C1 are preferred to all candidates in C2 or vice versa. Ballester and Haeringer
(2011) showed that the group-separable domain is finitely configuration definable. In
particular, this domain avoids the configuration (abcd, bdac). Therefore, Theorem 8
is applicable.

Corollary 10 Let a(n,m, Γgs) denote the number of group-separable (n,m)-
elections. For n,m ≥ 2 it holds that a(n,m, Γgs) ≤ m! · (3 + 2

√
2)m(n−1).

Proof The proof is similar to the one of Corollary 9. We use Equation (1) in the
proof of Theorem 8 to bound a(n,m, Γgs), i.e., a(n,m, Γgs) ≤ m! · Sm(π, π−1)n−1,
where π = p(abcd, bdac) = 3142 and π−1 = 2413. Permutations avoiding these
two patterns are known under the name of separable permutations. It is known that
separable permutations are counted by the large Schröder numbers (OEIS A006318)
and that Sm(π, π−1) ≤ (3 + 2

√
2)m (West 1995). 
�

4 Counting results and the Impartial Culture assumption

As in the previous section, let a(n,m, Γsp) denote the number of single-peaked elec-
tions. In this section, we prove a lower and upper bound on a(n,m, Γsp). These two
bounds are asymptotically optimal, i.e., the lower bound converges to the upper bound
for every fixed m and n → ∞. In addition, we prove exact enumeration results for
a(2,m, Γsp), a(n, 3, Γsp) and a(n, 4, Γsp).

Our results immediately imply bounds on the probability that an (n,m)-election is
single-peaked assuming that elections are drawn uniformly at random, i.e., according
to the Impartial Culture assumption. The probability is simply a(n,m, Γsp)/(m!)n .
Theorem 11 It holds that

m!
2

· 2(m−1)·n · (1 − ε(n,m)) ≤ a(n,m, Γsp) ≤ m!
2

· 2(m−1)·n,

where ε(n,m) → 0 for every fixed m and n → ∞.

Proof First observe that an election is single-peaked with respect to an axis if and
only if it is single-peaked with respect to its reverse, i.e., the axis read from right to
left. Thus the total number of axes onm candidates that need to be considered ism!/2.
Second, recall that the number of votes that are single-peaked with respect to a given
axis is 2m−1 (cf. Remark 1).

Now we have gathered all facts necessary for the upper bound. For every one of
the m!/2 axes considered, select an ordered set of votes from the 2m−1 votes that are
single-peaked with respect to this axis. There are exactly 2(m−1)·n such possibilities,
which yields the upper bound. Since an election may be single-peaked with respect to
more than two axes, this number is only an upper bound for a(n,m, Γsp).

Let us turn to the lower bound. Given a vote V , there are only two axes with respect
to which both V and its reverse V̄ are single-peaked, namely the total orders V and V̄
themselves. Thus the presence of the votes V and V̄ in an election forces the axis to
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be equal to either V or V̄ . If we fix a vote V , the number of single-peaked elections
containing both V and V̄ can be determined easily using the inclusion-exclusion
principle. Indeed, since 2(m−1)·n is the number of single-peaked elections for the axis
V ,

(
2m−1 − 1

)n
is the number of single-peaked elections for the axis V that do not

contain the vote V (analogous for single-peaked elections that do not contain V̄ )
and

(
2m−1 − 2

)n
is the number of single-peaked elections for the axis V that neither

contain V nor V̄ . Thus, the number of single-peaked elections containing both V and
V̄ for some fixed vote V is equal to:

2(m−1)·n − 2 ·
(
2m−1 − 1

)n +
(
2m−1 − 2

)n
.

Multiplying this by the number of possibilities for the vote V leads to the lower bound
for a(n,m, Γsp):

m!
2

·
(
2(m−1)·n +

(
2m−1 − 2

)n − 2 ·
(
2m−1 − 1

)n)

= m!
2

· 2(m−1)·n · (1 − ε(n,m)) ,

where ε(n,m) = 2 · (2m−1 − 1)n − (
2m−1 − 2

)n

2(m−1)n
.

Since ε(n,m) ≤ 2 ·
(
2m−1−1
2m−1

)n
, ε(n,m) tends to 0 for every fixed m and n → ∞.

Clearly, not all single-peaked elections contain a pair of votes where one is the reverse
of the other. Thus this number is indeed only a lower bound. 
�

In the next theoremweprove exact enumeration formulæ for a(n,m, Γsp) for n = 2,
m = 3 and m = 4. Note that for m ≤ 2 and for n = 1 all (n,m)-elections are single-
peaked. For n > 2 and for m > 4 we have not been able to find exact enumeration
formulas.

Theorem 12 It holds that

(i.) a(2,m, Γsp) = m! · (2m−2
m−1

)
for m ≥ 1,

(ii.) a(n, 3, Γsp) = 6 · 2n−1 (2n − 1) and
(iii.) a(n, 4, Γsp) = 24 · 4n−1 · (

2n+1 − 3
)
.

Proof (i.) a(2,m, Γsp) = m! · (2m−2
m−1

)
: This follows from Lemma 7. We choose the

first vote arbitrarily (m! possibilities). The second vote has to be chosen in such
a way that all configurations that characterize single-peakedness are avoided.
Since we consider only elections with two votes, the relevant configurations are
(dabc, dcba), (adbc, dcba), (dabc, cdba) and (adbc, cdba) (Theorem 4).We
obtain the permutations π1 = p(dabc, dcba) = 1432, π2 = p(adbc, dcba) =
4132, π3 = p(dabc, cdba) = 2431 and π4 = p(adbc, cdba) = 4231. Their
inverses are π−1

1 = π1, π
−1
2 = π3, π

−1
3 = π2 and π−1

4 = π4. Thus, the number
of a(2,m, Γsp) = Sm(π1, π2, π3, π4), which is equal to

(2m−2
m−1

)
, as shown by

Guibert (1995) and Bruner (2015).
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(ii.) a(n, 3, Γsp) = m! · 2n−1 (2n − 1): We consider all elections with three can-
didates. There are m! many possibilities for the first vote V1. Without loss of
generality, let us consider only the vote V1 : abc. Since we have only three
candidates, single-peakedness boils down to having at most two last ranked can-
didates (cf. Theorem 2). Due to our assumption that V1 : abc, we distinguish
three cases: elections in which the votes rank either a or c last, elections in which
the votes rank either b or c last and elections in which all votes rank c last. The
number of elections in which the votes rank either a or c last can be determined
as follows: every vote can either be abc, bac, cba or bca. Hence, there are 4n−1

possibilities for elections in which the votes rank either a or c last and where
V1 : abc holds. By the same argument, the number of elections in which the
votes rank either b or c last is 4n−1 as well. The number of elections where c is
always ranked last is 2n−1. We obtain a total number of single-peaked elections
with a fixed first vote of 4n−1 + 4n−1 − 2n−1 = 2n−1 · (2 · 2n−1 − 1). Given
that 6 options for the first vote exist, we obtain the stated enumeration result.

(iii.) a(n, 4, Γsp) = m!·4n−1 ·(2n+1 − 3
)
: As in the previous proof, we fix V1 : abcd.

This vote V1 already rules out some possible axes. Indeed, only eight axes are
single-peaked axes for V1, namely A1 : abcd, A2 : bacd, A3 : cabd, A4 : cbad,
and their reverses. Since the reverse of an axis permits the same single-peaked
votes, we have to consider only A1, A2, A3, A4. For 1 ≤ i ≤ 4, let Wi denote
the set of four-candidate votes that are single-peaked with respect to axis Ai .
We count the number of single-peaked elections with four candidates by using
the inclusion-exclusion principle, i.e.,

a(n, 4, Γsp) = m! · (|W1| + |W2| + |W3| + |W4|
− |W1 ∩ W2| − |W1 ∩ W3| − |W1 ∩ W4|
− |W2 ∩ W3| − |W2 ∩ W4| − |W3 ∩ W4|
+ |W1 ∩ W2 ∩ W3| + |W1 ∩ W2 ∩ W4|
+ |W1 ∩ W3 ∩ W4| + |W2 ∩ W3 ∩ W4|
− |W1 ∩ W2 ∩ W3 ∩ W4|)

It is easy to verify that W1 ∩ W2 = W1 ∩ W4 = W2 ∩ W3 = {abcd, bacd}.
Consequently, all intersections of three or four sets consist also of these two
votes. The remaining intersections look as follows:

W1 ∩ W3 = {abcd, bacd, cbad, bcad},
W2 ∩ W4 = {abcd, bacd, cabd, acbd},
W3 ∩ W4 = {abcd, bacd, badc, abdc}.

The number of votes single-peaked with respect to one axis is 2m−1 (see
Remark 1), i.e., in our case 8. We obtain

a(n, 4, Γsp) = 4! ·
(
4 · 8n−1 − 3 · 2n−1 − 3 · 4n−1 + 4 · 2n−1 − 2n−1

)

= 24 ·
(
4 · 8n−1 − 3 · 4n−1

)
. 
�
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5 The Impartial Anonymous Culture assumption

The counting results from the previous section on the Impartial Culture (IC) assump-
tion can easily be adapted to the Impartial Anonymous Culture (IAC) assumption as
we will see in the following. For the proofs of these results, it is important to keep in
mind that an election sampled according to the IAC model is a multiset of votes, i.e.,
the order of the votes is of no relevance. Thus, the total number of (n,m)-elections is

equal to
((

m!
n

))
= (m!+n−1

n

)
.

In the following, let pA(n,m) denote the probability that an (n,m)-election created
according to the IAC assumption is single-peaked.

Proposition 13 It holds that

(i.)

m!
2

((
2m−1

n

))

((
m!
n

)) · (1 + ε(n,m)) ≤ pA(n,m) ≤ m!
2

((
2m−1

n

))

((
m!
n

)) ,

where ε(n,m) → 0 as n → ∞ for n,m ≥ 2,

(ii.) pA(2,m) = 1
m!+1

((2m−2
m−1

) + 1
)
for m ≥ 1 and

(iii.) pA(n, 3) = 60n
(n+2)(n+3)(n+4) for n ≥ 1.

Proof We follow the proofs of Theorems 11 and 12.

(i.) Given a fixed axis, there are
((

2m−1

n

))
(n,m)-elections that are single-peaked

with respect to this axis. Multiplying with the number of axes that need to be
considered and dividing by the total number of elections leads to the upper
bound on the probability.
For the lower bound, we fix a vote V and determine the number of elections that
are single-peaked and contain both V and V̄ :

((
2m−1

n

))
− 2 ·

((
2m−1 − 1

n

))
+

((
2m−1 − 2

n

))

=
((

2m−1

n

))
·
(
1 − 2 · 2m−1 − 1

2m−1 + n − 1
+ (2m−1 − 1)(2m−1 − 2)

(2m−1 + n − 1)(2m−1 + n − 2)

)

=
((

2m−1

n

))
· (1 + ε(n,m)),

where it can be checked easily that ε(n,m) → 0 as n tends to infinity. This
gives the lower bound.

(ii.) We pick one vote at random, the second vote can be one of
(2m−2
m−1

)
possibilities

(cf. Theorem 12). However, the order of votes does not matter and we are thus
double-counting profiles that consist of two distinct votes–there arem!((2m−2

m−1

)−
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1)/2 such profiles. Adding the m! profiles in which the same vote occurs twice,
we obtain the following number of possibilities:

m!
2

((
2m − 2

m − 1

)
+ 1

)

Dividing by the total number of (2,m)-elections leads to the probability.
(iii.) An election with three candidates is single-peaked if and only if it has at most

two last-ranked candidates. Using inclusion-exclusion one obtains that the total
number of possible elections is:

3 ·
(((

4

n

))
−

((
2

n

)))
= n + 1

2
((n + 2)(n + 3) − 6) .

Again, dividing by the total number of elections gives the probability. 
�
The case with 4 candidates that corresponds to case (iv) in Theorem 12 can not

be directly derived from the IC case and would need a far more involved inclusion-
exclusion argument. It is thus omitted here.

6 The Pólya urn model

The Pólya urn model (also refereed to as the Pólya-Eggenberger urn model) (Johnson
and Kotz 1977; Berg 1985; Mahmoud 2008) is an approach to sample elections with a
variable degree of social homogeneity, i.e., where preferences are not independent but
voters tend to have the same preferences as other voters. In the following the parameter
a, a non-negative integer, describes the degree of social homogeneity. As we will see
in a moment, the case a = 0 corresponds to the Impartial Culture assumption, i.e., a
population with no homogeneity.

The setting of the Pólya urn model for an election with n votes and m candidates
can be described as follows. Consider a large urn containing m! balls. Every ball
represents one of the m! possible votes on the candidate set and has a different color.
An election is then created by subsequently pulling n balls out of the urn according to
the following rule. The first ball is pulled at random and constitutes the first vote of the
election. Then the pulled ball is returned to the urn and a other balls of the same color
are added to the urn. This procedure is repeated n times until an election consisting of
n votes is created.

At a first glance, it might seem that the probability assigned to a certain election
within the Pólya urn model depends on the order of the votes. However this is not the
case: Any election that can be obtained by rearranging a given election (C,P), i.e, by
changing the order of the votes, has exactly the same probability of occurring as the
election (C,P) itself. First, when the i-th ball is drawn from the urn, i.e., when the
i-th vote is chosen, there are always m! + (i − 1) · a balls present in the urn. Second,
for any vote V the number of balls corresponding to V , i.e., the number of favourable
cases, only depends on how often the vote V has already been pulled out of the urn
and is equal to (1 + k · a) where k is the number of times V has already been pulled.
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It is now easy to give a concise characterization of this discrete distribution. In order
to alleviate notation, let us use the so called Pochhammer k-symbol as introduced by
Díaz and Pariguan (2007).

Definition 6 The Pochhammer k-symbol is defined as (x)n,k = ∏n
i=1(x + (i −1) · k)

where in our context x ∈ R and n, k are non-negative integers. Note that (x)n,1 =
x(x + 1)(x + 2) . . . (x + n − 1) is the ordinary Pochhammer symbol (also known as
rising factorial) and (1)n,1 = n!.
We can now define the probability of a given (n,m)-election with � distinct votes. Let
ni , i ∈ [m!] be non-negative integers with ∑m!

i=1 ni = n such that, for all i ∈ [�] vote
Vi appears ni times. The probability of such an election is given by:

(
n

n1, . . . , n�

)
·
∏�

i=1(1)ni ,a
(m!)n,a

= n!
∏�

i=1 ni !
·
∏�

i=1(1)ni ,a
(m!)n,a

. (2)

Note that setting a = 0 corresponds to the case where every one of the n votes is
drawn from exactly the same urn, namely the urn containing every one of the m! balls
exactly once. Thus, the votes are chosen independently and every vote has the same
probability of occurring; this corresponds to the Impartial Culture assumption.

Setting the homogeneity factor to a = 1 leads to the Impartial Anonymous Culture
(IAC) assumption in which elections are considered as multisets and not as lists of
votes and every election has the same probability of occurring. This can be seen as
follows: Under IAC an election is fully characterized by the numbers ni , i ∈ [m!], as
defined above. Setting a = 1 in equation (2) in order to determine the probability of
an election in which vote Vi appears ni times, we obtain:

n!
∏�

i=1 ni !
·
∏�

i=1(1)ni ,1
(m!)n,1

= n!
∏�

i=1 ni !
·

∏�
i=1 ni !∏n

j=1(m! + ( j − 1))
= 1

(m!+n−1
n

) .

Clearly, this probability does not depend on the choice of the numbers ni , i ∈ [m!],
and thus every multiset of votes has the same probability of being sampled.

Since we have consider IC and IAC already in Sects. 4 and 5 and have obtained
asymptotically optimal results, the following lower bound theorem is interesting only
for a > 1.

Theorem 14 Let pP (n,m, a) denote the probability that an (n,m)-election created
according to the Pólya urn model with homogeneity a > 0 is single-peaked. It holds
that:

pP (n,m, a) ≥ m!(n − 1)!
a

(
m!
a

)

n,1

·
[
1 + 2

a

(
2m − 2

m − 1

)
Hn−1

+ n

a

n−1∑

l=2

(2m−1 − 2)n−l,a

an−l
· Hl−1

l(n − l)!
]
,

where Hk denotes the k-th harmonic number
∑k

i=1
1
i .
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Proof Before we start with the actual proof, let us collect a few useful observations.
In the following we will use that

(m!)n,a = an ·
n∏

i=1

(
m!
a

+ (i − 1)

)
= an

(
m!
a

)

n,1
. (3)

Moreover, we will use the following bound:

(1)k,a =
k∏

i=1

(1 + (i − 1) · a) ≥
k∏

i=2

(i − 1) · a = (k − 1)! · ak−1. (4)

Since it holds that

1

i · (l − i)
= 1

l
·
(
l − i + i

i · (l − i)

)
= 1

l
·
(
1

i
+ 1

l − i

)

the following sum can be expressed with the help of the harmonic numbers:

l−1∑

i=1

1

i · (l − i)
= 1

l
·
(

l−1∑

i=1

1

i
+

l−1∑

i=1

1

l − i

)

= 2

l
·
l−1∑

i=1

1

i
= 2

l
Hl−1. (5)

The proof of the theorem is now split in three parts: First, we consider elections
with only one distinct vote. Then, we determine a lower bound on the probability
of single-peaked elections that consist of exactly two distinct votes. Third, we give
a lower bound on the number of single-peaked elections that contain at least three
distinct votes.

Let us now start with the first part of the lower bound. Clearly, an election in which
all votes are identical is single-peaked. Let us denote the probability of this event by
p1; in the following we fix m, n, a an omit them in the notation. According to the
discrete probability distribution of the Pólya urn model (2), the probability of this
event is:

p1 = m! · (1)n,a

(m!)n,a
≥ m!(n − 1)!an−1

an
(
m!
a

)

n,1

= m!(n − 1)!
a

(
m!
a

)

n,1

,

where we used Eqs. (3) and (4).
Next, we want to determine the probability that an election is sampled that is single-

peaked and consists of exactly two distinct votes. Let us denote the probability of this
event by p2. From the first statement of Theorem 12 we know that there are exactly
m! · (2m−2

m−1

)
elections with two voters andm candidates that are single-peaked. That is,

if we pick a first vote V1 at random, there are
(2m−2
m−1

)
votes V2 that form a single-peaked

election together with V1. We thus have the following (again according to (2)):
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p2 = m!
(
2m − 2

m − 1

)
·
n−1∑

i=1

P(i votes equal to V1 and n − i votes equal to V2︸ ︷︷ ︸
=p′(i)

)

According to (2) the probability p′(i) is equal to

p′(i) =
(
n

i

)
(1)i,a · (1)n−i,a

(m!)n,a
.

Using the bound in Eq. (4) and the equality in Eq. (3), p′(i) can be bounded from
below as follows:

p′(i) ≥
(
n

i

)
(i − 1)! · ai−1 · (n − i − 1)! · an−i−1

(m!)n,a
= n! · an−2

an
(
m!
a

)

n,1
· i(n − i)

.

For p2 we thus obtain

p2 ≥ m! ·
(
2m − 2

m − 1

)
n!

a2
(
m!
a

)

n,1

n−1∑

i=1

1

i(n − i)

= m!(n − 1)!
(
m!
a

)

n,1

·
(
2m − 2

m − 1

)
2

a2
Hn−1,

where the transformation from the first to the second line is done with the identity in
Eq. (5).

Finally, for single-peaked elections that have more than two distinct votes, we only
consider elections that contain a vote V and also its reverse V̄ . Let us denote the
probability of this event by p3. As in the proof of the bounds under the IC assumption
this idea is based on the following fact about single-peakedness: If a vote V and its
reverse vote V̄ are both present within an election, then there are at most two axes
with respect to which this election can be single-peaked, namely the axes V and V̄ .
Thus, if a single-peaked election contains both the vote V and V̄ , all the other votes
must be among the 2m−1 − 2 votes that are also single-peaked with respect to the axis
V (respectively V̄ ). Let us denote this set of votes that are not equal to V or V̄ and
that are single-peaked with respect to the axis V by SV .

The probability p3 is then given as follows:

p3 =m!
2

n−1∑

l=2

l−1∑

i=1

P(i votes equal to V, l − i votes equal to V̄ , n − l votes in SV )

=m!
2

n−1∑

l=2

l−1∑

i=1

(
n

i

)(
n − i

l − i

)
(1)i,a · (1)l−i,a · (2m−1 − 2)n−l,a

(m!)n,a
,
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where m!/2 stands for the number of possible choices for the vote V , i is the number
of times the vote V appears and l − i is the number of times the vote V̄ appears.

By using the bound in Eq. (4) as well as the identity in Eq. (5), we obtain the
following:

p3 ≥ m!
2(m!)n,a

n−1∑

l=2

(2m−1 − 2)n−l,a

l−1∑

i=1

(
n

i

)(
n − i

l − i

)
(i − 1)!(l − i − 1)!al−2

= m!
2(m!)n,a

n−1∑

l=2

(2m−1 − 2)n−l,a · al−2
l−1∑

i=1

n!(n − i)!(i − 1)!(l − i − 1)!
i !(n − i)!(l − i)!(n − l)!

= m!n!
2(m!)n,a

n−1∑

l=2

(2m−1 − 2)n−l,a · al−2

(n − l)!
l−1∑

i=1

1

i(l − i)

= m!n!
(
m!
a

)

n,1

n−1∑

l=2

(2m−1 − 2)n−l,a

an+2−l
· 1

l(n − l)!Hl−1.

Since p1 + p2 + p3 ≤ pP (n,m, a), we obtain the desired lower bound. 
�
To illustrate the rather involved lower bound of Theorem 14, we consider the special

case of a = m!. This special case corresponds to highly homogeneous elections; the
probability that the first and the second vote are identical is roughly 50%. It is a typical
assumption that a is a multiple ofm! (McCabe-Dansted and Slinko 2006;Walsh 2010,
2011) since otherwise, i.e., for a fixed a, the actual homogeneity of elections drawn
according to the Pólya urn model would depend on the number of candidates m.

Corollary 15 Let pP (n,m,m!) denote the probability that an (n,m)-election created
according to the Pólya urn model with homogeneity m! is single-peaked. It holds that:

pP (n,m,m!) ≥ 1

n
·
(
1 + 2

ln(n − 1)

m! · (2m − 2)!
((m − 1)!)2

)
.

We see that for a = m! and small n, there is a significant probability that the Pólya
urn model produces single-peaked elections.

7 Mallows model

The Mallows model (Mallows 1957) assumes that there is a reference vote and votes
aremore likely to appear in an election if they are close to this reference vote. Closeness
is measured by the Kendall tau rank distance, defined as follows.

Definition 7 Given two votes V and W contained in an election (C,P), the Kendall
tau rank distanceκ(V,W ) is ametric that counts the number of pairwise disagreements
between V and W . To be more precise:
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κ(V,W ) = | {{c, c′} ⊆ C : (V : cc′ ∧ W : c′c) ∨ (V : c′c ∧ W : cc′)
} |.

Note that κ(V,W ) is also the minimum number of transpositions, i.e., swaps, of
adjacent elements, needed to transform V into W or vice versa. We can now define
the Mallows model.

Definition 8 Let C be a set of candidates with |C | = m and let T (C) be the set of
all total orders on C . Given a reference vote V and a real number φ ∈ (0, 1], the
so-called dispersion parameter, the Mallows model is defined as follows. Every vote
W of an (n,m)-election is determined independently from the others according to the
following probability distribution:

PV,φ(W ) = 1

Z
· φκ(V,W ), (6)

where the normalization constant Z = ∑
W∈T (C) φκ(V,W ) fulfils Z = 1 · (1 + φ) ·

(1 + φ + φ2) · · · (1 + · · · + φm−1).

Note that choosing φ = 1 corresponds the Impartial Culture assumption and as φ → 0
one obtains a distribution that concentrates all mass on V .

Theorem 16 Let pM (n,m, φ) denote the probability of an (n,m)-election being
single-peaked if it is created according to the Mallows model with dispersion param-
eter φ. Then the following lower bound holds:

pM (n,m, φ) ≥
(
1 + φ · (m − 1) + φ2 · (m − 2)(m − 3)/2

Z

)n

.

Proof Without loss of generality, we can assume that the reference vote is V :
c1c2 . . . cm . We define an axis A as follows: A : . . . c6c4c2c1c3c5 . . .. Clearly, V
is single-peaked with respect to A and it will turn out that “many” other votes that are
close to V with respect to the Kendall tau distance are also single-peaked with respect
to this axis. See Fig. 3 for a representation of the axis A and the reference vote V for
the case of seven candidates. In the following, we will write “W is SP” as a short form
of “the total order W on C is single-peaked with respect to axis A”.

The idea of this proof is to bound the probability pM (n,m, φ) from below as
follows:

pM (n,m, φ) ≥ (
PV,φ(W : W is SP)

)n
.

Moreover, we use the following bound:

PV,φ(W : W is SP) ≥ PV,φ(V )

+
∑

W is SP and
κ(V,W )=1

PV,φ(W ) +
∑

W is SP and
κ(V,W )=2

PV,φ(W )
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axis A
c7 c5 c3 c1 c2 c4 c6

Fig. 3 The axis A and the reference vote V : c1c2c3c4c5c6c7, shown as a solid line. The dashed line
represents the vote W : c1c4c2c3c5c6c7 and is not single-peaked with respect to A. The Kendall tau
distance of V and W is 2. Note that all votes with a Kendall tau distance to V of 1 are single-peaked with
respect to A

First, it is clear that P(V ) = 1/Z .
Second, we need to compute the number of votes W that are single-peaked with

respect to A and that fulfil κ(V,W ) = 1. Votes W with κ(V,W ) = 1 are votes in
which the order of exactly one pair of candidates (ci , ci+1) has been changed in V .
Since there are (m − 1) pairs of adjacent candidates in V , there are exactly (m − 1)
votes W with κ(V,W ) = 1.

All these votes are single-peaked with respect to the axis A since:

– If c1 and c2 are interchanged, the position of the peak on the axis A is changed,
but clearly no new peaks arise.

– If two other candidates ci and ci+1 are interchanged, one of these two candidates
lies to the left of the peak on A and the other one to the right of the peak. Thus,
interchanging only these two candidates does not create a new peak either.

Therefore we have the following:

∑

W is SP and
κ(V,W )=1

PV,φ(W ) = (m − 1) · φ

Z
.

Third, we need to compute the number of votes W that are single-peaked with
respect to A and that fulfil κ(V,W ) = 2. Here we have a different situation: Not all
votes that can be obtained by exactly two swaps of adjacent candidates in V are single-
peaked with respect to A. For instance, first swapping the candidates (c3, c4) and then
swapping (c2, c4) in V , does not lead to a vote that is single-peaked with respect to A.
For this example, see the vote shown as a dashed line in Fig. 3. The problem here is
that the swapping of these two pairs changes the order of c2 and c4, two elements that
both lie on the same side of the peak on A, and thus a valley is created by the elements
c1, c2 and c4. In general, a pair of swaps (ci , ci+1) and (c j , c j+1) is always allowed if
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the two pairs of candidates do not have any elements in common. Note that the order
of the two (disjoint) swaps is of no importance and without loss of generality we can
assume that i + 1 < j .

Knowing this, we can bound the number of votes W with κ(V,W ) = 2 that are
single-peaked with respect to A as follows: If the first swap is (ci , ci+1) for some
i ∈ [1,m − 3] and the second swap (c j , c j+1) is disjoint from the first one, j has to
fulfil j ∈ [i + 2,m − 1] and thus there are (m − i − 2) possibilities for (c j , c j+1).
Summing over all possible i we obtain that there are at least

m−3∑

i=1

m − i − 2 = (m − 2)(m − 3)

2

many votes W with κ(V,W ) = 2 that are single-peaked with respect to A. Thus we
have

∑

W is SP and
κ(V,W )=2

PV,φ(W ) ≥ φ2

Z
· (m − 2)(m − 3)

2
.

Putting the results for Kendall tau distance equal to 0, 1 and 2 together we obtain
the desired lower bound. 
�

The lower bound result of Theorem 16 does not give an immediate intuition for the
likelihood of single-peakedness under Mallows model. Hence we consider the special
case φ = 1

m . This substitution yields a simpler lower bound, which is considerably
larger than, e.g., the lower bound of roughly (2m/m!)n obtained for the Impartial
Culture Assumption (Theorem 11). For a short discussion on “realistic” parameter
values φ we refer to Sect. 8.

Corollary 17 Assuming φ = 1
m , it holds that

pM (n,m, φ) ≥
⎛

⎝1.5

(
1 − 1

m

1 − ( 1
m

)m

)m−1
⎞

⎠

n

>

(
1 − 1

m

)(m−1)n

.

Proof Inserting φ = 1
m in the lower bound of Theorem 16 yields

pM (n,m, φ) ≥
⎛

⎝
1 + m−1

m + (m−2)(m−3)
2m2

(
1 + 1

m

) ·
(
1 + 1

m + 1
m2

)
· · ·

(
1 + 1

m + · · · + 1
mm−1

)

⎞

⎠

n

. (7)

As can be checked easily, the numerator is larger than 1.5. Moreover the finite geo-
metric sums in the denominator are all bounded from above by

1 − ( 1
m

)m

1 − 1
m

.
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Table 1 The likelihood that an (n,m)-election is single-peaked when drawn according to the Impartial
Culture assumption

(n,m) Exact probability (n,m) Lower bound Upper bound

(2, 3) 1 (2, 5) 0.58 0.58

(5, 3) 0.38 (5, 5) 1.6 × 10−4 2.6 × 10−3

(10, 3) 0.05 (10, 5) 2.2 × 10−8 1.1 × 10−7

(25, 3) 1.19 × 10−4 (25, 5) 5.0 × 10−21 8.0 × 10−21

(50, 3) 4.70 × 10−9 (50, 5) 9.7 × 10−43 1.1 × 10−42

(2, 4) 0.83 (2, 10) 1.3 × 10−2 1.3 × 10−2

(5, 4) 0.05 (5, 10) 7.6 × 10−18 1.1 × 10−13

(10, 4) 2.03 × 10−4 (10, 10) 1.9 × 10−36 5.7 × 10−33

(25, 4) 1.42 × 10−11 (25, 10) 2.3 × 10−93 1.0 × 10−90

(50, 4) 1.67 × 10−23 (50, 10) 4.6 × 10−189 5.5 × 10−187

The probabilities in the left part of the table are obtained via Theorem 12; those in the right part are obtained
via Theorem 11 (except for n = 2, which are obtained via Theorem 12 and are exact)

We thus obtain

pM (n,m, φ) ≥
⎛

⎝1.5

(
1 − 1

m

1 − ( 1
m

)m

)m−1
⎞

⎠

n

.

Replacing the numerator in (7) by 1 and every one of the finite geometric sums in the
denominator by an infinite geometric row leads to the second, much rougher lower
bound. Note that this is simply a bound on the probability of sampling an (n,m)-
election in which all votes are equal to the reference vote. 
�

8 Numerical evaluations

In this section we provide numerical evaluations of our probability results from the
previous sections and make some observations based on these evaluations. In Table 1,
we list exact probabilities that an (n,m)-election is single-peaked assuming the Impar-
tial Culture assumptions for small values of m and bounds for these probabilities for
a larger number of candidates. Table 2 shows probabilities for elections of the same
size assuming the Impartial Anonymous Culture.

Finally, Table 3 shows lower bounds for the Pólya urn model and Table 4 shows
lower bounds for the Mallows model.

We conclude this section with the following observations:

– The probabilities shown in Table 1 illustrate how unlikely it is that an election
drawn according to IC is single-peaked. Single-peakedness is a strong combina-
torial property, so it is not surprising that is is not satisfied by elections sampled
uniformly at random. However, it is noteworthy that even for very small n and m
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Table 2 The likelihood that an (n,m)-election is single-peaked when sampled according to the Impartial
Anonymous Culture assumption

(n,m) Lower bound Upper bound (n,m) Lower bound Upper bound

(2, 3) 1 1 (2, 5) 0.58 0.58

(5, 3) 0.59 0.59 (5, 5) 2.17 × 10−4 4.13 × 10−3

(10, 3) 0.27 0.27 (10, 5) 1.19 × 10−7 7.98 × 10−7

(25, 3) 0.068 0.068 (25, 5) 1.44 × 10−16 3.76 × 10−16

(50, 3) 0.02 0.02 (50, 5) 2.91 × 10−28 4.94 × 10−28

(2, 4) 0.84 0.84 (2, 10) 1.3 × 10−2 1.3 × 10−2

(5, 4) 1.46 × 10−2 9.67 × 10−2 (5, 10) 7.78 × 10−18 1.03 × 10−13

(10, 4) 8.34 × 10−4 2.52 × 10−3 (10, 10) 2.06 × 10−36 6.19 × 10−33

(25, 4) 7.89 × 10−7 1.30 × 10−6 (25, 10) 3.69 × 10−93 1.76 × 10−90

(50, 4) 4.28 × 10−10 5.58 × 10−10 (50, 10) 4.29 × 10−188 5.05 × 10−186

The probabilities in both the left and right part of the table are obtained via Proposition 13

the probability is small, e.g., for m = n = 5 it is less than 0.0026. Conversely,
our results indicate that even for very small real-world single-peaked data sets it
is highly unlikely that their single-peakedness is the product of mere chance.

– As can be seen inTable 2, the probability that an election is single-peaked is slightly
higher when it is sampled according to the IAC model than when it is sampled
according to the IC model. This can be explained heuristically as follows: Under
the IAC model, elections with many coinciding votes have the same likelihood
of appearing as elections consisting of many different votes. However, in the IC
model, elections consisting of many different votes have a higher chanced of being
sampled because of the many ways in which the votes can be rearranged. It is clear
that an election where most votes are the same has a higher chance of being single-
peaked than an election in which very many different votes appear. Thus, it is not
surprising if the likelihood of single-peakedness is higher under the IAC than under
the IC model.

– For the Pólya urn model (Table 3) we observe significantly higher probabilities.
This is of course due to our chosenparameter valuesa—recall thata = 0 implies IC
and a = 1 implies IAC. In particular for a = m!we see that single-peaked profiles
arise with considerable likelihood. The assumption of a = m! is common in the
literature (McCabe-Dansted and Slinko 2006; Walsh 2010, 2011) and even values
of up to a = 3m! have been considered (Dominique Lepelley 2003). As a conse-
quence, we learn from these probabilities that setting a = m! generates extremely
homogeneous profiles, even to the extent that they become single-peaked.

– Even higher probabilities are shown in Table 3. We see that for φ = 0.05 single-
peakedness is likely to be observed, e.g., with a probability > 0.49 for n = 50
and m = 5. Clearly, φ = 0.05 is a strong assumption and profiles obtained in
this way are highly homogeneous; in fact, φ = 0.05 implies that all voters share
the same preferences except for minor deviations, which, in turn, enables the
single-peakedness property to hold. For φ = 0.1 we still see a significant chance
of single-peakedness, for larger values of φ the likelihood deteriorates quickly.
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Table 3 Lower bounds
obtained from Theorem 14 on
the likelihood that an
(n,m)-election is single-peaked
when sampled according to the
Pólya urn model with
homogeneity a

(n,m) a = 10 a = m!/2 a = m!

(10, 5) 1.6 × 10−4 0.13 0.43

(25, 5) 8.4 × 10−8 3.0 × 10−2 0.21

(50, 5) 1.5 × 10−10 9.1 × 10−3 0.12

(10, 10) 3.6 × 10−36 2.0 × 10−2 0.10

(25, 10) 2.3 × 10−91 3.6 × 10−3 4.4 × 10−2

(50, 10) 2.6 × 10−181 9.7 × 10−4 2.2 × 10−2

The question arises: what are typical values for φ? Betzler et al. (2014) compute
maximum-likelihood estimates of φ for different real-world data sets. They find
values1 ranging from 0.7 to almost 1. They also generate elections using values
for φ ranging from 0, 37 to almost 1. Other publications generate election with φ

in the interval [0.3, 1] (Boutilier et al. 2014) and [0.6, 0.9] (Oren et al. 2013). We
see that all these parameter values are too large to imply single-peakedness with
non-negligible probability. On the one hand, this implies that values for φ small
enough to generate single-peakedness profiles are generally too restrictive to be
found in (published) experiments. On the other hand, our results allow to argue
that the parameter values in the aforementioned papers have been chosen sensibly
since the accordingly generated elections contain (at least) enough disagreement
as to prevent single-peakedness to arise with significant likelihood.

9 Conclusions and directions for future research

We have seen that the likelihood of single-peaked preferences varies significantly for
the Impartial (Anonymous) Culture assumption, the Pólya urn and theMallowsmodel.
For elections chosen according to the IC or the IACassumption, it is extremely unlikely
that single-peakedness arises (cf. Table 1).WithTheorem8,wehave shown that unlike-
liness also holds for arbitrary domain restrictions that avoid a (2, k)-configuration. In
contrast, for the Pólya urn and the Mallows model with parameter a (φ) chosen suf-
ficiently large (small) it is rather likely that elections are single-peaked. Numerical
probabilities in Tables 3 and 4 affirm this claim.

Let us conclude with directions for future research. Theorem 8 requires that the
domain restriction avoids a (2, k)-configuration and thus is not applicable to domain
restrictions such as the single-crossing restriction (Roberts 1977; Bredereck et al.
2013b) or 2D single-peaked restriction (Barberà et al. 1993). It remains open whether
this result can be extended to such domain restrictions as well and how the correspond-
ing bound would look like. It would also be interesting to complement Theorem 8with
a corresponding lower bound result. In general, the likelihood of other domain restric-
tions such as the single-crossing (Roberts 1977) or the 2D single-peaked restriction
(Barberà et al. 1993) has yet to be studied.

1 Their parameter θ is related to φ via the equation φ = e−θ .
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Table 4 Lower bounds via Theorem 16 on the likelihood that an (n,m)-election is single-peaked when
sampled according to the Mallows model with dispersion parameter φ

(n,m) φ = 0.3 φ = 0.2 φ = 0.1 φ = 0.05 φ = 0.01

(10, 5) 0.02 0.15 0.59 0.86 0.99

(25, 5) 5.7 × 10−5 8.7 × 10−3 0.26 0.70 0.98

(50, 5) 3.3 × 10−9 7.6 × 10−5 7.2 × 10−2 0.49 0.97

(10, 10) 3.7 × 10−6 2.7 × 10−3 0.20 0.66 0.98

(25, 10) 2.7 × 10−14 3.7 × 10−7 1.9 × 10−2 0.36 0.96

(50, 10) 7.5 × 10−28 1.4 × 10−13 3.7 × 10−4 0.13 0.92

In Sect. 5we studied the likelihood of single-peakedness under the IAC assumption.
In particular, it follows from Theorem 13 that under IAC the likelihood that an (n, 3)-
election is single-peaked is 60n

(n+2)(n+3)(n+4) . The likelihood that an (n, 3)-election has a

Condorcet winner is 15(n+3)2

16(n+2)(n+4) for odd n and
15(n+2)(n2+8n+8)
16(n+1)(n+3)(n+5) for even n (Gehrlein

2002). Note that the probability for single-peakedness is significantly smaller than the
latter two and, in particular, the former converges to 0 whereas the latter converge
to 15/16 for n → ∞. Recently, the top monotonicity restriction has been proposed
(Barberà andMoreno 2011) which is a generalization of the single-peaked and single-
crossing domain but still guarantees a Condorcet winner. It would be highly interesting
to know the likelihood of top monotonicity restricted preferences and whether this
probability is non-zero for n → ∞.

Another direction is to consider other probability distributions such as the Plackett-
Luce model (Plackett 1975; Luce 1959) or Mallows mixture models where more
than one reference vote is considered (Murphy and Martin 2003). One could also
analyze the probability distribution that arises when assuming that all elections are
single-peaked and that all elections of the same size are equally likely. This would
allow allow to ask questions such as “How likely is it that a single-peaked election
is also single-crossing?”. Finally, a recent research direction is to consider elections
that are nearly single-peaked, i.e., elections that have a small distance to being single-
peaked according to some notion of distance (Faliszewski et al. 2011a; Elkind et al.
2012; Cornaz et al. 2012, 2013; Erdélyi et al. 2013; Bredereck et al. 2013a). The
likelihood that elections are nearly single-peaked remains a worthwhile direction for
future research.
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