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Abstract

Recent work on the representation of functions

on sets has considered the use of summation in

a latent space to enforce permutation invariance.

In particular, it has been conjectured that the di-

mension of this latent space may remain fixed

as the cardinality of the sets under consideration

increases. However, we demonstrate that the ana-

lysis leading to this conjecture requires mappings

which are highly discontinuous and argue that this

is only of limited practical use. Motivated by this

observation, we prove that an implementation of

this model via continuous mappings (as provided

by e.g. neural networks or Gaussian processes)

actually imposes a constraint on the dimensional-

ity of the latent space. Practical universal function

representation for set inputs can only be achieved

with a latent dimension at least the size of the

maximum number of input elements.

1. Introduction

Machine learning models have had great success in taking

advantage of structure in their input spaces: recurrent neural

networks are popular models for sequential data (Sutskever

et al., 2014) and convolutional neural networks are the state-

of-the-art for many image-based problems (He et al., 2016).

Recently, however, models for unstructured inputs in the

form of sets have rapidly gained attention (Ravanbakhsh

et al., 2016; Zaheer et al., 2017; Qi et al., 2017a; Lee et al.,

2018; Murphy et al., 2018; Korshunova et al., 2018).

Importantly, a range of machine learning problems can nat-

urally be formulated in terms of sets; e.g. parsing a scene

composed of a set of objects (Eslami et al., 2016; Kosiorek

et al., 2018), making predictions from a set of points form-

ing a 3D point cloud (Qi et al., 2017a;b), or training a set

of agents in reinforcement learning (Sunehag et al., 2017).
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Figure 1: Illustration of the model structure proposed in

several works (Zaheer et al., 2017; Qi et al., 2017a) for

representing permutation-invariant functions. The sum op-

eration enforces permutation invariance for the model as a

whole. φ and ρ can be implemented by e.g. neural networks.

Furthermore, attention-based models perform a weighted

summation of a set of features (Vaswani et al., 2017; Lee

et al., 2018). Hence, understanding the mathematical prop-

erties of set-based models is valuable both in terms of set-

structured applications as well as better understanding the

capabilities and limitations of attention-based models.

Many popular machine learning models, including neural

networks and Gaussian processes, are fundamentally based

on vector inputs1 rather than set inputs. In order to adapt

these models for use with sets, we must enforce the property

of permutation invariance, i.e. the output of the model must

not change if the inputs are reordered. Multiple authors, in-

cluding Ravanbakhsh et al. (2016), Zaheer et al. (2017) and

Qi et al. (2017a), have considered enforcing this property

using a technique which we term sum-decomposition, illus-

trated in Figure 1. Mathematically speaking, we say that a

function f defined on sets of size M is sum-decomposable

via Z if there are functions φ : R → Z and ρ : Z → R such

that2

f(X) = ρ
(

Σx∈Xφ(x)
)

(1)

We refer to Z here as the latent space. Since summa-

tion is permutation-invariant, a sum-decomposition is also

permutation-invariant. Ravanbakhsh et al. (2016), Zaheer

et al. (2017) and Qi et al. (2017b) have also considered

the idea of enforcing permutation invariance using other

operations, e.g. max(·). In this paper we concentrate on a

detailed analysis of sum-decomposition, but some of the lim-

itations we discuss also apply when max(·) is used instead

of summation.

1Or inputs of higher rank, i.e. matrices and tensors.
2We use R here for brevity – see Definition 2.2 for the fully

general definition.
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Our main contributions can be summarised as follows.

1. Recent proofs, e.g. in Zaheer et al. (2017), consider

functions on countable domains. We explain why con-

sidering countable domains can lead to results of lim-

ited practical value (i.e. cannot be implemented with

a neural network), and why considering continuity on

uncountable domains such as R is necessary. With ref-

erence to neural networks, we ground this discussion

in the universal approximation theorem, which relies

on continuity on uncountable domains [0, 1]M .

2. In contrast to previous work (Zaheer et al., 2017; Qi

et al., 2017a), which considers sufficient conditions

for universal function representation, we establish a

necessary condition for a sum-decomposition-based

model to be capable of universal function representa-

tion. Additionally, we provide weaker sufficient con-

ditions which imply a stronger version of universality.

Specifically, we show that the dimension of the latent

space being at least as large as the maximum number

of input elements is both necessary and sufficient for

universal function representation.

While primarily targeted at neural networks, these results

hold for any implementation of sum-decomposition, e.g.

using Gaussian processes, as long as it provides universal

function approximation for continuous functions. Proofs of

all novel results are available in Appendix B.

2. Preliminaries

In this section we recount the theorems and proofs on sum-

decomposition from Zaheer et al. (2017). We begin by

introducing important definitions and the notation used

throughout our work. Note that we focus on permutation-

invariant functions and do not discuss permutation equivari-

ance which is also considered in Zaheer et al. (2017).

2.1. Definitions

Definition 2.1. A function f(x) is permutation-invariant

if f(x1, . . . , xM ) = f
(

xπ(1), . . . , xπ(M)

)

for all π.

Definition 2.2. We say that a function f is sum-

decomposable if there are functions ρ and φ such that

f(X) = ρ
(

Σx∈Xφ(x)
)

.

In this case, we say that (ρ, φ) is a sum-decomposition of f .

Given a latent space Z, we say that f is sum-decomposable

via Z when this expression holds for some φ whose codo-

main is Z, i.e. φ : X → Z.

We say that f is continuously sum-decomposable when this

expression holds for some continuous functions ρ and φ.

We will also consider sum-decomposability where the inputs

to f are vectors rather than sets - in this context, the sum is

over the elements of the input vector.

Definition 2.3. A set X is countable if its number of ele-

ments, i.e. the cardinality, is smaller or equal to the number

of elements in N. This includes both finite and countably

infinite sets; e.g. N, Q, and subsets thereof.

Definition 2.4. A set X is uncountable if its number of

elements is greater than the number of elements in N, e.g.

R and certain subsets thereof.

Notation 2.5. Denote the power set of a set X by 2X.

Notation 2.6. Denote the set of finite subsets of a set X by

X
F .

Notation 2.7. Denote the set of subsets of a set X containing

at most M elements by X
≤M .

Remark. Throughout, we discuss expressions of the form

Φ(X) = Σx∈Xφ(x), where X is a set. Note that care must

be taken in interpreting this expression when X is not finite

– we discuss this issue fully in Appendix A.1.

2.2. Background Theorems

Zaheer et al. (2017) consider the two cases where X is a

subset of, or drawn from, a countable and an uncountable

universe X. We now outline the theorems and proofs relating

to these two cases.

Theorem 2.8 (Countable case). Let f : 2X → R where X

is countable. Then f is permutation-invariant if and only if

it is sum-decomposable via R.

Proof. Since X is countable, each x ∈ X can be mapped

to a unique element in N by a function c(x) : X → N.

Let Φ(X) =
∑

x∈X φ(x). If we can choose φ so that Φ is

injective, then we can set ρ = f ◦ Φ−1, giving

f = ρ ◦ Φ

f(X) = ρ
(

Σx∈Xφ(x)
)

i.e. f is sum-decomposable via R.

Now consider φ(x) = 4−c(x). Under this mapping, each

X ⊂ X corresponds to a unique real number expressed

in base 4. Therefore Φ is injective, and the conclusion

follows.

Remark. This construction works for any set size M , and

even for sets of infinite size. However, it assumes that

X is a set with no repeated elements, i.e. multisets are

not supported. Specifically, the construction will fail with

multisets because Φ fails to be injective if its domain in-

cludes multisets. In Appendix A.3, we extend Theorem 2.8

to also support multisets, with the restriction that infinite

sets are no longer supported.
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Theorem 2.9 (Uncountable case). Let M ∈ N, and let

f : [0, 1]M → R be a continuous function. Then f is

permutation-invariant if and only if it is continuously sum-

decomposable via RM+1.

The proof by Zaheer et al. (2017) of Theorem 2.9 is more

involved than for Theorem 2.8. We do not include it here in

full detail, but briefly summarise below.

1. Show that the mapping Φ : [0, 1]M → RM+1 defined

by Φq(x) =
∑M

m=1(xm)q for q = 0, . . . ,M is inject-

ive and continuous.3

2. Show that Φ has a continuous inverse.

3. Define ρ : RM+1 → R by ρ = f ◦ Φ−1.

4. Define φ(x) : R → RM+1 by φq(x) = xq .

5. Note that, by definition of ρ and φ, (ρ, φ) is a continu-

ous sum-decomposition of f via RM+1.

Remark. Zaheer et al. (2017) conjecture that any continuous

permutation-invariant function f on 2[0,1], the power set of

[0, 1], is continuously sum-decomposable. In Section 3, we

show that this is not possible, and in Section 4 we show that

even if the domain of f is restricted to [0, 1]≤F , the finite

subsets of [0, 1], then N ≥ M is a necessary condition for

arbitrary functions f to be continuously sum-decomposable.

Additionally, we prove that N = M is a sufficient condition

– implying together with the above that it is not possible to

do better than this.

3. The Importance of Continuity

In this section, we argue that continuity is essential to discus-

sions of function representation, that it has been neglected

in prior work on permutation-invariant functions, and that

this neglect has implications for the strength and generality

of existing results.

Intuitively speaking a function is continuous if, at every

point in the domain, the variation of the output can be made

arbitrarily small by limiting the variation in the input. Con-

tinuity is the reason that, for instance, working to machine

precision usually produces sensible results. Truncating to

machine precision alters the input to a function slightly, but

continuity ensures that the change in output is also slight.

In Zaheer et al. (2017), the authors demonstrate that when

X is a countable set, e.g. the rational numbers, any function

f : 2X → R is sum-decomposable via R. This is taken

as a hopeful indication that sum-decomposability may ex-

tend to uncountable domains, e.g. X = R. Extending to

the uncountable case may appear, at first glance, to be a

3In the original proof, Φ is denoted E.
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Figure 2: The function Ψ shown here is continuous at every

rational point in [0, ln 4]. Intuitively, this is because all

jumps occur at irrational values, namely at certain fractions

of ln 4. It defies our intuitions for what continuity should

mean, and illustrates the fact that continuity on Q is a much

weaker property than continuity on R. The latter property is

required to satisfy the universal approximation theorem for

neural networks. Ψ is defined and discussed in Appendix C.

mere formality – we are, after all, ultimately interested in

implementing algorithms on finite hardware. Nevertheless,

it is not true that a theoretical result for a countably infinite

domain must be strong enough for practical purposes. In

fact, considering functions on uncountably infinite domains

such as RN is of real importance.

Turning specifically to neural networks, the universal ap-

proximation theorem says that any continuous function can

be approximated by a neural network, but not that any func-

tion can be approximated by a neural network (Cybenko,

1989). A similar statement is true for other approximators,

such as some Gaussian processes (Rasmussen & Williams,

2006). The notion of continuity required here is specifically

that of continuity on compact subsets of RN .

Crucially, if we wish to work mathematically with continuity

in a way that closely matches our intuitions, we must con-

sider uncountable domains. To illustrate this point, consider

the rational numbers Q. Q is dense in R, and it is tempt-

ing to think that Q is therefore “all we need”. However, a

theoretical guarantee of continuity on Q is weak, and does

not imply continuity on R. The universal approximation

theorem for neural networks relies on continuity on R, and

we cannot usefully take continuity on Q as a proxy for this
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property. Figure 2 shows a function which is continuous on

Q, and illustrates that a continuous function on Q may not

extend continuously to R. This figure also illustrates that

continuity on Q defies our intuitions about what continuity

should mean, and is too weak for the universal approxima-

tion theorem for neural networks. We require the stronger

notion of continuity on R.

In light of the above, it is clear that continuity is a key

property for function representation, and also that there

is a crucially important difference between countable and

uncountable domains. This raises two problems for The-

orem 2.8. First, the theorem does not consider the continuity

of the sum-decomposition when the domain X has some

non-trivial topological structure (e.g. X = Q). Second, we

still care about continuity on R, and there is no guarantee

that this is possible given continuity on Q.

In fact, the continuity issue cannot be overcome – we can

demonstrate that in general the sum-decomposition of The-

orem 2.8, which goes via R, cannot be made continuous for

X = Q:

Theorem 3.1. There exist functions f : 2Q → R such that,

whenever (ρ, φ) is a sum-decomposition of f via R, φ is

discontinuous at every point q ∈ Q.

We can actually say something more general than the above.

Our proof can easily be adapted to demonstrate that if f
is injective, or if we want a fixed φ to suffice for any f ,

then φ can only be continuous at isolated points of the

underlying set X, regardless of whether X = Q. I.e., it is

not specifically due to the structure of Q that continuous

sum-decomposability fails. In fact, it fails whenever we

have a non-trivial topological structure. For functions which

we want to model using a neural network, this is worrying.

It is not possible to represent an everywhere-discontinuous

φ with a neural network. We therefore view Theorem 2.8 as

being of limited practical relevance and as not providing a

reliable intuition for what should be possible in the uncount-

able case. We do however see this result as mathematically

interesting, and have obtained the following result extend-

ing it to the case where the domain X is uncountable. This

result is slightly weaker than the countable case, in that the

domain of f can contain arbitrarily large finite sets, but not

infinite sets.

Theorem 3.2. Let f : RF → R. Then f is sum-

decomposable via R.

Once again, the sum-decomposition is highly discontinuous.

The limitation that f is not defined on infinite sets cannot

be overcome:

Theorem 3.3. If X is uncountable, then there exist functions

f : 2X → R which are not sum-decomposable. Note that

this holds even if the sum-decomposition (ρ, φ) is allowed

to be discontinuous.

To summarise, we show why considering countable domains

can lead to results of limited practical value and why con-

sidering continuity on uncountable domains is necessary.

We point out that some of the previous work is therefore

of limited practical relevance, but regard it as mathemat-

ically interesting. In this vein, we extend the analysis of

sum-decomposability when continuity is not required.

4. Practical Function Representation

Having established the necessity of considering continu-

ity on R, we now explore the implications for sum-

decomposability of permutation-invariant functions. These

considerations lead to concrete recommendations for model

design and provide theoretical support for elements of cur-

rent practice in the area. Specifically, we present three

theorems whose implications can be summarised as follows.

1. A latent dimensionality of M is sufficient for repres-

enting all continuous permutation-invariant functions

on sets of size ≤ M .

2. To guarantee that all continuous permutation-invariant

functions can be represented for sets of size ≤ M , a

latent dimensionality of at least M is necessary.

The key result which is the basis of the second statement

and which underpins this discussion is as follows.

Theorem 4.1. Let M > N ∈ N. Then there exist permuta-

tion invariant continuous functions f : RM → R which are

not continuously sum-decomposable via RN .

Restated in more practical terms, this implies that for a sum-

decomposition-based model to be capable of representing

arbitrary continuous functions on sets of size M , the latent

space in which the summation happens must be chosen to

have dimension at least M . A similar statement is true for

the analogous concept of max-decomposition – details are

available in Appendix B.6.

To prove this theorem, we first need to state and prove the

following lemma.

Lemma 4.2. Let M,N ∈ N, and suppose φ : R → RN ,

ρ : RN → R are functions such that:

max(X) = ρ (Σx∈Xφ(x)) (2)

Now let Φ(X) = Σx∈Xφ(x), and write ΦM for the restric-

tion of Φ to sets of size M .

Then ΦM is injective for all M .

Proof. We proceed by induction. The base case M = 1 is

clear.
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Now let M ∈ N, and suppose that ΦM−1 is injective. Now

suppose there are sets X,Y such that ΦM (X) = ΦM (Y ).
First note that, by (2), we must have:

max(X) = max(Y ) (3)

So now write:

X = {xmax} ∪Xrem ; Y = {ymax} ∪ Yrem (4)

where xmax = max(X), and similarly for ymax.

But now:

ΦM (X) = ΦM−1(Xrem) + φ(xmax)

= ΦM−1(Yrem) + φ(ymax)

= ΦM (Y )

From the central equality, and (3), we have:

ΦM−1(Xrem) = ΦM−1(Yrem)

Now by injectivity of ΦM−1, we have Xrem = Yrem. Com-

bining this with (3) and (4), we must have X = Y , and so

ΦM is injective.

Equipped with this lemma, we can now prove Theorem 4.1.

Proof. We proceed by contradiction. Suppose that functions

φ and ρ exist satisfying (2). Define ΦM : RM → RN by:

ΦM (x) = ΣM
i=1φ(xi)

Denote the set of all x ∈ RM with x1 < x2 < ... < xM

by RM
ord, and let Φord

M be the restriction of ΦM to RM
ord. Since

Φord
M is a sum of continuous functions, it is also continuous,

and by Lemma 4.2, it is injective.

Now note that RM
ord is a convex open subset of RM , and is

therefore homeomorphic to RM . Therefore, our continuous

injective Φord
M can be used to construct a continuous injec-

tion from RM to RN . But it is well known that no such

continuous injection exists when M > N . Therefore our

decomposition (2) cannot exist.

It is crucial to note that functions f for which a lower-

dimensional sum-decomposition does not exist need not

be “badly-behaved” or difficult to specify. The limitation

extends to functions of genuine interest. For our proof, we

have specifically demonstrated that even max(X) is not

continuously sum-decomposable when N < M .

From Theorem 2.9, we also know that for a fixed input set

size M , any continuous permutation-invariant function is

continuously sum-decomposable via RM+1. It is, however,

possible to adapt the construction of Zaheer et al. (2017) to

strengthen the result in two ways. Firstly, we can perform

the sum-decomposition via RM :

Theorem 4.3 (Fixed set size). Let f : RM → R be con-

tinuous. Then f is permutation-invariant if and only if it is

continuously sum-decomposable via RM .

Secondly, we can deal with variable set sizes ≤ M :

Theorem 4.4 (Variable set size). Let f : R≤M → R be

continuous. Then f is permutation-invariant if and only if it

is continuously sum-decomposable via RM .

Note that we must take some care over the notion of con-

tinuity in this theorem – see Appendix A.2.

4.1. Discussion

Theorem 4.1 does not imply all functions require N = M .

Some functions, such as the mean, can be represented in a

lower dimensional space. The statement rather says that if

we do not want to impose any limitations on the complexity

of the function, the latent space needs to have dimensionality

at least M .

Theorem 4.4 suggests that sum-decomposition via a latent

space with dimension N = M should suffice to model any

function. Neural network models in the recent literature,

however, deviate from these guidelines in several ways,

indicating a disconnect between theory and practice. For

example, the models in Zaheer et al. (2017) and Qi et al.

(2017a) are considerably more complex than Equation (1),

e.g. they apply several permutation-equivariant layers to the

input before a permutation-invariant layer.

In light of Theorem 4.1, this disconnect becomes less sur-

prising. We have shown that, for a target function of suffi-

cient complexity, N = M is the bare minimum required for

the model to be capable of representing the target function.

Achieving this would rely on the parameterisation of φ and

ρ being flexible enough and on the availability of a suitable

optimisation method. In practice, we should not be surprised

that more than the bare minimum capacity in our model is

required for good performance. Even with N > M , the

model might not converge to the desired solution. At the

same time, when we are dealing with real datasets, the train-

ing data may contain noise and redundant information, e.g.

in the form of correlations between elements in the input,

inducing functions of limited complexity that may in fact be

representable with N < M .
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4.2. Illustrative Example

We now use a toy example to illustrate some practical im-

plications of our results. Based on Theorem 4.1, we expect

the number of input elements M to have an influence on

the required latent dimension N , and in particular, we ex-

pect that the required latent dimension may increase without

bound.

We train a neural network with the architecture presented

in Figure 1 to predict the median of a set of values. We

choose the median as a function because it is relatively

simple but cannot be trivially represented via a sum in a

fixed-dimensional latent space, in contrast to e.g. the mean,

which is sum-decomposable via R.4 φ and ρ are paramet-

erised by multi-layer perceptrons (MLPs). The input sets

are randomly drawn from either a uniform, a Gaussian, or a

Gamma distribution.

We vary the latent dimension N and the input set size M
to investigate the link between these two variables and the

predictive performance. The MLPs parameterising φ and

ρ are given comparatively many layers and hidden units,

relative to the simplicity of the task, to ensure that the latent

dimension is the bottleneck. Further details are described in

Appendix D.

Figure 3(a) shows the RMSE depending on the latent dimen-

sion for different input sizes. We make three observations.

1. For each set size, the error decreases monotonically

with the dimension of the latent space.

2. Beyond a certain point, increasing the dimension of

the latent space does not further reduce the error. We

denote this the “critical point”.

3. As the set size increases, so does the latent dimension

at the critical point.

Figure 3(b) shows the critical points as a function of the

input size, indicating a roughly linear relationship between

the two. Note that the critical points occur at N < M . This

can be explained by the fact that the models do not learn an

algorithmic solution for computing the median, but rather

to estimate it given samples drawn from the specific input

distribution seen during training. Furthermore, estimating

the median of a distribution, like other functions, renders

some information in the input redundant. Therefore, the

mapping from input to latent space does not need to be

injective, allowing a model to solve the task with a smaller

value of N .

4The construction for Z = R is not entirely trivial for variable
set size, but going via Z = R2 is straightforward.
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Figure 3: Illustrative toy example: a neural network is

trained to predict the median of an unordered set.

5. Related Work

Much of the recent work on deep learning with unordered

sets follows the paradigm discussed in (Ravanbakhsh et al.,

2016), Zaheer et al. (2017), and Qi et al. (2017a) which

leverage the structure illustrated in Figure 1. Zaheer et al.

(2017) provide an in-depth theoretical analysis which is

discussed in detail in Section 2. Qi et al. (2017a) also derive

a sufficiency condition for universal function approximation.

In their proof, however, they set the latent dimension N
to ⌈1/δǫ⌉ where δǫ depends on the error tolerance for how

closely the target function has to be approximated. As a

result, the latent dimension N goes to infinity for exact

representation. In similar vain, Herzig et al. (2018) consider

permutation-invariant functions on graphs.

A key application domain of set-based methods is the pro-

cessing of point clouds, as the constituent points do not
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have an intrinsic ordering. The work by Qi et al. (2017a)

on 3D point clouds, one of the first to use a permutation-

invariant neural networks, is extended in Qi et al. (2017b)

by sampling and grouping points in a hierarchical fashion

to model the interaction between nearby points in the input

space more explicitly. Qi et al. (2018) combine RGB and

lidar data for object detection by using image detectors to

generate bounding box proposals which are then further

processed by a set-based model. Achlioptas et al. (2018)

and Yi et al. (2018) show that set-based models can also be

used to learn generative models of point clouds.

Vinyals et al. (2015) suggest that even though recurrent

networks are universal approximators, the ordering of the

input is crucial for good performance. Hence, they propose

model that relies on attention to achieve permutation invari-

ance in order to solve a sorting task. In general, it is worth

noting that there exists a connection between the model

in Zaheer et al. (2017) and recent attention-based models

such as the one proposed in Vaswani et al. (2017). In this

case, the aggregation layer includes a weighting parameter

which is computed based on a key-query system which is

also permutation invariant. Since the value of the weight-

ing parameters could be learned to be 1.0, it is trivial to

show that such an attention algorithm is also in principle

able to approximate any permutation-invariant function, of

course depending on the remaining parts of the architec-

ture. Inspired by inducing point methods, Set Transformer

(Lee et al., 2018) propose a computationally more efficient

attention-module and demonstrate better performance on a

range of set-based tasks. While stacking several of attention-

modules can capture higher order dependencies, a more

general treatment of this is offered by permutation-invariant,

learnable Janossy Pooling (Murphy et al., 2018).

Similar to the methods considered here, Neural Processes

(Garnelo et al., 2018b) and Conditional Neural Processes

(Garnelo et al., 2018a) also rely on aggregation via summa-

tion in order to infer a distribution from a set of data points.

Kim et al. (2019) add an attention mechanism to neural

processes to improve empirical performance. Generative

Query Networks (Eslami et al., 2018; Kumar et al., 2018)

can be regarded as an instantiation of neural processes to

learn useful representations of 3D scenes from multiple 2D

views. Yang et al. (2018) also aggregate information from

multiple views to compute representations of 3D objects.

Bloem-Reddy & Teh (2019) and Korshunova et al. (2018)

consider exchangeable sequences – sequences consisting

of random variables with a joint likelihood which is in-

variant under permutations. Bloem-Reddy & Teh (2019)

provide a theorem that describes distribution-invariant mod-

els. Korshunova et al. (2018) use RealNVP (Dinh et al.,

2016) as a bijective function which sequentially computes

the parameters of a Student-t process.

6. Conclusions

This work derives theoretical limitations on the representa-

tion of arbitrary functions on sets via a finite latent space.

We demonstrate why continuity requires statements on un-

countable domains, as opposed to countable domains, to

ensure the practical usefulness of those statements. Under

this constraint, we prove that a latent space whose dimen-

sion is at least as large as the maximum input set size is both

sufficient and necessary to achieve universal function rep-

resentation. The models covered in this analysis are popular

for a range of practical applications and can be implemented

e.g. by neural networks or Gaussian processes. In future

work, we would like to investigate the effect of constructing

models with both permutation-equivariant and permutation-

invariant modules on the required dimension of the latent

space. Examining the implications of using self-attention,

e.g. as in Lee et al. (2018), would be of similar interest.
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