
On the limiting performance of broadcast algorithms over
unidimensional ad-hoc radio networks

Andrea Zanella, Gianfranco Pierobon, Simone Merlin
Dipartimento di Ingegneria dell’Informazione, Università di Padova
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Abstract— Broadcast mechanisms are widely used in self–organizing
wireless networks, for management, control and data exchange pur-
poses. In general, broadcast algorithms are required to provide arapid,
reliable and energy–efficientway to diffuse information over a network
of randomly distributed nodes.

In this paper, we address such issues in the context of uni–
dimensional networks, with nodes distributed according to a 1-
dimension inhomogeneousPoisson process. We statistically derive the
propagation dynamic of the optimum broadcast algorithm defined over
the Minimum Connected Dominating Set (MCDS) of nodes. Hence,
we derive the limiting broadcast performance over uni–dimensional
networks, in terms of some useful measures, thus providing common
reference values for comparing the effectiveness of different broadcast
algorithms.

Keywords— Ad hoc networks, broadcast, Minimum Connected Dom-
inating Set, linear networks, inhomogeneous Poisson distribution

I. I NTRODUCTION

Broadcasting is a fundamental service for multi–hop wireless ad
hoc networks, since it is commonly used to propagate user and
control information over the network. For example, in the context
of the car–networks [1], [2], broadcast may be used to signal
hazards to the upcoming vehicles or, in a factory, to propagate sen-
sors messages, in a multi–hop fashion, to some monitoring nodes
scattered over the area. Furthermore, many routing algorithms for
ad hoc networks rely on an efficient broadcast mechanism for path
discovering and routing–table dissemination [3], [4]. It is then clear
that the design of efficient broadcast mechanisms is an issue of
primary importance for self–organizing wireless networks.

An efficient broadcast protocol shall minimize the number of
retransmissions, preserving connectivity. Under ideal hypothesis
(perfect packet reception within the transmission radiusR, un-
loaded network, static network topology), this goal can be achieved
by enabling only nodes in theMinimum Connected Dominating Set
(MCDS) to relay the broadcast message. The MCDS is, in fact,
defined as the subset of connected nodes with minimum cardinality
and such that each node in the network is connected to a node in
the subset.

The problem has been widely investigated for bi–dimensional
networks, where nodes are randomly scattered over a plane [5].
The complexity of that scenario, however, makes the theoretical
analysis rather difficult and, hence, most of the studies are based
on computer simulations [6].

On the contrary, theoretical analysis turns out to be feasible for
uni–dimensional networks, as in the case of Car-Networks [7], [1].
For a linear disposition of nodes, the MCDS can be recursively
obtained by starting from the broadcast source and including in the
MCDS, step by step, the farthest node within the coverage range
of the previously inserted node. It is then clear that, enabling only
nodes in the MCDS to relay broadcast messages, we guarantee
optimal performance, i.e., maximum broadcast propagation speed
along the network, minimum number of retransmissions, and
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collisions avoidance. Such a protocol will be referred to as MCDS-
broadcast.

The implementation of such a protocol requires each node to
know the exact positions and status of surrounding nodes. The
construction of an MCDS is, then, related to the connectivity prop-
erties of the network. Results on connectivity of linear networks
can be found in [8], [9], [10], where only homogeneous disposition
of nodes and asymptotic connection issues are considered. In
particular, a closed form for the probability that two nodes at
distancex are asymptotically connected (without any limitation
on the number of needed hops) is derived. Such an index gives
a reference value to test therobustnessof any other broadcast
algorithm, giving an upper bound to the maximum distance that
a broadcast message can propagate over, and to the number of
nodes that can be reached by the message. However, it does not
capture thedynamic of message propagation and, thus, it does
not provide any reference bound for thespeedof the broadcast
diffusion. A description of the message propagation, hop by hop,
can be found in [11]. However, that result has been obtained under
the assumption of homogeneous Poisson distribution of nodes only.

The aim of this work is to determine the performance of the
MCDS–broadcast over ad hoc wireless networks withinhomo-
geneousand linear disposition of nodes. We derive a recursive
and integral expression that gives a statistical characterization of
the broadcast propagation dynamic. As a marginal result, we re–
obtain the asymptotical results found in [9]. Furthermore, we derive
reference values for some suitable performance measures, which
can be used to compare the effectiveness of different broadcast
strategies.

The remaining of the paper is organized as follows. In Section II,
definitions and mathematical models are given. In Section III we
obtain probabilistic functions describing the dynamic of the broad-
cast diffusion. In Section IV we derive some related functions that
can be used as performance indexes. These results are graphically
shown in Section V. Finally, conclusions are given in Section VI.

II. M ATHEMATICAL MODEL

We consider a one–dimensional ad hoc network, where nodes
are deployed following an inhomogeneous Poisson process with
intensityλ(x). Therefore, the number of nodes in an interval[a, b)
is a Poisson–distributed random variable, denoted byN [a, b), with
probability mass function given by

P [N [a, b) = k] =
λ̄(a, b)k

k!
e−λ̄(a,b) ;

where the valuēλ(a, b) is given by

λ̄(a, b) =

∫ b

a

λ(ξ)dξ .

Since the Poisson process is not homogeneous, the inter–arrival
space statistic depends on the starting point. Hence, starting from
a generic pointx, the cumulative distribution function (cdf) of the
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distanced to the next node in the network,Fd(a|x), is given by

Fd(a|x) = P [N (x, x + a] > 0] = 1− e−λ̄(x,x+a) .

The derivative ofFd(a|x) with respect toa gives the probability
density function (pdf) ford:

fd(a|x) = λ(x + a)e−λ̄(x,x+a) .
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Fig. 1. Example of broadcast propagation.

We suppose each node is associated a transmission radiusR, so
that all and only nodes within a distanceR from the transmitter
receive the message. This assumption models a channel where a
deterministic power–attenuation law is considered, only gaussian
noise is taken into account as impairment, and successful packet
reception is a step function ofSNR. Let wk denote thek–
th broadcast wavefront, i.e., the maximum distance from the
broadcast source node, reached by thek–th retransmission of the
broadcast message (rebroadcast in the following). Furthermore,
let mk denote the position of the node that performs thek–th
rebroadcast, so thatwk = mk + R, as shown in Figure 1. Hence,
mk is the position of thek–th node of the MCDS rooted at the
broadcast source. Clearly, the maximum number of rebroadcasting
a message can undergo is equal to the sizeS of the MCDS, defined
as the number of nodes that belong to the MCDS. Therefore, the
k–th wavefront can exist only whetherS ≥ k.

III. B ROADCAST PROPAGATION DYNAMIC

The broadcast propagation dynamic can be statistically described
by the familyF of probability density functions{fk(xk)}k=1,2,...,
wherefk(xk) is defined as:

fk(xk) =

(
d

da
P [wk ≤ a|S ≥ k]

)∣∣∣∣
a=xk

.

It may be worth remarking that the pdffk(·) for the generick–th
wavefront is conditioned onS ≥ k, i.e., on the existence of the
k-th wavefront. The following theorem defines a (not closed) form
to derive such functions.

Theorem 1 The familyF of probability density functions, which
describe the dynamic of the broadcast propagation along the
network, can be recursively obtained as follows:

f1(x1) = δ(x1 −R), for k = 1;

fk(xk) =
Pk−1

Pk
λ(xk−R)

∫ xk

xk−R

e−λ̄(xk−R,xk−1)fk−1(xk−1)dxk−1,

for k = 2, 3, . . . , (1)

where, for eachk, Pk denotes the probability thatS ≥ k. For
k ≥ 2, the probabilityPk can, in turn, be recursively derived as

Pk = Pk−1

∫
λ(xk−R)

∫ xk

xk−R

e−λ̄(xk−R,xk−1)fk−1(xk−1)dxk−1dxk

while, for k = 1, we haveP1 = 1.

Proof: Since we assume the MCDS contains at least the
broadcast source node, the first transmission will reach a distance
R from the source, so thatw1 = R andf1(x1) = δ(x1 −R).

For k > 1, the statistic of the distance reached by thek–
th rebroadcast depends onwk−1 and wk−2. Under the condition
that S ≥ k, it is easy to realize thatmk satisfies the following
conditions: (a)wk−2 < mk ≤ wk−1, (b) N (mk, wk−1] = 0.
Condition (a) means thatmk is reached, for the first time, by the
(k−1)–th rebroadcast. Condition (b) means thatmk is the farthest
node within the transmission range ofmk−1.

For easy of notation, throughout following we make use of
some notation shortcuts for the events and functions that recur
more often. In particular, by writingWi we will intend the events
{wk−i = xk−i}, while Sh will be used to denote the condition
S ≥ h.

Given thatwk−2 andwk−1 wavefronts reach the distancexk−2

and xk−1, respectively, and thatS ≥ k, i.e., the k − 1–th
rebroadcasting reaches new nodes, then the probability thatmk

is greater thana is given by

P [mk > a|W1, W2, Sk] = (2)

=





1, a ≤ xk−2 ;
P [N (a, xk−1) > 0|W1, W2, Sk], a ∈ (xk−2, xk−1] ;
0, a > xk−1 .

Let us focus on the expression obtained fora ∈ (xk−2, xk−1], i.e.,

P [mk > a|W1, W2, Sk] = P [N (a, xk−1) > 0|W1, W2, Sk]. (3)

SinceS ≥ k implies S ≥ k − 1, we can write

P [N (a, xk−1) > 0|W1, W2, Sk] = (4)

= P [N (a, xk−1) > 0|Sk, Sk−1, W1, W2] .

Applying Bayes rule to the probability on the righthand side of
(4), we get

P [N (a, xk−1) > 0|Sk, Sk−1, W1, W2] = (5)

=
P [N (a, xk−1) > 0, Sk|W1, W2, Sk−1]

P [Sk|Sk−1, W1, W2]
.

Given W1 and W2, the condition S ≥ k can be removed
from the numerator of the fraction in (5), since it is implicit in
N (a, xk−1) > 0. Hence, (3) becomes

P [mk > a|W1, W2, Sk] =
1− e−λ̄(a,xk−1)

P [Sk|Sk−1, W1, W2]
. (6)

The pdf of mk, conditioned toW1, W2 and Sk, can be easily
derived from (6). Fora ∈ (xk−2, xk−1] we get

fmk (a|W1, W2, Sk) = − d

da
P [mk > a|W1, W2, Sk]

=
λ(a)e−λ̄(a,xk−1)

P [Sk|Sk−1, W1, W2]
, (7)

while, for a /∈ (xk−2, xk−1], the pdf is zero.
Recalling thatwk = mk + R, it immediately follows

fwk (xk|W1, W2, Sk) =
λ(xk −R)e−λ̄(xk−R,xk−1)

P [Sk|Sk−1, W1, W2]
, (8)

for xk ∈ (xk−2 + R, xk−1 + R], and0 otherwise.
In order to remove the conditioning onwk−1 and wk−2, we
apply the marginal rule. We first multiply both sides of (8) for
f(W1, W2|Sk), which denotes the joint pdf ofwk−1 and wk−2

conditioned toS ≥ k. Hence, integrating indxk−2 anddxk−1 we
obtain

fk(xk) =

∫ ∫
fwk (xk|W1, W2, Sk)f(W1, W2|Sk)dxk−1dxk−2

= λ(xk −R)

∫ xk

xk−R

e−λ̄(xk−R,xk−1)· (9)

·
∫ xk−1

xk−R

f(W1, W2|Sk)

P [Sk|W1, W2, Sk−1]
dxk−1dxk−2 .
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Then, applying the Bayes rule to the probability that appears at the
denominator of the inner integral expression, after some algebra we
get

P [Sk|W1, W2, Sk−1] =
f(W1, W2|Sk)Pk

f(W1, W2|Sk−1)Pk−1
, (10)

wherePk = P [S ≥ k]. Putting (10) into (9) we finally get

fk(xk) =
Pk−1

Pk
λ(xk −R)

∫ xk

xk−R

e−λ̄(xk−R,xk−1)· (11)

·
∫ xk−1

xk−R

f(W1, W2|Sk−1)dxk−1dxk−2

=
Pk−1

Pk
λ(xk −R)

∫ xk

xk−R

e−λ̄(xk−R,xk−1)fk−1(xk−1)dxk−1,

which proves the first part of the theorem.
The second part of the theorem follows immediately applying

the normalization condition to each the pdffk(xk).
For numerical calculation, we note that, starting from(f1, P1)

it is possible to calculate(f2, P2) and so on.
Theorem 1 defines a recursive way to determine the complete

statistic description of the distance reached by each rebroadcasting,
under the condition that the broadcast propagation has not stopped
before. This statistical characterization of the broadcast dynamic
opens the way to the definition and evaluation of a number of
performance measures. In the next section, we introduce some
possible performance indexes that can be derived from the family
of functionsF .

IV. PERFORMANCEMEASURES

In general, the performance of a broadcast algorithm can be
evaluated with respect to some quality of service indexes, which
depend on the specific scenario considered. For instance, when
broadcasting is used to propagate network topology information,
then the focus is on reliability, and control traffic generated. On
the other hand, when the information carried by the broadcast
message is subject to strict delivery time constraints, as in the case
of propagation of alarm or hazard messages, the most relevant
measures are the propagation delay and the maximum distance
reached by the message within a given time period.

Let us focus on a target nodea, placed at a distancexa from
the broadcast source. We start derivingck(xa), for nodea, defined
as the probability that nodea is reachedfor the first timeat k–
th rebroadcast. Notice that, this metric is not conditioned on the
existence of thek–th rebroadcast. Hence, in order for nodea to
be reached at thek-th rebroadcast, the following conditions have
to hold: a)S ≥ k, b) {wk−1 < xa, wk ≥ xa}; so that

ck(xa) = P [wk−1 < xa, wk ≥ xa|Sk]P [Sk]. (12)

This function can be obtained by opportunely integrating the
conditioned joint probability density function ofwk and wk−1,
as follows

ck(xa) = Pk

∫ xa+R

xa

∫ xa

xk−R

f(W0, W1|Sk)dxkdxk−1 , (13)

where, for easy of notation, we have resorted again to the notation
shortcuts introduced before. The integration limits of (13) are
obtained by the intersection of the intervals defined by (12) and
the regions where the integrand function is not zero. The joint
probability density function, in turn, can be derived as stated by
the following corollary.

Corollary 1 The functionfwk,wk−1(xk, xk−1|Sk) is given by

fwk,wk−1(xk, xk−1|Sk) =
Pk−1

Pk

∫
λ(xk −R)e−λ̄(xk−R,xk−1)·

· fwk−1,wk−2(xk−1, xk−2|Sk−1)dxk−2 ; (14)

where the recursion starts fromfw1,w0(x1, x0|S0) = δ(x1 −
R, x0).

Proof: The initial condition directly derives by the assumption
that the MCDS contains at least the source broadcast node, which
is placed in positionx0 = 0.
By using the marginal rule, we can express the conditioned joint
probability as follows:

f(W0, W1|Sk) =

∫
f(W0, W1, W2|Sk)dxk−2 . (15)

Applying the Bayes rule, (15) can be written as

f(W0, W1|Sk) =

∫
f(W0|W1, W2, Sk)f(W1, W2|Sk)dxk−2 .

(16)
Finally, replacing (8) into (16) and, hence, using (10), the proof is
completed.

From ck(xa), we can easily derive the so–calledk–hop con-
nectivity, Ck(xa), which is defined as the probability that nodea,
placed at a distancexa from the broadcast source, is reached by
the message within no more thank rebroadcasts. In other terms,
we have

Ck(xa) = P [∃h ≤ k : S ≥ h, wh > xa] =

k∑

h=1

ch(xa) . (17)

Notice that, this probability measure permits to determine the
probability that a node will receive the broadcast message within
a limited time delay.

In [9], a closed form forC∞(a) for a homogeneous disposition
of nodes is derived. This result can be numerically obtained by
(17) for k À. Furthermore, by using (17), it is easy to prove
that wheneverxa <

⌈
k
2

⌉
R, we haveCk(xa) = Ch(xa) for each

h ≥ k, so that
lim

k→∞
Ck(xa) = Ch(xa) ;

with h satisfying
⌈

h
2

⌉
> xa

R
. Therefore, by using the recursive

method described, we can obtainC∞(xa) after a finite number of
iterations, also for inhomogeneous Poisson distributions.

Another measure of interest is the farthest distance reached by
the broadcast message afterk rebroadcasts, denoted aszk, and
the number of nodes reached. Letfzk be the pdf ofzk. From the
definition of Ck(xa), it immediately follows

Ck(xa) = P [zk ≥ a] ,

and, consequently,

fzk (a) =
d(1− Ck(xa))

da
.

Therefore, the mean distance covered by k–hop rebroadcasts is
given by

zk =

∫ ∞

0

afzk (a)da =

∫ ∞

0

Ck(a)da.

The mean number ofk–hop connected nodes,NC
k , can be

obtained taking the statistical expectation of the number of nodes
in (0, zk], i.e.,

NC
k = E[λ̄(zk)]

=

∫ ∞

0

λ̄(x)fzk (x)dx .

Recalling the definition of̄λ(·) and offzk (·), after some algebra,
we obtain

NC
k =

∫ ∞

0

Ck(x)λ(x)dx.

Clearly, the mean numberNk of nodes reached exactly at thek–th
hop can be obtained asNk = NC

k −NC
k−1.
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Finally, another useful performance metric is the mean number
Nhop of rebroadcasts (hops) before the broadcast propagation
stops. Recalling thatPk = P [S ≥ k], it can be obtained by

Nhop =

∞∑

k=1

Pk.

V. L IMITING PERFORMANCE

In this section we evaluate the performance measures defined in
the previous section, for the MCDS–broadcast. As stated, MCDS–
broadcast is the optimum broadcast strategy, under ideal conditions.
Therefore, the results we provide in this section represent the
limiting performance of any other broadcast algorithm over linear
networks.
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Fig. 2. Ck(xa) for λ(xa) = 5.

Figure 2 showsCk(xa), obtained for differentk values and with
a homogeneous Poisson distribution of nodes. As can be seen from
the figure, continuous lines, obtained by the analytical method,
perfectly interpolate the points (×) obtained by simulations, thus
validating the theoretical analysis. Note that, as a marginal result,
we reobtain the curve forC∞(a) that upper bounds all other
curves.

In Figure 3 we show some results obtained for an inhomoge-
neous Poisson distribution of nodes. More in detail, we considered
a distribution of nodes with a sinusoidal intensityλ(xa), as shown
in the upper part of the figure. The middle and lower parts of the
same figure showCk(a) andfk(a) ·Pk for variousk, respectively.
For Ck(xa), both theoretical (continuous line) and simulation
(crossed line) results are plotted, showing a very good agreement
that validates the proposed analysis also for inhomogeneous distri-
butions of nodes. The plot offk(a) ·Pk offers a visual perspective
of the broadcast propagation along the linear network.

In Figure 4 we showPk for the same inhomogeneous disposition
of nodes as shown in the upper part of Figure 3 (◦) and for
an homogeneous distribution with constant intensityλ(xa) = 4
nodes/R (×). As expected, being the average node density the
same, inhomogeneous distributions lead to a lower reliability.

Finally, Figure 5 shows the mean numberNhop of reached nodes
versus the number of hops, for the same inhomogeneous disposition
considered before.

VI. CONCLUSION

In this paper, we presented an analysis of the limiting per-
formance of broadcast over linear ad–hoc networks, with nodes
distributed according to an inhomogeneous Poisson process. The
analysis was carried out by considering the connectivity properties
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Fig. 3. Ck(xa) andfk(xa) · Pk for inhomogeneousλ.
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of a Minimum Connected Dominating Set (MCDS) defined over
the linear network. Results were used to derive the performance
of the optimum broadcast protocol, which enables only nodes
belonging to the MCDS rooted at the broadcast source to relaying
the broadcast message. The so–called MCDS–broadcast is the opti-
mum broadcast protocol, under ideal conditions, since it guarantees
maximum reliability and speed for the broadcast diffusion.

In particular, we provided a recursive expression that describes
the dynamic of broadcast propagation, that is, the probability that
a node receives the broadcast message in function of the distance
to the broadcast source and the number of rebroadcasts (hops).
From this main result, many other useful indexes were deduced,
such as the mean distance and number of nodes reached after a
given number of hops, and the mean number of hops before the
broadcast stops. Evaluating these metrics on the MCDS–broadcast,
we provided the limiting performance for any other broadcast
protocol.
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