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Abstract— Broadcast mechanisms are widely used in self-organizing collisions avoidance. Such a protocol will be referred to as MCDS-
wireless networks, for management, control and data exchange pur- proadcast.

poses. In general, broadcast algorithms are required to provide aapid, : : :

reliable and energy—efficientway to diffuse information over a network The Implemematlo_r_] of such a protocol requ”es_ each node to

of randomly distributed nodes. know the_ exact positions and status of surrounding n_oples. The
In this paper, we address such issues in the context of uni— construction of an MCDS is, then, related to the connectivity prop-

dimensional networks, with nodes distributed according to a 1- erties of the network. Results on connectivity of linear networks

dimension inhomogeneousPoisson process. We statistically derive the ~5n pe found in [8], [9], [10], where only homogeneous disposition

propagation dynamic of the optimum broadcast algorithm defined over . . . .
the Minimum Connected Dominating Set (MCDS) of nodes. Hence, of nodes and asymptotic connection issues are considered. In

we derive the limiting broadcast performance over uni—dimensional Particular, a closed form for the probability that two nodes at
networks, in terms of some useful measures, thus providing common distancex are asymptotically connected (without any limitation
refer(_ence values for comparing the effectiveness of different broadcast g the number of needed hops) is derived. Such an index gives
alglgél)t/r\:vn(:rsds—Ad hoc networks, broadcast, Minimum Connected Dom- a ref?rence_v_alue o test thebustnessof any_other proadcast
inating Set, linear networks, inhomogeneous Poisson distribution algorithm, giving an upper bound to the maximum distance that
a broadcast message can propagate over, and to the number of
nodes that can be reached by the message. However, it does not
capture thedynamic of message propagation and, thus, it does
Broadcasting is a fundamental service for multi-hop wireless aabt provide any reference bound for tepeedof the broadcast
hoc networks, since it is commonly used to propagate user adiffusion. A description of the message propagation, hop by hop,
control information over the network. For example, in the contextan be found in [11]. However, that result has been obtained under
of the car-networks [1], [2], broadcast may be used to signtile assumption of homogeneous Poisson distribution of nodes only.
hazards to the upcoming vehicles or, in a factory, to propagate senThe aim of this work is to determine the performance of the
sors messages, in a multi-hop fashion, to some monitoring nod@€DS-broadcast over ad hoc wireless networks withomo-
scattered over the area. Furthermore, many routing algorithms f@neousand linear disposition of nodes. We derive a recursive
ad hoc networks rely on an efficient broadcast mechanism for pathd integral expression that gives a statistical characterization of
discovering and routing—table dissemination [3], [4]. It is then cleahe broadcast propagation dynamic. As a marginal result, we re—
that the design of efficient broadcast mechanisms is an issueobfain the asymptotical results found in [9]. Furthermore, we derive
primary importance for self-organizing wireless networks. reference values for some suitable performance measures, which
An efficient broadcast protocol shall minimize the number ofan be used to compare the effectiveness of different broadcast
retransmissions, preserving connectivity. Under ideal hypothesisategies.
(perfect packet reception within the transmission radRisun- The remaining of the paper is organized as follows. In Section I,
loaded network, static network topology), this goal can be achievedfinitions and mathematical models are given. In Section IIl we
by enabling only nodes in tHdinimum Connected Dominating Setobtain probabilistic functions describing the dynamic of the broad-
(MCDS) to relay the broadcast message. The MCDS is, in fadtast diffusion. In Section IV we derive some related functions that
defined as the subset of connected nodes with minimum cardinaliyn be used as performance indexes. These results are graphically
and such that each node in the network is connected to a nodeskirown in Section V. Finally, conclusions are given in Section VI.
the subset.
The problem has been widely investigated for bi—-dimensional Il. MATHEMATICAL MODEL
networks, Wh_ere nodes are ra_ndomly scattered over a plane_[S]We consider a one—dimensional ad hoc network, where nodes
The complexity of that scenario, however, makes the theoretical . . . .
analysis rather difficult and, hence, most of the studies are basaer dgployed following an inhomogeneous P‘?'SSOW process with
. . Intensity A(z). Therefore, the number of nodes in an interjvalb)
on computer simulations [6]. . : _— . .
. . . is a Poisson—distributed random variable, denoted/ly, b), with
On the contrary, theoretical analysis turns out to be feasible foFobabiIit mass function aiven b
uni—dimensional networks, as in the case of Car-Networks [7], [1?. y 9 4
For a linear disposition of nodes, the MCDS can be recursively Ma, 0" _S(awp)
obtained by starting from the broadcast source and including in the P ’
MCDS, step by step, the farthest node within the coverage ran < L
of the previously inserted node. It is then clear that, enabling On\%ﬁere the value\(a, b) is given by
nodes in the MCDS to relay broadcast messages, we guarantee _ b
optimal performance, i.e., maximum broadcast propagation speed Aa,b) = / A(§)dE .
along the network, minimum number of retransmissions, and o
Since the Poisson process is not homogeneous, the inter—arrival

This work was supported by MIUR within the framework of theSPace statistic depends on the starting point. Hence, starting from
"PRIMO” project FIRB RBNEO18RFY (http://primo.ismb.it/firb/index.jsp). @ generic pointz, the cumulative distribution function (cdf) of the

I. INTRODUCTION

P[Nla,b) = k] =
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distanced to the next node in the networly;(a|z), is given by For k > 1, the statistic of the distance reached by the
th rebroadcast depends at,—; and wi_2. Under the condition

- _ 7:\(z,z+a)
Fa(alr) = PIN(z, 2 +a] > 0] =1—e : that S > k, it is easy to realize thatn, satisfies the following

The derivative ofF,(az) with respect toa gives the probability conditions: (@wy—o < my < wg-1, (0) N(mx, wx—1] = 0.
density function (pdf) ford: Condition (a) means thaty, is reached, for the first time, by the
i} (k—1)-th rebroadcast. Condition (b) means that is the farthest
falalz) = Az + a)e X7+, node within the transmission range wfj ;.
For easy of notation, throughout following we make use of
R ® Node some notation shortcuts for the events and functions that recur
R (@ Transmitting node more often. In particular, by writing?; we will intend the events
{wk—; = xr_;}, while S;, will be used to denote the condition
S > h.

Given thatw,_» andwy_, wavefronts reach the distaneg_»
and z,_1, respectively, and thatt > k, i.e., thek — 1-th
Fig. 1. Example of broadcast propagation. rebroadcasting reaches new nodes, then the probabilityrthat
is greater tham is given by

We suppose each node is associated a transmission adscs Plmx > a|Wi, Wa, Si] = )
that all and only nodes within a distande from the transmitter 1 <z ]
receive the message. This assumption models a channel where a ) = k=25
L . : . . =<¢ P — . _ 1]
deterministic power—attenuation law is considered, only gaussian W@, ze-1) > 0[W1, W2, Sil, Zifk 221
I k—1 -

noise is taken into account as impairment, and successful packet
reception is a step function o NR. Let w;, denote thek— Letus focus on the expression obtaineddog (zx—2,zx-1], i.€.,
th broadcast wavefront, i.e., the maximum distance from the73

' ! - =P - . (3
broadcast source node, reached by théh retransmission of the [ > al Wi, W2, Si] W(a, 2p-1) > 0[Wa, W, 5i]. (3)
broadcast messageebroadcastin the following). Furthermore, SinceS > k implies S > k& — 1, we can write
let m; denote the position of the node that performs theh _
rebroadcast, so that, = my + R, as shown in Figure 1. Hence, PN (a,zx-1) > 0[W1, W2, Si] = “
mz is the position of thek—th node of the MCDS rooted at the = P[N(a, zr-1) > 0|Sk, Sk—1, W1, Wa] .
broadcast source. Clearly, the maxnmum.number of rebroqdcastw§p|ying Bayes rule to the probability on the righthand side of
a message can undergo is equal to the Siné the MCDS, defined 4), we get
as the number of nodes that belong to the MCDS. Therefore, t‘we

k—th wavefront can exist only whethét > k. PN(a,zk-1) > 0[Sk, Sk—1, W1, Wa] = (5)
. B _ P[./\/(a,xk_ﬂ >0,Sk‘W1,W2,Sk_1]
. BROADCAST PROPAGATION DYNAMIC P[Sk|Sk—1, W1, Wa] '

The broadcast propagation dynamic can be statistically describggen W, and W, the conditonS > k can be removed
by the family 7 of probablllt.y density functiong fi.(zx)} k=12, from the numerator of the fraction in (5), since it is implicit in
where fi.(z1) is defined as: N(a,zx_1) > 0. Hence, (3) becomes

1 — e~ Mazp_1) 5
Slswnwe - ©

It may be worth remarking that the pdff;(-) for the generick—th  The pdf of ms, conditioned toW:, W> and Sy, can be easily
wavefront is conditioned or$ > k, i.e., on the existence of the derived from (6). Fol € (zx_2,zk—1] We get
k-th wavefront. The following theorem defines a (not closed) form

futan) = (4Pl < als > 4]

P[mk > a|W17W2,Sk] = P

a=xy,

d
to derive such functions. Jmy (@|W1, Wa, Si) = —%P[mk > a|Wh, Wa, Si]
)\(a)e—x(aaﬂck—l)
Theorem 1 The familyF of probability density functions, which = P[Sk|Sk_1, W1, Wa] ’ (7)
describe the dynamic of the broadcast propagation along the . T
network, can be recursively obtained as follows: while, for a ¢ (52, zx—1], the pdf is zero.

Recalling thatw, = mx + R, it immediately follows

)\(xk _ R)e_;(xk_vak—l)
Pi_1 T X(en—Rap_1) PlSe|Sk-1, W1, Wa]
Frlzx) = P )‘(x’“*R)/T “ T e (@k-1)de1s for 2y € (240 + R, 21 + R), and0 otherwise.
o for k — 2.3 ) In order to remove the conditioning omy_; and wi_2, we
o apply the marginal rule. We first multiply both sides of (8) for
where, for eachk, P, denotes the probability thas > k. For  f(W1, W2|Sk), which denotes the joint pdf ofvx—; and wy_»
k > 2, the probability P, can, in turn, be recursively derived as conditioned toS > k. Hence, integrating idz,_» anddz,_1 we

fi(z1) = d6(x1 — R), fork=1; Juwp, (xe|W1, W, Sk) = (8)

z, obtain

P = Pk,1/>\xk—R/ 67A<zk7R’zk71)fk71 Trp_1)dxr_1dxk [

( ) zp—R ( ) Sre(zi) =/ /fwk($k|W17W27Sk)f(W1>W2|Sk)d$k71dmk72
while, for k = 1, we haveP; = 1. Ty, B

! = Mak — R)/ e~ M@r—Rap_1), 9)
Proof: Since we assume the MCDS contains at least the S - Wi Walg

broadcast source node, the first transmission will reach a distance / f(W1, Wa|Sk) den_1dzg_o .
R from the source, so that; = R and fi(z1) = §(z1 — R). ap—r PLSK[Wi, Wa, Sk1]
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Then, applying the Bayes rule to the probability that appears at ttvaere the recursion starts fronfw,,w, (z1,20]S0) = d(z1 —
denominator of the inner integral expression, after some algebra Wez).
get

F(Wy, W2 |Sk)Px Proof: The initial condition directly derives by the assumption

PlSk[Wi, W2, Sp—1] = F(W1, Wa|Sk—1)Pe_1’ (10) " that the MCDS contains at least the source broadcast node, which
. . ' is placed in positionzy = 0.
= > k. . . - -
where P, = P[$ > k]. Putting (10) into (9) we finally get By using the marginal rule, we can express the conditioned joint
Py T Nz —Rox i .
Felzn) = ];;;)\(xk —R)/ o~ Mak—Ryag_1), (11) probability as follows:
T —R
Th—1 f(Wo, W1|Sk) = /f(Wo,Wl,W2|Sk)dxk,2 . (15)
/ FW1, W2 |Sk—1)dxp—1drK—2
ok =R . Applying the Bayes rule, (15) can be written as
= 7Pk71 )\(xk — R)/ * eix(xkiR’xk_l)fk71(xk71)d$k71,
Py ch—R F(Wo, W1|Sk) = /f(WO\Wl,W275k)f(W1»W2|Sk)dek—2~
which proves the first part of the theorem. (16)
The second part of the theorem follows immediately applyinginally, replacing (8) into (16) and, hence, using (10), the proof is
the normalization condition to each the pff(zx). completed. [ ]
For numerical calculation, we note that, starting frgmi, P ) From cx(z,), we can easily derive the so—calléd-hop con-
it is possible to calculatéf., P>) and so on. m nectivity, Cx(z.), which is defined as the probability that node

Theorem 1 defines a recursive way to determine the complegtiaced at a distance, from the broadcast source, is reached by
statistic description of the distance reached by each rebroadcastthg, message within no more thanrebroadcasts. In other terms,
under the condition that the broadcast propagation has not stopperihave
before. This statistical characterization of the broadcast dynamic k
opens the way to the definition and evaluation of a number of Cy(z,) = P[3h <k :S > h,wp > x4] = Z cn(za). (17)
performance measures. In the next section, we introduce some h=1
possible performance indexes that can be derived from the famjltice that, this probability measure permits to determine the
of functions 7. probability that a node will receive the broadcast message within
a limited time delay.

In [9], a closed form forC (a) for a homogeneous disposition
nodes is derived. This result can be numerically obtained by

IV. PERFORMANCEMEASURES
In general, the performance of a broadcast algorithm can 8?

evaluated with respect to some quality of service indexes, whi 57) for k >. Furthermore, by using (17), it is easy to prove
depend on the specific scenario considered. For instance, w Lk Wheneve;r < [&] R V\,/e haveC;, (z.) - Ch(za) for each
broadcasting is used to propagate network topology informatio;;,> k. so that ¢ 21 ke hite

then the focus is on reliability, and control traffic generated. On
the other hand, when the information carried by the broadcast
message is subject to strict delivery time constraints, as in the c3gg, 5, satisfying

R

of propagation of alarm or hazard messages, the most relevgiinod described, we can obtaih, (z,) after a finite number of

measures are the propagation delay and the maximum distaggstions, also for inhomogeneous Poisson distributions.

reached by the message within a given time period. Another measure of interest is the farthest distance reached by
Let us focus on a target node placed at a distance. from  he proadcast message afferrebroadcasts, denoted as, and

the broadcast source. We start derivingz.), for nodea, defined ha number of nodes reached. Lgt be the pdf ofz. From the
as the probability that node is reachedfor the first timeat k~  eofinition of Ci(z4), it immediately follows

th rebroadcast. Notice that, this metric is not conditioned on the

existence of thet—th rebroadcast. Hence, in order for noddo Ck(wa) = Plzx > a] ,

be reached at th&é-th rebroadcast, the following conditions have
' and, consequently,

to hold: a)S > k, b) {wk—1 < Za,wr > z4}; SO that q y

klim Cr(ze) = Ch(wa) ;

[4] > Za. Therefore, by using the recursive

_ d(1 — Ck(za))
er(wa) = Plwi— < @a, w0 > 2o SIPISH. (12) Jala) = St

This function can be obtained by opportunely integrating thEherefore, the mean distance covered by k-hop rebroadcasts is

conditioned joint probability density function ab, and wi_;, given by

as follows

Zr = /Ooo afz, (a)da = /O‘x’ Cr(a)da.

The mean number ok—hop connected nodesyS, can be
where, for easy of notation, we have resorted again to the notatiobtained taking the statistical expectation of the number of nodes
shortcuts introduced before. The integration limits of (13) ara (0, zx], i.e.,
obtained by the intersection of the intervals defined by (12) and NC _ B
the regions where the integrand function is not zero. The joint L oo (ACze)]
probability density function, in turn, can be derived as stated by = / Xz) £ (2)de .
the following corollary. 0

zqa+R prxqo
Ck(CCa) = Pk/ / Rf(WO7W1|Sk)dZ'kdl’k71 s (13)
Tq T —

Recalling the definition of\(-) and of f., (-), after some algebra,
Corollary 1 The functionfuw, w, , (zx, zx—1]Sk) is given by we obtain

) N = / Ch(2)\ () d.
Funn s onsona]S) = =t [ A = RjeNow R 0
k Clearly, the mean numbéy,, of nodes reached exactly at theth
*fun—ywi_a (T, Th2|Sk—1)dTR 2 ; (14) hop can be obtained a§;, = NF — Nf_,.

Proceedings of WPMCO04, 12-15 sept. 2004 Abano Terme (Padova), Italy



Finally, another useful performance metric is the mean number
Nnop Of rebroadcasts (hops) before the broadcast propagation
stops. Recalling thaP, = P[S > k], it can be obtained by

Nhop :ZPk. ’r )
k=1

12 14 16 18 20

Ax,)

o
N
~L
o
©
5

V. LIMITING PERFORMANCE

In this section we evaluate the performance measures defined in  *
the previous section, for the MCDS-broadcast. As stated, MCDS— o8} |1 - 7 anayical .
broadcast is the optimum broadcast strategy, under ideal conditions.';u 06k et i
Therefore, the results we provide in this section represent the 5~ | i
limiting performance of any other broadcast algorithm over linear o k=6
networks. : k=11 k=16
00 2 4 6 8 10 12 14 16 18 20
1
—- = analytical
09 x = simulated 1ir 4
08 R=1 a>08F (k=1 B
L 0.6 B
07 x° k=6
o 0.4 1
__os 0.2k /ﬁll k=16 |
i(:u k=00 0 L L { /\ L L
G % S 0 2 4 6 8 10 12 14 16 18 20
Tl Distance (x_)
0.4 R a
03 Fig. 3. Ck(za) and fx(zq) - Py for inhomogeneous.
0.2
0.1 1
® @]
0 b |
0 5 10 . 15 20 25 30 0.9 X 9 ° = inhomogeneous case
Distance (x, ) 0l y x = homogeneous case (\=4) |
Fig. 2. Ci(za) for Mzq) = 5. .
0.7+ o 1
X
X
. . . . 0.6 @) o X 1
Figure 2 shows”x (z,), obtained for differenk values and with a¥ o x
. . . . X
a homogeneous Poisson distribution of nodes. As can be seen from 05f o x 1
. . . . . x
the figure, continuous lines, obtained by the analytical method, oal o x |
perfectly interpolate the points<( obtained by simulations, thus o5 X x y
. . . . . o)
validating the theoretical analysis. Note that, as a marginal result, 03f o E
we reobtain the curve foCs(a) that upper bounds all other 0 ° 4
curves. ' ©og
In Figure 3 we show some results obtained for an inhomoge- 01 : m " o

neous Poisson distribution of nodes. More in detail, we considered

a distribution of nodes with a sinusoidal intenskyz, ), as shown

in the upper part of the figure. The middle and lower parts of the Fig. 4. P, for inhomogeneous..

same figure show’;(a) and fx(a) - Py for variousk, respectively.

For Ci(z.), both theoretical (continuous line) and simulation

(crossed line) results are plotted, showing a very good agreement

that validates the proposed analysis also for inhomogeneous digéfi-2 Minimum Connected Dominating Set (MCDS) defined over

butions of nodes. The plot of.(a) - Py, offers a visual perspective the linear network. Results were used to derive the performance

of the broadcast propagation along the linear network. of the optimum broadcast protocol, which enables only nodes
In Figure 4 we showP;, for the same inhomogeneous dispositiopelonging to the MCDS rooted at the broadcast source to relaying

of nodes as shown in the upper part of Figurec} &nd for the broadcast message. The so-called MCDS-broadcast is the opti-

an homogeneous distribution with constant intensify,) = 4 Mum broadcast protocol, under ideal conditions, since it guarantees

nodesR (x). As expected, being the average node density tti@aximum reliability and speed for the broadcast diffusion.

same, inhomogeneous distributions lead to a lower reliability. In particular, we provided a recursive expression that describes
Finally, Figure 5 shows the mean numki€é;,, of reached nodes the dynamic of broadcast propagation, that is, the probability that

versus the number of hops, for the same inhomogeneous dispositionode receives the broadcast message in function of the distance

considered before. to the broadcast source and the number of rebroadcasts (hops).

From this main result, many other useful indexes were deduced,

such as the mean distance and number of nodes reached after a
In this paper, we presented an analysis of the limiting pegiven number of hops, and the mean number of hops before the

formance of broadcast over linear ad—hoc networks, with nodbsadcast stops. Evaluating these metrics on the MCDS-broadcast,

distributed according to an inhomogeneous Poisson process. T¥& provided the limiting performance for any other broadcast

analysis was carried out by considering the connectivity propertipsotocol.

hop

VI. CONCLUSION
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Fig. 5. Mean number of reached nodes.
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