
On the Limits of Point Function Obfuscation

Arvind Narayanan and Vitaly Shmatikov

The University of Texas at Austin

{arvindn,shmat}@cs.utexas.edu

May 30, 2006

Abstract

We study the problem of circuit obfuscation, i.e., transforming the circuit in a way that hides
everything except its input-output behavior. Barak et al. showed that a universal obfuscator
that obfuscates every circuit class cannot exist, leaving open the possibility of special-purpose
obfuscators. Known positive results for obfuscation are limited to point functions (boolean
functions that return 1 on exactly one input) and simple extensions thereof in the random
oracle model, i.e., assuming black-box access to a true random function. It was also shown
by Wee how to instantiate random oracles so as to achieve a slightly weaker form of point
function obfuscation. Two natural questions arise: (i) what circuits have obfuscators whose
security can be reduced in a black-box way to point function obfuscation? and (ii) for what
circuits obfuscatable in the random oracle model can we instantiate the random oracles to build
obfuscators in the plain model?

We give partial answers to these questions: there is a circuit in AC0 which can be obfuscated
in the random oracle model, but not secure when random oracles are instantiated with Wee’s
construction. More generally, we present evidence for the impossibility of a black-box reduction
of the obfuscatability of this circuit to point function obfuscation. Conversely, this result shows
that to instantiate random oracles in general obfuscators, one needs to utilize properties of the
instantiation that are not satisfied by point function obfuscators.

1 Introduction

Obfuscation is a long-standing problem in computer security and cryptography. To obfuscate a
function f is to create an implementation of f that reveals nothing about f except its input-
output behavior. Intuitively, a circuit obfuscator O is an efficient algorithm that, given a circuit
C implementing some function f , outputs another circuit O(C) such that (i) its size is within a
polynomial factor of c, (ii) it computes (perhaps approximately) the same function as f , and, (iii)
for any efficient adversary that computes some predicate on O(C), there exists an efficient simulator
that computes the same predicate with black-box access to an oracle that evaluates f . The latter
requirement was formalized by Canetti [Can97] (for point functions) and Barak et al. [BGI+01] (for
any circuit) as the “virtual black-box” property of secure obfuscation.

Barak et al. showed that a universal obfuscator that obfuscates every circuit cannot exist.
This does not rule out the existence of special-purpose obfuscators for many useful circuit classes.
In particular, obfuscation of point functions has received some attention. A point function (also
known as a delta function) fx : D → {0, 1} returns 1 on some input x ∈ D, and 0 on every
other input. For example, the password checking routine in Unix can be thought of as a point

1

function that returns 1 on input the correct password, and 0 otherwise. Although it is not known
whether point functions are obfuscatable in the virtual black-box model of [BGI+01] under general
complexity assumptions, there exist constructions for point function obfuscators under restrictions
on the adversary [CMR98, DS05] (i.e, the input distribution must have high min entropy), or under
a slightly weakened definition of obfuscation [Wee05].

Obfuscated point functions are closely related to random oracles [BR93]. Random oracles
trivially obfuscate point functions because the output of the random oracle hides all information
about the input that produced it. This was observed in the early work on perfectly one-way
probabilistic hash functions [Can97, CMR98] (which are essentially point function obfuscators)
that aimed to provide an implementation of random oracles. Also, the only known positive results
for obfuscation in the random oracle model are simple compositions of obfuscated point functions,
implemented as (programmable) random oracles [LPS04, NS05].

Separation between random oracles and point function obfuscators. We investi-
gate the power of random oracles in enabling obfuscation. While the random oracle heuris-
tic has caused some controversy due to its generic insecurity in many cryptographic construc-
tions [CGH04a, CGH04b, GK03, BBP04], it appears that random oracles are potentially useful for
practical obfuscation and, most importantly, they can be securely instantiated in some obfuscation
contexts. Wee demonstrated how to implement random oracles for the specific purpose of point
function obfuscation [Wee05]. It is tempting to do the same for other obfuscations in the random
oracle model. There is no known general method to prove all such constructions secure, because it
is impossible to simulate the view of the adversary [Wee05, theorem 5.3]. Nonetheless, instantiating
random oracles with point function obfuscators appears more promising than instantiating them
with hash functions such as SHA-1, which are not even randomized. Furthermore, one might hope
to prove such constructions secure for most concrete circuits that one is interested in.

We show that this is likely to be impossible. We present evidence that it is impossible to take
an obfuscation that is provably secure in the random oracle model, instantiate the random oracles
with point function obfuscators, and prove the obfuscation secure by black-box reduction to the
security of point function obfuscation. More generally, there are circuits obfuscatable in the random
oracle model whose obfuscatability in the plain model cannot be established by black-box reduction
to the security of point function obfuscators (regardless of whether the latter obfsucator works by
instantiating the random oracles in the output of the former obfuscator.)

We start by defining “point oracles” to be oracles computing point functions. To isolate the
power of oracles (either point function oracles, or random oracles, depending on the context) from
computational feasibility, we reformulate the virtual black box property in terms of statistical secu-
rity. In this model, the adversary (and the adversary simulator) are computationally unbounded,
but are limited to a polynomial number of oracle queries. (All known positive results for obfuscation
in the random oracle model in fact achieve the stronger notion of statistical security.)

Techniques. Our key technical tool is the lensing lemma. Intuitively, if the obfuscated circuit
leaks a small amount of information (which may not by itself be sufficient to break obfuscation if
the input distribution has a high enough min-entropy), then an adversary with a superlogarithmic
advice (or “lens”) has a non-negligible advantage over the simulator who has the same advice. This
technique is reminiscent of the proof of the Valiant-Vazirani theorem [VV85]. The other main new
technique is the probable queries lemma, which, very roughly, demonstrates that only a polynomial
number of oracle inputs “matter” in the evaluation of the obfuscated circuit.

Some of our results also apply to the plain (computationally bounded) model where all al-

2

gorithms are required to be efficient, i.e., probabilistic polynomial-time. Specifically, we use the
lensing lemma to demonstrate that Wee’s implementation of random oracles [Wee05], which is
secure when used to instantiate random oracles in the point function obfuscation, results in an
insecure obfuscation under ω(log n)-way self composition (i.e, when the adversary is allowed to see
ω(log n) obfuscations of the same input), n being the input size. We expect that the lensing lemma
will find applications beyond those considered in this paper.

Interpretation. Analogous to the proof of Impagliazzo and Rudich [IR89] that there is no
black box reduction from secret-key agreement to one-way functions, our proof technique can be
modified to show that there is no black box reduction from obfuscation of some circuit to point
function obfuscation. This can be done by weakening the adversary to be computationally bounded,
but assuming that P = NP. This would show that a black box reduction would be as hard as proving
that P 6= NP.

The separation between random oracles and point oracles shows us that there are obfuscators
in the random oracle model in which we cannot hope to securely instantiate the random oracles
with circuits that do no more than obfuscate point functions. It is not clear what extra properties
of an instantiation would be useful for proving the security of specific obfuscators. It would be
interesting to investigate whether the circuit that we prove in Section 5 to be (i) obfuscatable in
the random oracle model, and (ii) has no point oracle obfuscator with statistical security, is in
fact unobfuscatable in the plain model. Such a result would be stronger than the Barak et al.
impossiblity result because our circuit is in AC0.

However, it appears more likely that there is in fact an instantiation for random oracles that
makes the above circuit obfuscatable in the plain model. Such a result would be the first positive
result for obfuscation that does not follow from the obfuscatability of point functions. This dual
promise makes the circuit of Section 5 an exciting avenue for future research.

2 Preliminaries

Throughout the paper we will use the letter ψ to denote an oracle.

Definition 1 (Point oracle) A point oracle ψ behaves as follows: on a query x, if it has seen the
query x before, ψ outputs 1, else 0.

Compare this definition with a random oracle, which generates and returns a uniformly random
string if it has not seen x before, and the same string when it sees x again. An alternative way
to define a point oracle would be to give it explicit get and set interfaces. Our formulation is
equivalent, and makes it easy to write oracle algorithms in exactly the same way regardless of
whether they are querying random oracles or point oracles.

Analogous to the random oracle model, the way in which we make use of point oracles is to
assume that all parties have access to such an oracle. The intended use of a point oracle is for the
obfuscator to query and thus “program” it on a single point, so that to the adversary it behaves
like an oracle computing a point function. It is perfectly legal and sometimes meaningful for the
obfuscator to query it on multiple points.

Regardless of the analogy above, there is a fundamental difference between a random oracle
and a point oracle: we are using the latter to model an object that would be the output of a “real”
obfuscator. To avoid a formulation where algorithms actually output oracles, we are forced to define
a point oracle as a reactive or stateful functionality. While obfuscation in the random oracle model

3

can be defined by quantifying over oracle sets and asserting that an insignificant fraction (more
precisely, Lebesgue measure 0, in the style of [BG81]) of oracles are “bad”, such a formulation is not
possible with point oracles. However, the notion of black box access to functionalities is not new,
and might likely be familiar to the reader from Secure Multiparty Computation [Bea92, Can01].

Definition 2 (Oracle algorithms and oracle circuits) An oracle algorithm (or oracle machine)
Aψ is a Turing machine which can execute queries to the oracle ψ in a single step. An oracle circuit
Cψ is a boolean circuit in which some of the gates are queries to the oracle ψ.

In the following definitions, we make no restrictions on the running time of any of the algo-
rithms. While proving positive results, however, we will be interested in computationally efficient
obfuscators.

Definition 3 (Query bounded algorithm) A (randomized) oracle algorithm Aψ is said to be
query bounded if the number of queries it makes to the oracle ψ is bounded by some polynomial (of
the size of A’s input).

Definition 4 (Oracle obfuscation with statistical security) A query bounded oracle algorithm
Oψ which takes a function as input and produces an oracle circuit is said to be an obfuscator of the
family F = ∪kFk if:

Approximate functionality: There exists a negligible function ν such that for all k, for all F ∈
Fk, P[∃x ∈ {0, 1}∗ Oψ(F)(x) 6= F (x)] ≤ ν(k).

Polynomial slowdown: There exists a polynomial p such that for all k, for all F ∈ Fk |O(F)| ≤
p(k).

Virtual black box: For every query bounded adversarial oracle algorithm A, there exists a query
bounded simulator oracle algorithm S and a negligible function ν such that for all k, for all
F ∈ Fk
|P[Aψ(Oψ(F, 1k)) = 1] − P[SF (1k) = 1]| ≤ ν(k).

Efficiency: The obfuscator Oψ is probabilistic polynomial time.

The probabilities are taken over the randomness of ψ as well as the coin tosses of the obfuscator,
the adversary and the simulator.

The fourth property is optional; we take no position on whether it should be enforced or
not, since our negative results do not assume it and our positive result demonstrates an efficient
obfuscator.

Terminology and notation. A function ν(k) is negligible if for every polynomial p there is
a n such that ν(k) < 1

p(k) for k > n. By negl(k) we mean the class of functions negligible in k.

A function is significant if it is not negligible. By poly(k) we mean the class of all functions that
grow slower than some polynomial. By poly(k)g(k) we mean {f(k)g(k) : f(k) ∈ poly(k)}. Thus,
for example, poly(k)2−k ⊂ negl(k).

Point function obfuscation. We briefly review here the constructions of [LPS04] and [Wee05].
For the definitions and proofs we refer the reader to those papers.

Let Oψ(α) be a program which stores r = ψ(α) and on input x checks if ψ(x) = r, and outputs
1 or 0 accordingly. Then O is a point function obfuscator in the random oracle model.

4

This can be converted into a point function obfuscator in the plain model by instantiating the
random oracle ψ with the hash function

h(x; τ1, τ2, . . . τ3k) = (τ1, τ2, . . . τk, 〈x, τ1〉, 〈π(x), τ2〉, . . . 〈π
3k−1(x), τ3k〉)

where π is a one-way permutation satisfying certain properties. The obfuscated circuit has the
output of the hash function (including the randomness) hard-wired, and on input y verifies if
〈y, τi〉 = 〈x, τi〉 for each i.

3 The lensing lemma and an application

The motivation for the lensing lemma is as follows. Many obfuscators will leak some bits of
information about the input, which are not leaked by oracle access. This does not necessarily
contradict the virtual black box property because the bits that are leaked are dependent on the
randomness of the obfuscator. However, one intuitively feels that if “too many” bits are leaked,
then simulatability must necessarily be compromised. How many bits have to be leaked before this
happens? The trivial answer is that if almost as many bits are leaked as the size of the input,
then the (computationally unbounded) adversary can uniquely determine the input. Surprisingly,
it turns out that a small (superlogarithmic) number of leaked bits is sufficient. We formalize this
below in terms of a “distinguisher” that attempts to determine, given the obfuscation of an unknown
function, if it is an obfuscation of a given function.

Lemma 1 (lensing) If O is a query bounded oracle obfuscator for the point function family F =
∪kFk, then there exists no distinguisher algorithm h(O(F), F ′) such that for every F :

• P[h(O(F), F)] = 1] 6∈ negl(k)

• PF ′∈Fk
[h(O(F), F ′) = 1] ∈ negl(k)

The first probability is taken over the randomness of O and h, and the second probability is taken
also over a uniformly chosen F ′ ∈ Fk. Observe that we need h not to be an oracle algorithm, i.e,
it cannot query the oracles in the obfuscated oracle circuit O(F).

Proof. Let µ(k) be a negligible function such that PF ′ [h(O(F), F ′) = 1] < µ. Assume,
for convenience, that Fk is a finite field. Let H = H(F) be the random variable {F ′ ∈ Fk :
h(O(F), F ′) = 1}. H can be thought of as the subset of Fk whose members the distinguisher h
thinks O(F) could be an obfuscation of. Consider an adversary Aσ that has the advice σ = (a, b) ∈
F2
k hardwired and behaves on input O(F) as follows:

Let L = L(σ) = L(σ, µ) = {aiF + b}1≤i≤ 1

µ
, where iF is an embedding of the integers in Fk (we

call L the lens set). Output a random element of H ∩ L.

Claim 1 There exists an adversary Aσ that, on any input O(F) where F ∈ L, outputs F with a
non-negligible probability.

Proof. By a direct counting argument, EH,σ[|H ∩L(σ)| | F ∈ H ∩L(σ)] = 1+ |H||L(σ)|(|Fk |−1)
|Fk|2

] < 2.

By an averaging argument, ∃σ s.t EH [|H ∩ L(σ)| | F ∈ H ∩ L(σ)] < 2. For this σ, it is clear that
Aσ outputs F with probability > 1

2P[h(O(F), F)] = 1] 6∈ negl(k) (recall that Aσ outputs F with a
probability 1

|H∩L| provided that F ∈ |H ∩ L(σ)|). ✷

5

On the other hand, any query bounded oracle simulator, given σ, µ1 and oracle access to F
such that F ∈ L(σ, µ), can output F with a probability of only poly(k)µ(k) which is a negligible
quantity. This completes the proof of the lensing lemma. ✷

Note that even though the lemma as stated only applies to point function obfuscators, it is
actually relevant to a much larger class of query bounded oracle obfuscators, including everything
considered in this paper. The way to apply the lemma is to fix most of the input bits of the function
so that the O behaves like a point function obfuscator on the rest of the bits.

3.1 Application to the plain model

The only adversarial computation in the proof of the above lemma that is inefficient is the need
to loop through the elements of L. However, if the nature of h is such that there were a way to
generate uniform elements of the set H ∩L, then the adversary would be computationally efficient.
Therefore it is possible to prove a version of the lemma for the plain model that states that such
an algorithm for generating uniform elements cannot exist.

Lemma 2 (lensing, plain model) If O is an obfuscator for the point function family F = ∪kFk,
and there exists a function h(O(F), F ′) such that for every F :

• P[h(O(F), F)] = 1] 6∈ negl(k)

• PF ′∈Fk
[h(O(F), F ′) = 1] ∈ negl(k)

then there exists no L ⊂ Fk and polynomial q such that

• |L| /∈ poly(k)

• ∀F ∈ L, P[|H(F) ∩ L| < q(k) | F ∈ H] > 1
2 where H(F) = {F ′ ∈ Fk : h(O(F), F ′) = 1}

• There exists a PPT algorithm to generate uniform elements of H ∩ L.

Note that the sampling algorithm above is nonuniform and is restricted to polynomial advice,
even though L is superpolynomial.. Also note that h can be any function now; the adversary will
never need to compute it.

Proof. Omitted. ✷

It appears difficult to characterize h for which such an L exists; however, we can answer the
question in the affirmative for some specific h such as a system of linear equations. This enables
us to make some observations about the construction of [Wee05]. Recall that Wee constructs a
point function obfuscator by instantiating a random oracle in the non self-composing construction
of [LPS04] (see end of Section 2 above). However, [LPS04] do give a self-composing obfuscation
(actually they give a composable obfuscation for a point function with general output; we recall
here the special case where the output of the point function is a single bit):

On input Pα, the point function that outputs 1 when its input is α, the obfuscator Oψ generates
a uniformly random string σ of length k and computes β = ψ(α, σ); it outputs a circuit which has
the values σ and β hardwired and on input x computes the equality test ψ(x, σ) = β.

1We could alternately assume that the simulator simply knows µ, since it is a property of the obfuscator.

6

It is natural to ask what happens when we instantiate the random oracle in the above obfuscator
by Wee’s construction: for what m is the resulting plain-model obfuscator m-self-composing (m
being some function of k)? To answer this question, we observe that if the m point functions being
obfuscated are Pa1 , Pa2 , . . . Pam respectively, then adversary learns the values of the following dot
products:

(〈a1‖σ1, τ
1
1 〉, 〈a2‖σ2, τ

2
1 〉, . . . 〈am‖σm, τ

m
1 〉)

where ‖ denotes concatenation (we are assuming fresh randomness for each instantiation). Observe
that this is equivalent to learning ri and bi in the equations

〈ai, ri〉 = bi, 1 ≤ i ≤ m

for some b1, b2, . . . bm where ri represents the first k bits of τ i1.
It is easy to see that, if m ≥ k, then the construction is insecure, because it allows the adversary

to distinguish the case when all the ai are equal – if a1 = a2 = . . . am = a(say), then the adversary
gets m linear equations in k variables over G F (2) (each bit of a being a variable).2 When m is
smaller, it is not clear whether or not the instantiation leads to a valid obfuscation.

Using the lensing technique, we can show that it is not a valid obfuscation as long as m =
ω(log k), which is a considerable improvement overm ≥ k. The adversary’s lensing set is L(k) = {x :
〈x, ri〉 = 0}m<i≤k, where ri are arbitrary linearly independent vectors of length k. Each independent
linear equation cuts the space of solutions exactly in half, and so |L(k)| = 2k−(k−m) = 2m /∈ poly(k).
The distinguisher corresponding to the leaked information can be written as h(x) = 1 if 〈x, ri〉 =
0 for each 1 ≤ i ≤ m, and therefore H = {x : 〈x, ri〉 = 0}1≤i≤m.

To show that L andH satisfy the properties of the lensing lemma (Lemma 2), we will show thatit
is possible to efficiently generate uniform elements of H ∩L and its size is polynomial (specifically,
quadratic) with high probability. The first property is clearly true because H ∩ L is simply the
solution to a system of linear equations (〈ai, ri〉 = bi, 1 ≤ i ≤ k), and the normal method of solving
the system allows us to generate uniform elements of the solution space, no matter how large it is.
Note that the system cannot be inconsistent when F ∈ H. It is also clear that when the dimension
of the system is at least k − 2 log k, the size of H ∩ L is at most 22 log k = k2. We lower bound this
probability as follows. Consider the sequence of random variables {Dimn}n whereDimn is the rank
of the constraint matrix [r1r2 . . . rn]

T . Dimn+1 is either Dimn or Dimn + 1; the former happens

when rn+1 ∈ Span(r1, r2, . . . rn). Therefore P[Dimn = Dimn+1] =
|Span(r1,r2,...rn)|

2k = 2n−k. By

the union bound, P[Dimk−2 log k = k − 2 log k] ≥ 1 − (k − 2 log k)2(k−2 log k)−k ≥ k−1
k . Thus,

P[Dimk ≥ k− 2 log k] ≥ P[Dimk−2 log k = k− 2 log k] ≥ k−1
k , as required. Since the lensing lemma

asserts that no such L can exist, it follows that the construction is not an obfuscator. ✷

Exactly the same argument as above shows that if we take the natural obfuscation of the m-way
OR function

Fa1,a2,...am(x1, x2, . . . xm) =
m∨

i=1

xi = ai

2Not all these equations are necessarily linearly independent, but it can be shown that with high probability there
are sufficiently many independent equations that there are only a polynomial number of solutions to the system. The
technique is the same as the one used in the sequel.

7

(where each ai is a k-bit string) in the random oracle model, and instantiate the random oracles
with Wee’s construction, then the resulting algorithm is not an obfuscator for m = ω(log k).

4 Tools

We now describe the technical tools that we will need in the rest of the paper. The most important
idea is “shadow” evaluation of an oracle circuit. A shadow oracle can be thought of as oracle
together with the cached history of queries to it. This technique will allow the query bounded
adversary to keep track of past oracle queries so as not to “waste” queries by querying the oracle
multiple times on the same input.

Definition 5 For an oracle ψ, the shadow oracle of ψ is an oracle Shadow(ψ) together with a set
History(ψ), which is the set of all queries that have been made to Shadow(ψ) so far. Shadow(ψ)
behaves as follows on an input q: if q /∈ History(ψ), then it adds q to History(ψ), queries ψ(q),
returns whatever ψ returns, and stores its response; if q ∈ History(ψ), then it returns the same
response as it returned the last time it saw q.

Shadow evaluation of an oracle circuit involves “simulating” the output of the oracle on inputs
where it has not been queried before. The algorithms below must be thought of as being executed
by the adversary, i.e., the obfuscator has already “programmed” the oracle by querying it on certain
inputs.

Algorithm 1 (shadow-eval) Input: an oracle circuit Cψ, an input x to the circuit, and a shadow
oracle (Shadow(ψ),History(ψ)).

All gates except oracle gates are evaluated in the normal way. A query q to the oracle ψ is
evaluated as follows: if q ∈ History(ψ) then the answer is Shadow(ψ)(q). Otherwise the answer is
computed as follows: if ψ is a random oracle, then the answer is a random string of the appropriate
size. If ψ is a point oracle, then the answer is simply 0.

Observe that shadow-eval does not necessarily compute the same function as Cψ(x) because
an oracle gate may be evaluated differently from the answer programmed by the obfuscator on an
input not in the history.

Algorithm 2 (build-cache) Input: an oracle circuit Oψ(F) (which is the output of the obfuscator
on the function F), a set X ⊂ {0, 1}∗ and black-box access to a procedure FX which will evaluate
F on any input in X.

Initialize the shadow oracle of ψ with no history. For each input x ∈ X, evaluate FX(x)
and shadow-eval(O(F), x). If shadow-eval(O(F), x) 6= FX(x), then query Shadow(ψ) on the set
Qx \ History(ψ), where Qx is the set of queries to ψ internally evaluated by shadow-eval(O(F))(x).

Lemma 3 If Oψ is an oracle obfuscator with statistical security, build-cache is a query bounded
oracle algorithm.

Remark. We don’t include X when measuring the input size of build-cache. Thus, we need to
prove that the number of oracle queries it makes is polynomial in k.

Proof. To prove that build-cache makes no more than polynomially many oracle queries, we
classify the iterations of the algorithm (i.e., each x) into two types. Let QO be the set of all oracle

8

queries to ψ made by the obfuscator, and Qx as above. If Qx ∩ QO ⊂ History(ψ), then x ∈ X1,
else x ∈ X2. (Here History(ψ) is understood to be the history at the beginning of the iteration
corresponding to x.)

Claim 2 P[∃x ∈ X1 : shadow-eval(O(F), x) 6= FX(x)] ≤ ν(k).

The probability is taken over the randomness of ψ and the coin tosses of the obfuscator and
shadow-eval.

Proof. When x ∈ X1, consider two cases. If x ∈ QO, then Shadow(ψ)(x) = ψ(x). If not,
then ψ(x) and Shadow(ψ)(x) are both uniformly distributed. The claim now follows from the
approximate functionality property of O(F). ✷

Claim 3 |{x ∈ X2 : Shadow(O(F))(x) 6= FX(x)}| ≤ |QO|

Proof. During each iteration with x ∈ X2 ∧ shadow-eval(O(F), x) 6= FX(x), the size of QO \
History(ψ) decreases by at least 1, since Qx ∩ (QO \ History(ψ)) is nonempty and the algorithm
queries ψ on the inputs in Qx \ History(ψ). ✷

The following observations complete the proof of the lemma: |QO| is polynomial in k, build-

cache makes no oracle queries during any iteration where x ∈ X1 with high probability, and makes
at most |O(F)| oracle queries during each iteration where x ∈ X2 (and, therefore, makes a total of
at most |QO||O(F)| queries over inputs x ∈ X2). ✷

Algorithm 3 (find-error) Input: Oψ(F), a set X ⊂ {0, 1}∗, oracle access to a procedure F̂X
which evaluates F̂ on any input in X, and a shadow oracle (Shadow(ψ),History(ψ)).

The algorithm tries to find an input on which F and F̂ differ. It does not always succeed, but
whenever it produces an output, it is correct.

For each input x in X, evaluate F̂X(x) and shadow-eval(O(F), x). Let Qx be the set of queries
to ψ internally evaluated by shadow-eval(O(F), x). If shadow(O(F), x) 6= F̂X(x), then query
Shadow(ψ) on the set Qx \ History(ψ). Evaluate O(F)(x). If O(F)(x) 6= F̂X(x), then output x
and exit.

Lemma 4 Algorithm find-error is a query bounded oracle algorithm.

Proof. We classify the inputs x into three sets as follows. If F (x) = F̂ (x) andQx∩QO ⊂ History(ψ),
then x ∈ X1. If F (x) = F̂ (x) and Qx ∩ QO 6⊂ History(ψ) , then x ∈ X2. If F (x) 6= F̂ (x) then
x ∈ X3.

Claim 4 P[∃x ∈ X1 : O(F)T (x) 6= F̂X(x)] ≤ ν(k).

Proof. Identical to proof of claim 2 because F (x) = F̂ (x)∀x ∈ X1. ✷

Claim 5 |{x ∈ X2 : O(F)T (x) 6= F̂X(x)}| ≤ |QO|

Proof. Identical to proof of claim 3 because F (x) = F̂ (x)∀x ∈ X2. ✷

9

Claim 6 The probability that find-error makes a nonzero number of oracle queries for more than
one x ∈ X3 is negligible.

Proof. Consider the first x ∈ X3. By approximate functionality, O(F)(x) = F (x) w.h.p. Since
F (x) 6= F̂ (x), build-cache will output this x and exit with high probability. ✷

The lemma now follows from claims 4, 5 and 6.
We will now prove a theorem (proof in Appendix A) which, while perhaps not very interesting in

itself, is a demonstration of the power of the tools we have built above. It demonstrates a function
family for which no obfuscation that embeds only a single random oracle gate in the obfuscated
circuit can achieve statistical security. We note that there are no impossibility results so far in the
literature that derive from statements about the structure of the obfuscated circuit.

Theorem 1 There is no oracle obfuscator achieving statistical security for the function family
F = ∪kFk where

Fk = {Fa,b(x, y) := (x = a ∨ y = b)}a,b∈{0,1}k

if the obfuscated circuit is required to have at most one random oracle call. ✷

5 Separation result

In this section we show that random oracles can obfuscate strictly more than point functions in
the query bounded oracle algorithm model. To do this we define a family FSEP = ∪kF

SEP
k

of functions where FSEP
k has 22k2

elements. A member of FSEP
k will be denoted FSEP

a,b where

a = 〈a1, a2, . . . ak〉,b = 〈b1, b2, . . . bk〉, each ai and each bi being a k-bit string. FSEP
a,b is defined as

FSEPa,b (x1, y1, z1, x2, y2, z2, . . . , xk, yk, zk) = (
k∧

i=1

MUX(xi = ai, yi = bi, zi))
k∨

i=1

(xi = ai ∧ yi = bi)

The xi’s and yi’s are k-bit strings while the zi’s are single bits. MUX is a multiplexer – it
returns its first or its second argument according as its third argument (the “selector” bit) is 0 or
1.

Intuition. A conjunction of many point functions can be expressed as a single point function
and can be obfuscated using a single point oracle, and a disjunction of point functions can be
obfuscated using multiple point oracles. We suspect that these are essentially all the functions that
can be obfuscated with statistical security in the point oracle model. In particular, the function
Fa,b(x1, y1, x2, y2, . . . , xk, yk) = ∧ki=1(xi = ai ∨ yi = bi) is a first attempt at constructing a function
that separates the power of random oracles and point oracles. However, it is not clear how to
obfuscate this function family in the random oracle model either. Therefore we make our task easier
using MUXes as above, and arrive at Fa,b(x1, y1, z1, x2, y2, z2, . . . , xk, yk, zk) = ∧ki=1MUX(xi =
ai, yi = bi, zi). The obvious way of obfuscating this family in the random oracle model leaks the
answer to (xi = ai ∧ yi = bi), and therefore we modify the function to be obfuscated to leak this
bit of information as well.

Theorem 2 There exists a query bounded random oracle obfuscator for the function family FSEP

described above. This obfuscator is computationally efficient, and further, the virtual black box
property is achieved via a PPT uniformly black box simulator.

10

What we mean is that the simulator is PPT when viewed as executing the adversary as an
oracle, the adversary itself being computationally unbounded.
Proof.

Obfuscator. The following is an obfuscator in the query bounded random oracle model.
We have assumed, for convenience, that the obfuscator has access to an unlimited number of
distinct, “named” random oracles – two random oracles with different suffixes behave completely
independently. This is one way of making sure that the random oracle gates obfuscate point
functions even in the presence of each other, the other being to explicitly choose fresh randomness
for each invocation of a single random oracle. We will adopt this convention in the rest of the
paper.

On input (a,b) the obfuscator picks r1, r2, . . . rk of appropriate length3, uniformly and outputs
the circuit

O(a,b) = ψ0 (MUX(ψℓ,1(x1) ⊕ u1, ψr,1(y1) ⊕ v1, z1),
MUX(ψℓ,2(x2) ⊕ u2, ψr,2(y2) ⊕ v2, z2),
...
MUX(ψℓ,k(xk) ⊕ uk, ψr,k(yk) ⊕ vk, zk)

) = w∨k
i=1(ψℓ,i(xi) ⊕ ui = ψr,i(yi) ⊕ vi)

ψ0 and ψ.,. are random oracle calls with appropriate input and output size3. Finally, ui =
ψi(ai) ⊕ ri, vi = ψi(bi) ⊕ ri and w = ψ0(r1||r2|| . . . ||rk). It is clear that the obfuscator satisfies
the polynomial slowdown property. It is easy to see that it satisfies the approximate functionality
property: when FSEP

a,b (x) = 1 then O(a,b)(x) = 1 with probability 1 because all the equality checks

are satisfied. When FSEP
a,b (x) = 0, an equality check that is supposed to fail will instead succeed

with a probability of at most 2−2k, taken over the randomness of ψ. The chance that this happens
for at least one input to a specific oracle gate is at most 2k2−2k = 2−k, and by a union bound the
chance that it will happen for at least one oracle gate is poly(k)2−k.

For a proof of the virtual black box property, see Appendix B.
Proof of impossibility of point oracle obfuscation.

Theorem 3 There exists no query bounded point oracle obfuscator for the function family FSEP

described above.

We will assume to the contrary that such an obfuscator O exists, and arrive at a contradiction
by displaying adversaries whose output on O(FSEP

a,b) is a general function of (a,b), rather than a
single bit, and show that there is no simulator for these adversaries. This is purely for convenience
– we could instead have displayed a set of adversaries, one corresponding to each of the output bits
of our more powerful adversary.

Our proof shows that no adversary simulator can exist, not even a non-black box one. Therefore
the question of whether the random oracles are programmable or not becomes moot.

Notation. By Qǫ(X) = Qǫ(C,X) where C is an oracle circuit we mean the set of all pairs
(ψ, q) such that ψ gets the query q with a probability ≥ ǫ in the internal evaluation of ψ by the

3It is sufficient for the output size of the random oracles to be 2k bits, which would give the same lengths for ri

and w, and make the input size of ψ0 4k2.

11

algorithm shadow-eval(C, x) starting with an empty history on an input x randomly drawn from
X. The probability is taken over X as well as the coin tosses of Shadow. Recall that by QO we
mean the set of all oracle queries made by the obfuscator.

Lemma 5 There is a query bounded algorithm that computes Qǫ(C,X).

Proof. Evaluating the probabilities in the definition above by exhaustive search involves no query-
ing. ✷

The next lemma applies to any query bounded oracle obfuscators, whether point oracle or
random oracle.

Lemma 6 (Probable queries lemma) Let X and Y ⊃ X be nonempty sets such that F (x) =
1 ∀x ∈ X and F (x) = 0 ∀y ∈ Y \ X. Let ǫ = o(1

|M(k)||QO(k)|) where M(k) is an upper bound on

|O(F)| and Qǫ(O(F),X) ∩ QO ⊂ T for some T such that |T | ∈ poly(k). Then there is a query
bounded (in k) algorithm find-sat(O(F), T, Y) that outputs some x ∈ X w.h.p.

The probability is taken over the randomness of the oracle gates in O(F) as well coin tosses of
the obfuscator and find-sat.

Proof. find-sat simply programs the shadow oracles on the set T and executes find-error with
the inputs O(F), Y, F̂Y (y) ≡ 0 and the shadow oracles as described.

The proof hinges on the fact that if for some x ∈ X, every oracle query that is internally
evaluated by shadow-eval(O(F), x) is identically distributed with the actual output of the oracle
on that query, then shadow-eval(O(F), x) = O(F)(x). To lower bound the probability of this
happening, observe that Shadow(ψ)(q) can deviate from the distribution of ψ(q) only if q /∈ T →
q /∈ Qǫ(X). But there are at most |QO(k)| queries of this form, and each can occur with a probability
of at most ǫ for a random x ∈ X. Taking a union bound over all such queries and all oracles (which
are at most |O(F)| in number), we find that shadow-eval(O(F), x) can deviate from O(F)(x) with
a probability of at most |O(F)||QO(k)|ǫ = o(1). Thus find-error will succeed with a probability at
least ≥ 1 − o(1) − negl(k) ∈ 1 − o(1). ✷

The rest of this section continues with the proof of unobfuscatability of FSEP in the query
bounded point oracle model. See Appendix C.

6 Conclusions

We exposed fundamental limitations of the approach of building circuit obfuscators in the plain
model by instantiating obfuscators of the same circuits in the random oracle model. Intuitively,
a random oracle is more powerful than a “point oracle” because it hides information about the
inputs on which the obfuscator queried it because it outputs random strings instead of a 0/1
value. Understanding this limitation of point oracles is the first step in constructing plain-model
obfuscators for functions that are significantly more complex than point functions.

We propose that positive results for obfuscation in the random oracle model should in the
future attempt to achieve (query bounded) statistical security. We reiterate that existing results
do in fact turn out to achieve this stronger notion. No computational (time or space) bounds
should be assumed on the adversary, at least for the reason that it makes it conceptually clear how

12

obfuscation is achieved in terms of existing and understood constructions. The query boundedness
property enables us to enforce a clean separation between the security of obfuscation deriving
from underlying primitives and that deriving from other computational hardness assumptions. For
impossibility results, it is better to consider computationally bounded adversaries, although proofs
involving the structure of the obfuscated circuit might only be possible in the unbounded setting.

There are three areas for further research that our work opens up:

1. Impossibility results for random oracle obfuscation with statistical security. In particular, it
appears likely that there is no random oracle obfuscator for AC0 achieving statistical security.

2. We think that our definitional approach as well as proof techniques will find applications
beyond those considered in this paper. For instance, it appears possible to formalize and
prove the statement “the existence of one-way functions cannot be proved to follow from the
existence of point function obfuscators via black box reduction”.

3. Obfuscating the circuit of Section 5 might be possible in the plain model by making extra
assumptions on the super-strong one-way permutations of [Wee05].

Acknowledgements. The authors would like to thank Vinod Vaikuntanathan, Raghuvardhan
Meka and Adam Klivans for their useful insights.

References

[BBP04] M. Bellare, A. Boldyreva, and A. Palacio. An uninstantiable random-oracle-model
scheme for a hybrid-encryption problem. In Proc. Advances in Cryptology - EURO-
CRYPT 2004, volume 3027 of LNCS, pages 171–188. Springer, 2004.

[Bea92] D. Beaver. Foundations of secure interactive computing. In Proc. Advances in Cryptol-
ogy - CRYPTO 1991, volume 576 of LNCS, pages 377–391. Springer, 1992.

[BG81] C. Bennett and J. Gill. Relative to a random oracle A,PA 6= NPA 6= co −NPA with
probability 1. SIAM journal of computing, 10:96–113, 1981.

[BGI+01] B. Barak, O. Goldreich, R. Impagliazzo, S. Rudich, A. Sahai, S. Vadhan, and K. Yang.
On the (im)possibility of obfuscating programs. In Proc. Advances in Cryptology -
CRYPTO 2001, volume 2139 of LNCS, pages 1–18. Springer, 2001.

[BR93] M. Bellare and P. Rogaway. Random oracles are practical: a paradigm for designing
efficient protocols. In Proc. 1st ACM Conference on Computer and Communications
Security, pages 62–73. ACM, 1993.

[Can97] R. Canetti. Towards realizing random oracles: hash functions that hide all partial
information. In Proc. Advances in Cryptology - CRYPTO 1997, volume 1294 of LNCS,
pages 455–469. Springer, 1997.

[Can01] Ran Canetti. Universally composable security: A new paradigm for cryptographic pro-
tocols. In IEEE Symposium on Foundations of Computer Science, pages 136–145, 2001.

13

[CGH04a] R. Canetti, O. Goldreich, and S. Halevi. On the random-oracle methodology as applied
to length-restricted signature schemes. In Proc. 1st Theory of Cryptography Conference
(TCC), volume 2951 of LNCS, pages 40–57. Springer, 2004.

[CGH04b] R. Canetti, O. Goldreich, and S. Halevi. The random oracle methodology, revisited. J.
ACM, 51(4):557–594, 2004.

[CMR98] R. Canetti, D. Micciancio, and O. Reingold. Perfectly one-way probabilistic hash func-
tions. In Proc. 30th Annual ACM Symposium on Theory of Computing (STOC), pages
131–140. ACM, 1998.

[DS05] Y. Dodis and A. Smith. Correcting errors without leaking partial information. In Proc.
37th Annual ACM Symposium on Theory of Computing (STOC), pages 654–663. ACM,
2005.

[GK03] S. Goldwasser and Y. Tauman Kalai. On the (in)security of the Fiat-Shamir paradigm.
In Proc. 44th IEEE Symposium on Foundations of Computer Science (FOCS), pages
102–113. IEEE Computer Society, 2003.

[IR89] R. Impagliazzo and S. Rudich. Limits on the provable consequences of one-way permu-
tations. In Proc. 21st ACM symposium on Theory of computing (STOC), pages 44–61.
ACM Press, 1989.

[LPS04] B. Lynn, M. Prabhakaran, and A. Sahai. Positive results and techniques for obfuscation.
In Proc. Advances in Cryptology - EUROCRYPT 2004, volume 3027 of LNCS, pages
20–39. Springer, 2004.

[NS05] A. Narayanan and V. Shmatikov. Obfuscated databases and group privacy. In Proc. 12th
ACM Conference on Computer and Communications Security, pages 102–111. ACM,
2005.

[VV85] L. Valiant and V. Vazirani. NP is as easy as detecting unique solutions. In Proc. 17th
Annual ACM Symposium on Theory of Computing (STOC), pages 458–463. ACM, 1985.

[Wee05] H. Wee. On obfuscating point functions. In Proc. 37th Annual ACM Symposium on
Theory of Computing (STOC), pages 523–532. ACM, 2005.

A Proof of theorem 1

Assume such an obfuscator Oψ(F) exists. Consider the three families of adversaries A0, {A
α
1 }α∈{0,1}k

and {Aβ
2}β∈{0,1}k . We assume that an upper bound on the running time of the obfuscator is known.4

A0 executes find-error on the inputs X = {0, 1}2k , the constant 0-function and a shadow oracle
with an empty history and outputs whatever find-error outputs. Note that if A0 outputs anything,
it will be a string (x, y) such that Fa,b(x, y) = 1.

Aα
1 has the value α hardwired into it and executes as follows:

4This assumption is made simply for convenience. If such a bound is not known, we consider a sequence of families
of adversaries where the adversaries in the ith family all assume that the obfuscator runs in time O(ki).

14

• A1 picks a random β and evaluates O(F)(α, β). If it is not 1 then A1 aborts.

• A1 executes build-cache on the inputs X = {(α, y)}y∈{0,1}k and the procedure FX where
FX(x) ≡ 1. Denote by T the final value of History(ψ).

• A1 computes the following: for each z ∈ QT , Q−1(z) is the set of all y for shadow-eval(O(F), α, y)
internally evaluated ψ on the input z.

• For each z having |Q−1(z) = 1|, A1 evaluates O(F)(α′, y) where α′ is any value different from
α and y is the unique member of Q−1(z). If O(F)(α′, y) = 1 for some y, then A1 outputs y.

Claim 7 Algorithm A1 is a query bounded oracle algorithm.

Proof. The first step ensures that A1 aborts (w.h.p) unless the α = a. Therefore on the set
X, F is indeed identically 1. From lemma 3 the cache T is of polynomial size, and so is the set
{z ∈ QT : |Q−1(z) = 1|}. The claim follows. ✷

Aβ
2 has the value β hardwired and executes as follows:

• A2 picks a random α and evaluates O(F)(α, β). If it is not 1 then A2 aborts.

• Executes build-cache with X = {(x, β)}x∈{0,1}k and FX being the constant 1 function. Denote
by T the final value of History(ψ).

• Execute find-error with X = {(x, y) ∈ {0, 1}2k : y 6= β}, the constant 1-function, and the
shadow oracle as programmed by build-cache above. If find-error outputs (x, y) then output
x.

Claim 8 Algorithm A2 is a query bounded oracle algorithm.

Proof. The first step ensures that β = b with high probability. The claim now follows from the
query boundedness properties of build-cache and find-error. ✷

Claim 9 On the input Fa,b, with significant probability, either A0 outputs (x, y) such that Fα,β(x, y) =
1 or Aa

1 outputs b or Ab
2 outputs a.

Proof. We consider three cases:

1. shadow-eval(O(F), a, b) = 1 when History(ψ) = φ. Observe that this implies that shadow-eval(
O(F) , a, b) = 1 w.h.p., regardless of History(ψ). Therefore A0 will succeed w.h.p.

2. shadow-eval(O(F), a, b) = 0 when History(ψ) = φ and P[∃β : Qa,b = Qa,β] <
1
2 .

The probability is taken over the randomness of the obfuscated circuit. The probability is
independent of History(φ) (since there is only a single oracle gate), and hence refers both to
the execution of build-cache by A1 and find-error by A2.

In this case, A1 finds that |Q−1(a, b)| = 1 (with probability at least 1
2) and evaluates

O(F)(α, b) for some α which evaluates to 1 w.h.p. and therefore A1 succeeds in outputting b.

15

3. shadow-eval(O(F), a, b) = 0 when History(ψ) = φ and P[∃β : Qa,b = Qa,β] ≥
1
2 .

Now after A2 executes build-cache, with probability at least 1
2 ,History(ψ) contains Qa,b = Qa,β

(since shadow-eval(O(F), a, b) = 0 when History(ψ) = φ). Therefore find-error computes
shadow-eval(O(F), a, β) = 1, and hence find-error outputs (a, β) w.h.p whereupon A2 outputs
a.

To complete the proof of the theorem, we argue as follows: for O to satisfy the virtual black
box property, there must be ideal world simulators S0, {S

a
1}a, and {Sb2}b corresponding to the real

world adversaries described above. Then it must be the case that if α and β are picked at random,
then on the input Fa,b, with significant probability, either S0 outputs x, y such that Fa,b(x, y) = 1 or
Sa1 outputs b or Sb2 outputs a. Clearly none of these can happen with a non-negligible probability.✷

B Proof of Theorem 2, virtual black-box property

We begin by describing the simulator.
Simulator. The simulator simulates the view of the adversary. Initially it outputs a fake

obfuscated circuit by generating ui, vi and w uniformly. The simulator traps the random oracle
queries and answers them as described below. Finally the simulator outputs whatever the adversary
outputs. Initially the sets Q0, Qℓ,i and Qr,i are set to {} for 1 ≤ i ≤ k. They denote the set of
queries made by the adversary to the random oracles ψ0, ψℓ,i and ψr,i respectively at any point in
the simulation.

A query p to the random oracle ψℓ,1 is answered as follows. For each q ∈ Qr,1, the simulator picks
x2, y2, . . . xk, yk uniformly and queries the FSEP

a,b oracle on (p, q, 0, x2, y2, 0, x3, y3, 0, . . . xk, yk, 0). If
the answer is 1 for some q = q0, it returns ψr,1(q0)⊕u1 ⊕ v1. If the answer is 0 for all q ∈ Qr,1 then
it picks a value r uniformly. If r⊕ u1 ∈ Q1 then the simulator aborts. Otherwise it returns r. The
simulation is symmetric in left and right and is similar for all the other random oracles ψ.,..

A query 〈p1, p2, . . . pk〉 to the random oracle ψ0 is simulated by constructing a query to the
FSEP

a,b oracle as follows. First, x1, y1, . . . xk, yk are selected uniformly. For each i: If there is some
qℓ,i ∈ Qℓ,i such that ψℓi(qℓ,i) ⊕ ui = pi then the simulator sets xi = qℓ,i and zi = 0 . Else if there is
some qr,i ∈ Qr,i such that ψri(qr,i) ⊕ vi = pi then the simulator sets yi = qr,i and zi = 1.

If there is some zi that has not been set to either 1 or 0, then the simulator returns a uniform
value. If not then the simulator queries the FSEP

a,b oracle on (x1, y1, z1, x2, y2, z2, . . . xk, yk, zk). If
the answer is 1 then it returns w. Else it returns a uniform value.

Lemma 7 The simulator above satisfies the virtual black box property.

The following 4 claims are trivial and we omit their proofs.

Claim 10 The probability that the simulator aborts is poly(k)2−k. ✷

Claim 11 The joint distribution of ui, vi and w is uniform in both the real and the simulated world.
✷

16

Claim 12 The responses of ψ.,i are uniform and independent except on the input ai or bi in both
the real world and simulated world. ✷

Claim 13 In the simulation of ψ.,i, the probability that p = ai ∧ q = bi is false and the answer to
the simulator’s query is true is O(2−k). ✷

In the real world, (ψℓ,i(ai), ψr,i(bi)) is uniform subject to the constraint that ψℓ,i(ai) ⊕ ui =
ψr,i(bi) ⊕ vi. We need to show that this property holds in the simulated world as well. Wlog, the
adversary queries ai before bi. Then it is clear from the simulator code that ψℓ,i(ai) is uniform, and
ψr,i(bi) is precisely the value that will satisfy the above constraint. Finally, we consider responses to
queries to ψ0. It is easy to verify that in both worlds, whenever the query is different from (ψℓ,1(a1)⊕
u1, ψℓ,2(a2)⊕u2, . . . , ψℓ,k(ak)⊕uk) (which is the same as (ψr,1(b1)⊕ v1, ψr,2(b2)⊕ v2, . . . , ψr,k(bk)⊕
vk)), then the answer is uniform and when it is not, the answer is w. This completes the proof of
the lemma (virtual black box property), and of Theorem 2. ✷

C Proof of Theorem 3, continuation

Notation. The notation Inp(W1,W2, . . . Wk) represents the set of inputs W1 ×W2 × . . . ×Wk to
FSEP

a,b where Wi ⊂ {0, 1}2k+1 for each i (i.e, (xi, yi, zi)). We will use some shortcuts to represent
some special types of sets Wi. First, if we omit to specify Wi, then Wi = {(xi, yi, zi) : xi =
ai, yi is arbitrary and zi = 0 or xi is arbitrary, yi = bi and zi = 1}. By Wi = ∗ we mean Wi =

{0, 1}2k+1. By ai we mean xi = ai, yi is arbitrary and zi = 0. bi is defined analogously. αi

and βi are similar to ai and bi except that they are used when αi 6= ai or βi 6= bi. Thus, for

example, we will write Inp(W1 = a1 ,Wi = ∗) to denote the set of inputs that satisfy the following
constraints: x1 = a1; xj = aj ∨ yj = bj for j 6∈ {1, i}.

Some observations to aid intuition: Inp() is exactly the set of satisfying inputs to FSEP
a,b ;

Inp(Wi = ai) ∪ Inp(Wi = bi) = Inp(); A set of inputs contains no satisfying inputs if and only

if it contains a constraint of the form Wi = αi or Wi = βi .

Lemma 8 There is some significant ǫ and negligible δ such that

P[Qǫ(S(W1 = a1)) ∩QO 6⊂ Qδ(S(W1 = ∗)) ∪ki=2 Q
δ(S(W1 = ∗,Wi = ∗))] ≥ 1 −

1

k

The probability is taken over the coin tosses of the obfuscator.
This lemma can be considered a formalization of the notion that there is an oracle query that

is a probable when the evaluator “knows” a1 but not otherwise.
Proof. To prove this, we set ǫ = o(1

M(k)|QO(k)|). For this ǫ, we consider the smallest δ for

which the inequality holds. If it is significant, then there is some δ′ < δ (say δ′ = δ
2) which

is also significant but for which the inequality does not hold. Consider an adversary A1 that
has a \ {a1} and b hardwired. It computes T = Qδ

′

(S(W1 = ∗)) ∪ki=2 (Qδ
′

(S(W1 = ∗,Wi = ∗))).
Observe that |T | ≤ k

δ′ ∈ poly(k). By the probable queries lemma, A1 outputs a1 with a nonnegligible

17

probability (by setting X = S(W1 = a1), Y = S(W1 = ∗) and observing that with a probability

at least 1
k , Q

ǫ(X) ⊂ T). ✷

We continue with the proof of the theorem. [The membership assertions in the following hold
with high probability over the coin tosses of the obfuscator, rather than with certainty, but we
ignore this for convenience of presentation.]

Let (ψ, q) ∈ Qǫ(S(W1 = a1)) − T , where T is as above. Note that for each index i > 1 we

must have (ψ, q) ∈ Qǫ(S(W1 = a1 ,Wi = ai)) − T or (ψ, q) ∈ Qǫ(S(W1 = a1 ,Wi = bi)) − T .

Therefore we must have (ψ, q) ∈ Qǫ/2(S(W1 = a1 ,Wi = ai)) − T or (ψ, q) ∈ Qǫ/2(S(W1 =

a1 ,Wi = bi))−T . Let us call an index i “bad” if only one of the two inclusions holds. It is simple

to show that if there are t bad indices, then ǫ < ǫ
2 + 2−t. Since ǫ is significant, there can be only

O(log k) bad indices. Therefore an index picked at random is good w.h.p. Wlog, let this good index

be named 2, i.e, (ψ, q) ∈ Qǫ/2(S(W1 = a1 ,W2 = a2)) and (ψ, q) ∈ Qǫ/2(S(W1 = a1 ,W2 = b2)).
The next claim can be understood as stating that if q is a probable query to ψ regardless of

whether the disjunction x2 = a2 ∨ y2 = b2 is satisfied because x2 = a2 or because y2 = b2 , then it
is a probable query regardless of whether the disjunction is satisfied at all.

Claim. (ψ, q) ∈ Qǫ1(S(W1 = a1 ,W2 = ∗)) − T for some significant ǫ1. Proof. It is enough
to prove that (ψ, q) ∈ Qǫ1(S(W1 = a1 ,W2 = ∗)). Assume the contrary. Consider the largest ǫ1
for which the inclusion holds. Suppose it is insignificant. Consider ǫ′ = 2ǫ1 so that the inclusion
does not hold for ǫ′. Consider the adversary A2 that has a and b \ b2 hardwired. Since (ψ, q) ∈
Qǫ/2(S(W1 = a1 ,W2 = a2)), A2 can guess (ψ, q) with a significant probability. Observe that

Pb′
2
[(ψ, q) ∈ Qǫ/2(S(W1 = a1 ,W2 = b′2))] ≥ θ → (ψ, q) ∈ Qθǫ/2(S(W1 = a1 ,W2 = ∗)). By

assumption, θǫ
2 ≤ ǫ′ or θ ≤ 2ǫ′

ǫ ∈ negl(k). But (ψ, q) ∈ Qǫ/2(S(W1 = a1 ,W2 = b2)). This
provides a distinguisher for b2, which contradicts the lensing lemma. ✷

Claim. (ψ, q) /∈ Qδ(S(W1 = ∗,W2 = ∗)) where δ is as above. Proof. (ψ, q) /∈ Qδ(S(W1 =
∗,W2 = ∗)) − T (because that set is empty) and (ψ, q) /∈ T .

We are finally ready to complete the proof. The cumulative effect of the previous two Claims
is to identify a way for the adversary to glean information from the obfuscated circuit even when
one component (i.e, both a2 and b2) of the inputs is completely missing. This leaves the simulator
empty handed, because it needs some information about at least one of ai and bi for each i to
submit anything meaningful to the ideal functionality. We formalize this below.

Consider an adversary A3 that has a\{a1, a2},b\{b1 , b2} hardwired. Further, it has hardwired
a random set A1 of size ω(|QO|

2). A3’s goal is to output a1 assuming a1 ∈ A1.

• For each x ∈ A1: A3 computes Qǫ1(S(W1 = x ,W2 = ∗)) ∩QO and picks a random member
(ψ, q) thereof. Call it Qx.

While A3 cannot compute QO, it can compute the intersection of QO with any polynomial
sized set. It is here that we leverage the difference between a point oracle and a random
oracle – given a random oracle and a point z it is impossible to tell whether or not the oracle
has seen z.

• A3 outputs a random x with the property π(x) that Qy 6= Qx for any y 6= x.

Observe that Qa1 /∈ T with probability at least 1
|QO| . Whenever this happens, the following two

assertions hold:

18

• a1 satisfies π w.h.p. To see this, observe that if (ψ, q) ∈ Qǫ(S(W1 = a1 ,W2 = ∗)) − T ,

then Px∈{0,1}k [(ψ, q) ∈ Qǫ
′

(S(W1 = x ,W2 = ∗))] ≥ θ → (ψ, q) ∈ Qǫ
′θ(S(W1 = ∗,W2 = ∗)),

implying θǫ′ < δ or θ = negl(k). By a union bound, we have P[∃y ∈ A1 \ {a1} : (ψ, q) =
Qy] = negl(k).

• At most |QO| different x’s can satisfy π.

Therefore A3 succeeds with a probability of at least 1
|QO|2 .

On the other hand, a simulator that is given a\{a1, a2},b\{b1, b2} and a set A1 of size ω(|QO|
2)

has only a negligible probability of making any queries to the ideal functionality where its output is
nonzero, and so cannot gain any additional information. The simulator’s probability of outputting
a1 is 1

|A1|
+ negl(k) which is significantly smaller than 1

|QO|2
.

This completes the proof of the impossibility of a query bounded point oracle obfuscator for F
(Theorem 3). ✷

19

