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Fabrication of p-Si(111) layers with Ti levels well above the solid solubility limit was achieved via

ion implantation of 15 keV 48Tiþ at doses of 1012 to 1016 cm�2 followed by pulsed laser melting

using a Nd:YAG laser (FWHM¼ 6 ns) operating at 355 nm. All implanted layers were examined

using cross-sectional transmission electron microscopy, and only the 1016 cm�2 Ti implant dose

showed evidence of Ti clustering in a microstructure with a pattern of Ti-rich zones. The liquid

phase diffusivity and diffusive velocity of Ti in Si were estimated to be 9� 10�4 cm2/s and

(26 0.5)� 104m/s, respectively. Using these results the morphological stability limit for planar

resolidification of Si:Ti was evaluated, and the results indicate that attaining sufficient

concentrations of Ti in Si to reach the nominal Mott transition in morphologically stable

plane-front solidification should occur only for velocities so high as to exceed the speed limits for

crystalline regrowth in Si(111).VC 2014 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4868724]

Optical hyperdoping of Si via the method of ion implan-

tation followed by pulsed laser melting (II-PLM) has

recently garnered much attention as a method to incorporate

impurities at levels well above equilibrium solid solubility

limits. Incorporation of chalcogens into Si using this method

has been shown to dramatically increase sub-band gap opti-

cal absorption,1,2 and detectors with extended spectral range

have been fabricated from these materials.3 Luque et al. esti-

mated that a Mott transition, accompanied by the formation

of a metallic intermediate band (IB), should nominally occur

for impurity concentrations above about 6� 1019 cm�3.4 In

the case of Ti in Si, this estimate may be slightly off due to

spin magnetic interactions from the d-shell electrons, so we

refer to this critical concentration as the “nominal” Mott

limit. Recently, Olea et al. reported forming Si with high lev-

els of Ti by II-PLM,5 suggesting the possibility of forming

of an IB material using this method.6

This work explores the limit of Ti incorporation into Si

under the best practically achievable laser melting condi-

tions. Incorporation of impurities into Si at concentrations

higher than the solid solubility limit via rapid solidification

has been studied extensively.7–9 At high enough impurity

concentrations, the liquid-solid interface can become mor-

phologically unstable, leading to lateral segregation of the

impurity and the formation of a cellular solidification

microstructure.10–13 This process, referred to as “cellular

breakdown,” results in copious excess impurity located in

the “cell walls.”

The impurity concentration in the solid after resolidifica-

tion is determined by the velocity-dependent partition coeffi-

cient, k, which is the ratio of impurity concentration in the

growing solid to that in the liquid at the interface. In the

Continuous Growth Model (CGM) for solute trapping,14,15 k

for dilute solutions behaves according to

k ¼
ke þ

v
vD

1þ v
vD

; (1)

where ke is the equilibrium partition coefficient, v is the sol-

idification velocity, and the material parameter vD is the dif-

fusive velocity of the impurity in the host.

Diffusive velocities of transition metals are typically in

the range of 102–104m/s,13 and the equilibrium partition coef-

ficient16 for Ti in Si is 2� 10�6, so it is clear that increasing k

will require high solidification velocities. The solidification

velocity can be increased by decreasing the melt duration,

which is strongly dependent on the temporal width of the laser

pulse, provided that the melt depth is large enough that solidi-

fication does not commence until the laser pulse is over. The

shorter melt duration steepens the temperature gradient expe-

rienced by the sample during solidification, allowing for more

rapid rejection of latent heat. The Si:Ti material fabricated by

Olea et al.5 was produced using a KrFþ excimer laser

(248 nm, full width half maximum¼ 20 ns), which yields sol-

idification velocities in the range of 2–5m/s.9 In contrast, we

use a Q-switched Nd:YAG laser (355 nm, full width half

maximum¼ 6 ns) for which solidification velocities are in the

range of 5–10m/s.9 Additionally, as the solidification front

moves toward the surface, heat diffusion decreases the tem-

perature gradient and the velocity decreases.17 Thus, shallow

melt depths lead to a faster solidification velocity at the sur-

face, within the limitation expressed above. However, the im-

plantation and melting conditions must be chosen so the full

depth of implantation damage is melted in order to allow epi-

taxial solidification off of the undamaged crystal underneath.

Si(111) wafers (p-type, boron, resistivity 1000 X-cm)

were implanted with 48Tiþ at 15 keV to doses from 1012 cm�2

to 1016 cm�2 (Cutting Edge Ions, Inc.). The (111) orientation

was selected because it has been shown in the past to trap

higher amounts of solute than (100).8 To minimize deep Ti

penetration, implantation of 28Siþ was performed to

pre-amorphize the Si surface, and all implantations were
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performed at a 7� angle from the surface normal. The Si im-

plantation recipe consisted of three 28Siþ implantations at

energies of 9, 11, and 13 keV, each at a dose of 5� 1014 cm�2.

Rutherford backscattering spectrometry in a channeling con-

figuration (RBS-c) was performed on the implanted wafers to

determine the thickness of the amorphous Si layer, and the

result was input into a one dimensional heat flow simulation

to determine optimal laser melting conditions. The implanted

layers were laser-melted using a single pulse from a Nd:YAG

laser at a fluence of 0.75 J/cm2.

The fabricated Si:Ti layers were examined with high-

resolution scanning electron microscopy (SEM). The Ti con-

centration depth profiles were measured before and after

laser melting using secondary ion mass spectrometry

(SIMS), using the known implantation dose for calibration.

Additional SIMS profiles were obtained on the three samples

with the highest Ti doses in order to resolve the deeper tails

of the profiles to higher accuracy. Several samples were

selected for cross-sectional transmission electron microscopy

(XTEM).

Figure 1 shows the Ti concentration profiles obtained by

SIMS from samples implanted with selected Ti doses and

laser melted at 0.75 J/cm2.18 For the Ti doses up to

8� 1014 cm�2, the profile has two distinct regions. Near the

surface is a peak with very high concentration of Ti. This

peak extends to a depth of about 20 nm, with a slope that is

identical to that of the lowest dose studied (1012 at./cm2, not

shown). This slope is consistent with a known SIMS artifact

associated with the finite ability of the SIMS to resolve steep

concentration gradients.19 Past the surface peak the Ti profile

starts to flatten out, and we see a 60–70 nm thick layer with

retained Ti. For higher Ti doses, the surface peak is broad-

ened, and this cannot be attributed simply to limited instru-

mental resolution. Profiles of this shape have been associated

with the onset of cellular breakdown in which case the solidi-

fication front ceases to be planar, and excess impurity is swept

into the troughs of the (initially sinusoidal) perturbation.

XTEM micrographs of the laser melted Si:Ti with the

two highest doses that we studied are presented in Figure 2.

The laser melted material implanted with 3� 1015 Ti/cm2,

shown in Figure 2(b), contains extended defects starting at a

depth around 140 nm. From the orientation of these defects,

it is clear that these are stacking faults; corresponding fea-

tures are observed in plan-view SEM micrographs at this and

all lower doses. The formation of stacking faults during the

rapid solidification of Si(111) at high solidification speeds

has been previously reported.20,21 The maximum melt depth

was calculated through 1D heat flow simulations to be

150 nm,18 which is near the depth at which the deepest stack-

ing faults start.

In the case of the 1� 1016 cm�2 dose (Figure 2(a)), there

are defects in the laser melted area that do not appear to be

stacking faults. We interpret these defects to be the result of

segregation of Ti, where the interface became unstable dur-

ing solidification, producing the disordered microstructure

shown in Figure 2(a).

We note that cellular breakdown, when observed in

(100) Si, typically produces cells with vertical walls, but the

image of the 3� 1015 Ti/cm2 sample in Figure 2(b) does not

exhibit that feature. It is possible that the Ti is decorating the

stacking faults or forming a silicide, but the TEM diffraction

pattern (inset of Figure 2(b)) does not indicate any other

phases. Nevertheless, because the 3� 1015 Ti/cm2 sample

shares the same broadened near-surface concentration fea-

ture observed for the 1� 1016 cm�2 sample in Figure 1,

which is characteristic of breakdown, we tentatively identify

the 3� 1015 Ti/cm2 material as “broken down.” Previous

work on Sn in Si has shown9 that cellular breakdown appears

at deeper depths in the concentration-depth profile than in

XTEM; in our case, the 3� 1015 Ti cm�2 sample may have

begun to break down but reached the end of solidification

before the characteristic features in XTEM were formed.

Although the 3� 1015 Ti cm�2 sample does not show the

same disordered features as does the 1� 1016 Ti/cm2 sample

FIG. 1. SIMS Ti concentration-depth profiles obtained from p-Si(111)
implanted with 15 keV Tiþ at a variety of doses and pulsed laser melted

with the Nd:YAG at 0.75 J/cm2. The horizontal dashed line at 6� 1019

Ti/cm3 identified as the "nominal Mott limit" is the estimated value from
Luque et al.

FIG. 2. Cross-section TEM micrographs of p-Si(111) implanted with 15 keV
Ti at doses of 1� 1016 cm�2 (a) and 3� 1015 cm�2 (b) and laser melted at a

fluence of 0.75 J/cm2. Insets are their respective diffraction patterns.
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in XTEM, the broadened near-surface concentration in

Figure 1 and the microstructure in Figure 2(b) cannot be

taken as proof that Ti has been incorporated in homogeneous

solid solution at concentrations above the Mott limit.

In order to understand how the Ti concentration profiles

change during the laser melting process, we took the as-

implanted Ti concentration profile obtained from SIMS18

and numerically solved the 1D diffusion equation with parti-

tioning at a moving boundary, following the work of

Hoglund et al.9 1-D melting, solidification, diffusion, and

partitioning models have been experimentally validated for

substitutional impurities in silicon,8,15 and they have recently

been used to examine incorporation of other transition metals

into Si.11 The temporal profile of the laser pulse and the as-

implanted Ti concentration profile are both used as inputs.

This calculation also requires as inputs the liquid phase dif-

fusivity of Ti in Si, Dliq, and the diffusive velocity vD charac-

terizing partitioning of Ti in Si. Tang et al. reported a

diffusivity of 1.12� 10�3 cm2/s for Ti in liquid Si,22 which

is well above the range of 2–5� 10�4 cm2/s reported for

other solutes in Si by PLM by Reitano et al.8 Because it is

easy to obtain erroneously high liquid diffusivities by con-

vective contamination, we treated Dliq as a fitting parameter,

but used the literature value for comparison. The diffusive

velocity vD has not previously been measured for Ti in Si

and was used as a fitting parameter.

Figure 3 shows the Ti concentration profiles of p-Si(111)

implanted with 8� 1014 cm�2 before and after laser melting.

The broadening of the surface peak in the experimental SIMS

profile due to instrumental broadening was ignored, and the

region between 20 and 130 nm was fit with the model. We

present the two best fits from the diffusion modeling, one

with Dliq held fixed at the literature value of 1.12� 10�3

cm2/s and the diffusive velocity vD used as a fitting parame-

ter, and the other with both Dliq and vD used as fitting

parameters. In the case where the literature value is used for

Dliq, the diffusive velocity was determined to be 30 km/s.

However, a somewhat better fit is obtained by varying both

fitting parameters, yielding the values Dliq¼ 9� 10�4 cm2/s

and vD¼ 25 km/s. This value for Dliq was found to provide

the best fit for all doses, while the diffusive velocities for the

3� 1015 cm�2 and 1� 1016 cm�2 were found to be 22 km/s

and 15 km/s, respectively. Thus, we estimate vD for Ti in Si

to be (26 0.5)� 104m/s. The SIMS concentration exhibits

two features—a steady increase with decreasing depth for

depths beyond 50 nm, and an abrupt increase of several

orders of magnitude beginning at about 25 nm—that are not

reproduced in the diffusion calculations for any selection of

vD and Dliq. The Ti concentration in the liquid remains at or

below 1%, so the dilute solution assumed by the calculations

is reasonable. The former feature, while interesting and wor-

thy of further exploration, is not ultimately germane to the

question of whether nominal-Mott concentrations of Ti can

be achieved in Si. The latter feature, the broadened surface

peak, is more important, because the concentration exceeds

the nominal Mott limit. To reiterate, this broadened concen-

tration feature observed at doses of 8� 1014 cm�2 and higher

is not likely to be a SIMS artifact, but cannot be explained by

the CGM. We cannot conclusively say whether this high con-

centration of Ti is homogeneously distributed. The Ti may be

located preferentially at the stacking faults, or may exist in

highly localized lateral regions, corresponding to the “trough”

regions in an unstable perturbation to the planar solidifying

interface.

Because the deviation of the solid concentration from

the predicted CGM concentration depth profile is consistent

with the phenomenology of cellular breakdown, we sought

to investigate whether cellular breakdown would have been

expected under these solidification conditions. A necessary

condition is that the concentration in the liquid away from

the liquid-solid interface must exceed a critical, velocity-

dependent, concentration. We use the best fit values for vD
and Dliq to calculate this critical bulk liquid concentration,

C1.9 This method involves solving the condition at which

the growth rate of a perturbation to the planar solid-liquid

interface is negative for all perturbation wavelengths; i.e.,

where the thermal gradient and capillarity suppress the desta-

bilizing influence of the concentration gradient in the liquid

near the interface. The details of these calculations, including

a plot of the neutral stability condition as a function of inter-

face velocity, will be presented in a forthcoming paper. All

Si parameters are as reported in Ref. 9. For a solidification

velocity of 8m/s, we expect the atomic fraction of 2� 10�6

(bulk liquid concentration of 1017 cm�3) to have been mar-

ginally stable against cellular breakdown, and higher concen-

trations to have been unstable. Based on our 1D diffusion

calculations, all of the samples presented in Figure 1

exceeded this critical concentration before the interface

reached the surface, but only the highest three concentrations

show a concentration feature consistent with breakdown.

However, we expect that, above the critical concentration, a

perturbation that forms takes time to amplify and therefore

may not become significant before solidification is complete;

further exploration of this amplification time will be reported

in the forthcoming paper. Our calculations also indicate that

FIG. 3. Experimental as-implanted (black circles) and laser melted (grey

triangles) profiles obtained using ToF-SIMS from p-Si(111) implanted with
15 keV Ti at a dose of 8� 1014 cm�2 and pulsed laser melted with the

Nd:YAG. Also shown are the numerical solutions using vD¼ 30 km/s and
Dliq ¼ 1.12� 10�3 cm2/s (red line), and vD¼ 25 km/s and Dliq¼ 9� 10�4

cm2/s (blue line). Inset shows the laser-melted SIMS data with the two mod-

els on a linear scale in the region used for fitting the data with the numerical
solution.
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for a bulk liquid concentration corresponding to the nominal

Mott limit to be morphologically stable, a solidification

speed in excess of 100m/s would be required; however, this

exceeds the limit of 8m/s above which defect-free crystalline

regrowth in Si(111) cannot be achieved.23

In summary, the method of II-PLM was used to fabri-

cate single crystal Si layers with Ti concentrations above the

equilibrium solid solubility limit. We attempted to imple-

ment the best practically achievable experimental conditions,

including shallow melting with a short laser pulse to maxi-

mize solidification velocity, use of a (111)-oriented substrate

to minimize vD, and pre-amorphization prior to implantation

to suppress channeling of Ti during implantation. These con-

ditions should therefore set an upper limit on the amount of

Ti that can be incorporated into monocrystalline Si during

II-PLM. XTEM images of the laser melted layers reveal the

presence of only stacking faults in the lower dose implants,

while the highest dose sample (1016 at./cm3) exhibits a cellu-

lar solidification microstructure, indicative of morphological

instability during solidification. Ti concentration profiles

obtained from the laser melted layers were compared with

numerical simulations, and the liquid phase diffusivity was

found to be 9� 10�4 cm2/s, while the diffusive velocity was

determined to be (26 0.5)� 104m/s.

Olea et al. produced layers of varying thickness with Ti

concentrations above the nominal Mott limit5 using signifi-

cantly slower solidification velocities than those achieved in

the work presented here, for the same (111) orientation. The

single XTEM image that they presented does not show signs

of cellular breakdown. For our samples, the Ti concentration

in the laser-melted layer does not exceed 1018 cm�3, except at

the surface (for doses below 8� 1014 cm�2) or in a broadened

peak (for doses of 8� 1014 cm�2 and above). For the highest

dose (1� 1016 cm�2), the layer is of poor quality due to cellu-

lar breakdown. In the case of the 3� 1015 cm�2 dose, a 40 nm

thick layer with concentration just above the nominal Mott

limit, free of visible cell walls, was produced. We believe that

the thickness of this layer is not attributable to a SIMS artifact.

However, we are unable to say conclusively whether the Ti in

this layer is uniformly distributed within the Si, or whether,

instead, it resides at the stacking faults. Even if it is distributed

through the volume of the silicon instead of localized at stack-

ing faults, it may be spatially nonuniform due to the incipient

growth instability that leads eventually to cellular breakdown,

but may not have had time to lead to identifiable cell walls

before the solidification front reached the surface. Interface

stability calculations presented suggest that the interface was

indeed unstable during the solidification of both our samples

and those of Olea et al., for any implant dose high enough to

approach the nominal Mott limit. Because our samples solidi-

fied faster than Olea’s, ours should be more stable according

to stability calculations; however, ours also solidified fast

enough for stacking fault incorporation, and the presence of

stacking faults at the crystal/melt interface may destabilize the

interface in ways that we do not fully understand. Diffusion

modeling presented in Figure 3 showed that incorporation of

Ti in greater-than-nominal-Mott concentrations in a thick layer

is not expected under the CGM, which correctly described the

Ti incorporation deeper in the sample. The phenomenology of

the broadened peak is compatible with observations in the

literature of breakdown. We are not aware of any literature

reports of a solidification mechanism whereby an abrupt diver-

gence from CGM-compatible behavior as the solidification

front approaches the surface, as seen in Figure 3, is achieved

without lateral inhomogeneities such as precipitation or cellu-

lar breakdown. More detailed experimental investigation,

using a technique capable of resolving the lateral Ti concentra-

tion profile as a function of depth, is required to definitively

establish whether the Ti has been homogenously incorporated

into the Si in greater-than-nominal-Mott levels. Due to the

stacking faults, our experiments cannot be used to conclude

whether this can be achieved while avoiding precipitation or

cellular breakdown. Additionally, if the estimate of the Mott

transition by Luque et al. is lower than the actual limit for Ti

in Si, Mott levels of Ti in Si will be even more difficult to

achieve. At slower solidification velocities than those reported

here, such as those of Olea et al., cellular breakdown should

become even more limiting for the homogeneously incorpo-

rated Ti concentration than it is for our conditions. Although

we have not reproduced processing conditions of Olea et al.,

exactly, it is difficult to reconcile our experimental results,

those of Olea et al., and the quantitative models of rapid solid-

ification that describe so well the trapping of substitutional

impurities in rapidly solidified silicon.
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