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Časopis pro pěstování matematiky, roí. 98 (1973), Praha 

ON THE LINE GRAPH OF THE SQUARE AND THE SQUARE 
OF THE LINE GRAPH OF A CONNECTED GRAPH 

LADISLAV NEBESK*, Praha 

(Received April 4, 1972) 

Let G = (V, X) be a nontrivial connected graph with p points and q lines. The 
square of G is the graph (V, X') where uv e X' if and only if the distance between u 
and v in G is either 1 or 2. The line graph of G is the graph (X, Z) where xyeZ if 
and only if x and y are adjacent lines in G. The square of G and the line graph of G 
will be denoted by G2 and L(G)9 respectively. Consequently, the line graph of the 
square of G and the square of the line graph of G will be denoted by L(G2) and (L(G))2, 
respectively. In the present paper we shall prove that if p ^ 3, then L(G2) is hamil-
tonian, and that if q = 3, then (L(G))2 is hamiltonian. (For the terminology of graph 
theory, see HARARY [1]; for some results relative to the present paper, see [1], [2], 
and [3].) 

Lemma 1. Let G be a connected graph with p _ 3 points and such that it contains 
a point u of degree 1 and a point w of degree p — 1. If v is a point of G such that 
u =# v =# w, then there exists a spanning path in L(G) joining the points uw and vw 
ofHG). 

Proof. The case when p = 3 is obvious. Assume that p = n ^ 4 and that for 
p = n — 1 the lemma is proved. The case when G is a star is simple. Assume that G 
is not a star. Then there is a point t of G such that t has degree at least 2 and v 4= t 4= 
4= w. By vl9..., vk we denote the points of G different from w and adjacent to t. 
Obviously, there is a spanning path S in L(G — t) joining the points uw and vw. 
There is a point rs of L(G — f) such that (rs) (vtw) is a line in <S. It is evident that 
either vt e {r, s} or w e {r, s}. If i^ e {r, s}, then by P we denote the path (rs) (tvx) ... 
•••(*i>*)(*w)(l,iw)' 'f we{r>5}» then by P we denote the path (rs)(tw)(tvk) ... 
... (ft^) (vxw). If in S we replace the line (rs) (vtw) by the path P, we obtain a spanning 
path in 2L(G) joining the points uw and t?w. 

Theorem 1. Let Ghe a connected graph with p ^ 3 points. Then L(G2) is hamil
tonian. 
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Proof. The case when p = 3 is obvious. Assume that p = n _r 4 and that for p = 
= n — 1 the theorem is proved. The case when G = Kp is simple. Assume that 
G 4= Kp. Then there is a point w of G with degree not exceeding p — 2 and such that 
G — w is connected. By d and d' we denote the distance in G and in G — w, respec
tively. By F we denote the graph with the points t of G such that d(t9 w) ^ 2, and with 
the lines 11 such that either we{t9l} and 1 <; d(f, 7) g 2, or ! #= w 4= 1 and d(r, 7) = 
= 2 < d'(?, ?). Notice that the graphs (G - w)2 and F are line-disjoint and that x 
is a line in G2 if and only if it is a line either in (G — w)2 or in F. There are points u 
and t> of G such that v is adjacent to w in G, w is adjacent to v in G and d(u, w) = 2. 
Obviously, w and v are points both in (G — w)2 and in F, and u has degree 1 in F. 
By Lemma 1, there is a spanning path S0 in L(F) joining uw with vw. Similarly, there 
is a spanning path Sx in L(F) joining vw with uw. By the induction hypothesis, there 
exists a hamiltonian cycle H in L((G — w)2). Consider a point rs of L((G — w)2) 
such that (rs) (uv) is a line in H.lfue {r, s}, then by P we denote the path (rs) S0(uv); 
if ve {r, s}, then by P we denote the path (rs) S^uv). It is easy to see that if in H we 
replace the line (rs) (uv) by P we obtain a hamiltonian cycle in L(G2). 

Lemma 2. Let Tbe any tree with q _̂ 3 /ines. Then (^(^))2 *s hamiltonian. 

Proof. The case when q = 3 is obvious. Let (] = n _ 4 and assume that for any qy 

3 ^ # < n9 the lemma is proved. The case when Tis a path is simple. We shall assume 
that Tis not a path. Then Tcontains distinct points v0,..., vk such that 1 g k g 
_J q — 2, t?0 adj vl9..., v*.^ adj vfc, v0 has degree at least 3, vk has degree 1, and if 

0 < j < fc, then Vj has degree 2. By T0 we denote the tree which we obtain from T 
by deleting the points vl9..., vk. By ul9..., wf we denote the points which are adjacent 
to v0 in T0; obviously, i ^ 2. There is a hamiltonian cycle H in (L(T0))

2. It is easy to 
verify that H contains such a line xy of (L(T0))

2 that x is incident with one of the points 
ul9..., ui9 and y is incident with v0. By P we denote the path in (L(T))2 such that 
if fc = 1, then P = xfav^ y9 and if fc ^ 2, then P = x(v0vx) (v2v3) ... (vff_3vg_2) • 
. ( tV-i^M^a- i ) . . . (v2i?i) j , where # is the greatest odd integer not exceeding fc 
and h is the greatest even integer not exceeding fc. If in H we replace xy by P, we obtain 
a hamiltonian cycle in (L(T))2. 

Theorem 2. Let G be a connected graph with q ^ 3 Zfnes. Then (L(G))2 is hamil
tonian. 

Proof. Consider a spanning tree Tt of G. Color the lines of Tt in blue. Subdivide 
eachuncolored line of G (if any) into two new lines and color one of them in blue and 
the other of them in yellow (the choice is arbitrary). By T2 we denote the graph con
sisting of the blue lines. Obviously T2 is a tree with at least 3 lines. It is easy to see 
that L(T2) is isomorphic to a spanning subgraph of UG). This implies that (L(T2))

2 

is isomorphic to a spanning subgraph of (L(G))2. By Lemma 2, (L(T2))
2 is hamiltonian. 

Hence the theorem follows. 
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