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On the Linear Codebook-Level Duality Between
Slepian–Wolf Coding and Channel Coding
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Abstract—In this paper, it is shown that each Slepian–Wolf
coding problem is related to a dual channel coding problem in
the sense that the sphere packing exponents, random coding
exponents, and correct decoding exponents in these two problems
are mirror-symmetrical to each other. This mirror symmetry is
interpreted as a manifestation of the linear codebook-level duality
between Slepian–Wolf coding and channel coding. Furthermore,
this duality, in conjunction with a systematic analysis of the
expurgated exponents, reveals that nonlinear Slepian–Wolf codes
can strictly outperform linear Slepian–Wolf codes in terms of
rate-error tradeoff at high rates. The linear codebook-level duality
is also established for general sources and channels.

Index Terms—Channel coding, duality, error exponent, linear
code, reliability function, Slepian–Wolf coding.

I. INTRODUCTION

C ONSIDER the problem shown in Fig. 1. Here the encoder
compresses its observation and

sends the compressed data at rate to the decoder; the de-
coder tries to reconstruct given the side information

and the data from the encoder. Let (resp., )
be the alphabet of (resp., ) for all . Throughout this paper,

and are assumed to be finite with and ,
where for any positive integer .

This problem was first studied by Slepian and Wolf [1];
therefore, it is often referred to as the Slepian–Wolf coding
problem. In the case where the source is an
independent identically distributed (i.i.d.) process, Slepian
and Wolf [1] proved a surprising result that the minimum rate
for reconstructing at the decoder with the decoding error
probability decaying to zero asymptotically as the block length
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goes to infinity is the same as the case where the side infor-
mation is available at both the encoder and the decoder. The
result was further generalized by Cover [2] to the stationary and
ergodic sources. Slepian–Wolf coding for general sources (not
necessarily stationary) was studied by Miyake and Kanaya [3].

For most of this paper, the source is assumed
to be an i.i.d. process with zeroth-order joint probability dis-
tribution . In this setting, the minimum achievable rate of
Slepian–Wolf coding is (i.e., the conditional entropy
of given ), which is often referred to as the Slepian–Wolf
limit. We will only consider the case since other-
wise can be perfectly reconstructed from . Let and

be the marginal probability distributions induced by .
Without loss of generality, we will assume for all

. It is well known that Slepian–Wolf coding is closely re-
lated to channel coding. Intuitively, one can view the side infor-
mation as the output generated by via the virtual channel

, where is the conditional probability distribution of
given induced by . Indeed, this viewpoint was adopted

in the seminal paper by Slepian and Wolf. It is worth noting
that to justify this viewpoint, one generally needs to use non-
linear Slepian–Wolf codes.1 In practice, linear codes are com-
monly used for Slepian–Wolf coding, which is supported by the
classic result by Csiszár [5] that linear codes suffice to achieve
the Slepian–Wolf limit. Actually in the case of the binary sym-
metric source, this fact was known to Slepian and Wolf [6], and
inspired their proof for the general case. However, if linear codes
are used for Slepian–Wolf coding, then except for some special
cases the relation with channel coding for channel breaks
down. Indeed, this phenomenon was already evident in an ex-
ample constructed by Wyner [7] in which Slepian–Wolf coding
with source distribution is related to channel coding for
channel (not ), where is the conditional dis-
tribution of given induced by . Unfortunately, this
subtle issue is often overlooked, especially by the practitioners
in the area of Slepian–Wolf code design. Moreover, although
linear codes suffice to achieve the Slepian–Wolf limit, its per-
formance relative to the optimum Slepian–Wolf codes in terms
of rate-error tradeoff is still not well understood.

We will show that in the linear coding framework, each
Slepian–Wolf coding problem is equivalent to a channel coding

1In particular, Ahlswede and Dueck [4] established an intimate connection be-
tween Slepian–Wolf coding with source distribution � and channel coding
for channel � using constant composition codes; they further showed that
this connection implies an interesting duality relationship between the error ex-
ponents of these two coding problems. It is instructive to compare the results
in the present work with those in [4] to see the fundamental difference between
linear Slepian–Wolf codes and nonlinear Slepian–Wolf codes.
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Fig. 1. Slepian–Wolf coding.

problem for a channel which is in general neither nor
. Specifically, given source distribution , we con-

struct a dual channel in which serves as the additive
channel noise while serves as the channel state (provided to
the receiver). It is worth noting that such a construction is not
completely new. Indeed, in the case where the side information
is absent, it was observed by Ancheta [8] that each source
coding problem can be converted to a channel coding problem
for an additive noise channel if linear codes are used; moreover,
Csiszár [5] showed that the reliability function of a discrete
memoryless source is mirror-symmetrical to the sphere packing
exponent of the corresponding additive noise channel while the
expurgated exponent of this additive noise channel can be used
to upper-bound the best error exponent attainable for linear
codes at high rates in the original source coding problem. It
will be seen that the construction of the dual channel
allows one to generalize the insights of Ancheta and Csiszár to
the Slepian–Wolf coding scenario.

The main contributions of this work are the following. We
establish a linear codebook-level duality and use it to develop
a conceptual framework for interpreting many existing results
in Slepian–Wolf coding and channel coding. Furthermore, we
show that the linear codebook-level duality can be used to distin-
guish the performance limits of linear Slepian–Wolf codes and
nonlinear Slepian–Wolf codes; specifically, it reveals that in the
high rate regime nonlinear Slepian–Wolf codes can outperform
linear Slepian–Wolf codes in terms of rate-error tradeoff.

The rest of this paper is divided into four sections. In
Section II, we couple each Slepian–Wolf coding problem
with a channel coding problem by establishing a linear code-
book-level duality. This duality is leveraged to interpret the
mirror symmetry exhibited by the error exponents in these two
problems. A systematic analysis of the expurgated exponents
is provided in Section III, which along with the linear code-
book-level duality between Slepian–Wolf coding and channel
coding reveals that nonlinear Slepian–Wolf codes can strictly
outperform linear Slepian–Wolf codes in terms of rate-error
tradeoff at high rates. A subtle difference between the roles
played by linear codes in Slepian–Wolf coding and channel
coding is observed. The difference in the performances between
linear and nonlinear Slepian–Wolf coding is further illustrated
via an example in Section IV. The linear codebook-level duality
is extended to the general sources and channels in Section V.
We conclude the paper in Section VI. Throughout this paper, the
logarithm function is to the base unless specified otherwise.

II. MIRROR SYMMETRY AND LINEAR CODEBOOK-LEVEL

DUALITY

A Slepian–Wolf code consists of an encoding function
and a decoding function . The

rate of Slepian–Wolf code is defined as

and the decoding error probability is defined as

where .
We will mainly use the following two decoding functions:

1) maximum a posteriori (MAP) decoding

2) minimum-entropy (ME) decoding

where is the entropy induced by the empirical
joint distribution of . For example, if the empir-
ical joint distribution of is , then we have

.
In both cases, ties are broken in an arbitrary manner. Note that
MAP decoding is the optimal decoding rule, and ME decoding
is a universal decoding rule, i.e., where decoder does not need
to know .

Definition 1: Given a joint probability distribution , we
say rate is achievable if given any , there exists a se-
quence of Slepian–Wolf codes such that for all suf-
ficiently large

The minimum achievable rate, denoted by , is referred
to as the Slepian–Wolf limit.
Remark: It is well known [1] that .

Definition 2: Given a joint probability distribution , we
say an error exponent is achievable at rate if given any

, there exists a sequence of Slepian–Wolf codes
such that for all sufficiently large

The maximum achievable error exponent at rate is denoted
by , which is referred to as the reliability function
of Slepian–Wolf coding. Similarly, we say a correct decoding
exponent is achievable at rate if given any ,
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there exists a sequence of Slepian–Wolf codes such
that for all sufficiently large

The minimum achievable correct decoding exponent at rate
is denoted by , which is referred to as the relia-
bility function below the Slepian–Wolf limit since
is positive if and only if (as will be seen). We will
simply call the correct decoding exponent when
no confusion can arise.

It is known that the reliability function is lower
bounded by the random coding exponent and upper bounded
by the sphere packing exponent. Let . The
random coding exponent [5], [9] is defined as

(1)

where the minimization is over all probability distributions
on . Alternatively, the random coding exponent can be
written in Gallager’s form [10]

The sphere packing exponent is given by [9]

or, alternatively [10]

To make the connection between the random coding exponent
and the sphere packing exponent explicit, we will write them in
the parametric forms [10] as shown in (2) and (3) at the bottom
of the page, where the joint distribution of is spec-
ified by

(4)

(5)

Define the critical rate
. It is clear that

. Note that and
coincide when , and

the reliability function is completely determined
in this rate regime.

Define . It is
clear that , where
should be interpreted as (which corresponds to the
scenario that the slope of goes to infinity). Let

for , and
. It can be verified that

if

otherwise

if

otherwise

which implies

(6)

The sphere packing exponent continues to be an
upper bound on the reliability function even if the side informa-
tion is available at both the encoder and the decoder; moreover,
in this case, it is also achievable [11], [10]. Therefore, we can
interpret as the minimum achievable zero-error rate
by fixed-rate codes when the side information is known at both
the encoder and the decoder, which is intuitively obvious from
the expression of in (6).

The correct decoding exponent has been com-
pletely characterized [12], and is given by

An alternative expression of is

We can also write in the parametric form as
shown in the equation at the bottom of the next page, where

is given in (4) and (5) with . Specifically,
we define as the largest at which the convex
curve meets its supporting line of slope , i.e.,

(2)

if

if
(3)
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with interpreted as
. It can be verified that

if

otherwise

where . Note that
for any satisfying

(7)

(8)

we have

Moreover, for any , it is always possible to
find a joint probability distribution satisfying (7), (8), and
the condition . Therefore, one can readily show
that can be equivalently written as

which is exactly the expression derived in [12].
The following result can be proved by direct verification.

Theorem 1: The following four statements are equivalent2:
1) ;
2) ;
3) ;
4) does not depend on , and for

, where .

We need to introduce a few definitions related to channel
coding before proceeding to discuss its connection with
Slepian–Wolf coding.

Let be a discrete memoryless channel with
input alphabet and output alphabet . A block code for

2Here we assume � ��� � � for all � � � ; otherwise, statement 4) has to
be modified by restricting � in the set �� � � �� � � ��.

channel consists of a codebook and a decoding
function . The rate of channel code is
defined as

and the decoding error probability is defined as

is transmitted

(9)
with , where is the channel output. In partic-
ular, is a maximum-likelihood (ML) decoder if

where ties are broken in an arbitrary manner. Note that ML de-
coding is the optimal decoding rule in the current setting since
the transmitted codeword is assumed to have a uniform prior
distribution [cf., (9)].

Definition 3: Given a channel , we say rate is achiev-
able if given any , there exists a sequence of channel codes

such that for all sufficiently large

The maximum achievable rate, denoted by , is referred
to as the channel capacity.
Remark: It is well known (see, e.g., [13]) that

, where the maximization is over all probability
distributions on .

Definition 4: Given a channel , we say an error expo-
nent is achievable at rate if given any , there
exists a sequence of channel codes such that for all
sufficiently large

The maximum achievable error exponent at rate is denoted by
, which is referred to as the reliability function of

channel . Similarly, we say a correct decoding exponent
is achievable at rate if given any , there exists

a sequence of channel codes such that for all suffi-
ciently large

The minimum achievable correct decoding exponent at rate is
denoted by , which is referred to as the reliability
function above the channel capacity since is pos-
itive if and only if (as will be seen). We will
simply call the correct decoding exponent when
no confusion can arise.

if
if
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An instructive way to understand the connection be-
tween Slepian–Wolf coding and channel coding is to couple
each Slepian–Wolf coding problem with a channel coding
problem. Specifically, given a joint probability distribution

, we define a dual channel with
, where , , and

(resp., ) denotes modulo- addition (resp., subtraction).
The channel input is assumed to be independent of .
Intuitively, one may view as the additive channel noise and

as the channel state (provided to the receiver) at time . It
can be shown that the class of dual channels induced by
all possible joint distributions is equivalent to the class of
cyclic-symmetric channels defined in [14].

The following result shows the connection between the
Slepian–Wolf limit associated with the joint probability distri-
bution and the capacity of the dual channel .

Theorem 2: For any joint probability distribution and its
dual channel , we have .
Remark: It is well known that [i.e., ] con-
tinues to be the minimum achievable rate even if the side infor-
mation is available at the encoder. Interestingly, it can be veri-
fied that the capacity of the dual channel is also unaffected
even if the channel state is provided to the transmitter.

Proof: By the cyclic symmetry of , the ca-
pacity-achieving input distribution is the uniform distribution
on . Now it can be readily verified that

The proof is complete.

The random coding exponent, sphere packing exponent, and
correct decoding exponent for a discrete memoryless channel

are, respectively, defined as [15], [16]

Alternatively, they can be written as [13], [17]

where

It is well known that the reliability function
is lower bounded by and upper bounded by

.
Interestingly, these exponents are mirror symmetrical to their

counterparts in the dual Slepian–Wolf coding problem as shown
by the following result, which can be viewed as a strengthened
version of Theorem 2.

Theorem 3: Give any joint probability distribution and
its dual channel , we have

(10)

(11)

(12)

Remark: Equation (1) can be viewed as a generalization of (A.1)
in [5].

Proof: Define .
It is easy to see that the that minimizes (resp., maxi-
mizes) will maximize (resp., minimizes)

.
For any is a convex function of
. Necessary and sufficient conditions on that minimizes

are [13]

(13)

with equality for every such that . Let
for all . With this choice of , it is easy

to verify that

(14)

which implies that the necessary and sufficient conditions in
(13) are satisfied. Therefore, we have

from which (10) and (11) follow directly.
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For any is a concave function
of . Necessary and sufficient conditions on that maxi-
mizes are the same as (13) with “ ” replaced
by “ .” It follows from (14) that the necessary and sufficient
conditions are satisfied if is chosen to be the uniform distri-
bution on . Now (12) can be easily verified.

For any discrete memoryless channel , we define
,

, and
as the smallest at which the convex curve
meets its supporting line of slope 1. In view of Theorem 3, it
is clear that for each joint probability distribution and its
dual channel

In particular, it is known [13] that for any discrete memoryless
channel

(15)

Since in the current setting the dual channel is cyclic sym-
metric, the minimum in (15) is attained at the uniform distribu-
tion on . Now it can be readily verified that

Note that is equal to the zero-error feedback ca-
pacity of channel [18], which can be interestingly com-
pared with the operational interpretation of (i.e., the
minimum achievable zero-error rate by fixed-rate codes when
the side information is known at both the encoder and the de-
coder). Furthermore, it is known [13] that the following state-
ments are equivalent:

1) ;
2) ;
3) for some capacity-achieving input distribution

is satisfied for all such that .
It is also easy to show that if and

only if . Therefore, Theorem 1 can be
viewed as a direct consequence of Theorems 2 and 3.

Now we proceed to show that the formula-level mirror
symmetry exhibited in Theorems 2 and 3 is a manifestation
of the fundamental linear codebook-level duality between
Slepian–Wolf coding and channel coding.

Definition 5 [19]: A linear block code of length over
is a subgroup of , where is the group of -tuples of

elements of with componentwise addition.

The subgroup partitions the group into disjoint
cosets, each of size . We can see that only the group property
is needed in order to define and its cosets. However, it is
often more convenient and desirable if we can define them using
parity check matrix. Fortunately, this is possible due to the ring
structure of .

It is shown in [20] that for any linear code of length over
, there exists an parity check matrix such that

(16)

We can define the syndrome group using the sur-
jective homomorphism . The syndrome group

can be used to label the cosets of . Specifically, a coset of
is denoted by if

(17)

for all in this coset. In particular, we have .
Conversely, given a parity check matrix , we can also define
a linear code and its cosets via (16) and (17).

For any linear block code over with parity check
matrix , we define a linear Slepian–Wolf encoding function

with for all . Note
that

(18)

Moreover, given a joint probability distribution and its
dual channel , we have

for any , and , where the second
equality follows by setting and
noticing that . We can see
that whether a decoding error occurs depends on but
not on ; furthermore, any that leads to a channel
decoding error also causes a Slepian–Wolf decoding error, and
vice versa. Therefore, we have

(19)

where is a MAP Slepian–Wolf decoder, and is
an ML channel decoder. Note that each linear code can be
associated with different parity check matrices ; however,

does not depend on the choice of , neither
does for the induced linear Slepian–Wolf
code. It can be seen that (18) and (19) together reveal a fun-
damental linear codebook-level duality between Slepian–Wolf
coding and channel coding.
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Theorem 4: The random coding exponent and
the correct decoding exponent are universally at-
tainable by linear codes over if is a prime number.
Remark:

1) It is not a real restriction to assume that is a prime
number since one can always make the alphabet size to be
a prime number by adding symbols of zero probability.

2) Since the random coding exponent and the
correct decoding exponent are universally at-
tainable by linear codes, they must also be attainable by
linear codes under MAP decoding. Now it follows from
the linear codebook-level duality that and

of the dual channel are attainable by
linear codes under ML decoding. Moreover, linear codes
are rate-error tradeoff optimal (on the exponential scale)
for rates below the critical rate in Slepian–Wolf
coding and for rates above the critical rate in
the dual channel coding problem. As a simple corollary,
linear codes suffice to achieve the Slepian–Wolf limit as
well as the capacity of the dual channel. Therefore, The-
orems 2 and 3 can be viewed as a natural consequence of
the operational duality between Slepian–Wolf coding and
channel coding in the linear coding framework.
Proof: See Appendix I.

The following theorem provides the second-order expansion
of and at the Slepian–Wolf limit, as
well as that of and at the capacity
of the dual channel.

Theorem 5: For any joint probability distribution and its
dual channel , if (or equivalently,

), then

where

Remark: In view of Theorems 1 and 3, if
, then we have

Therefore, in this case

Note that a lower bound on was obtained by Gallager [13]
for general discrete memoryless channels. It is also worth men-
tioning that the second-order expansion of at the
Slepian–Wolf limit yields the redundancy-error tradeoff con-
stant of fixed-rate Slepian–Wolf coding derived in [21].

Proof: See Appendix II.

III. EXPURGATED EXPONENTS

In view of Theorem 3, it is natural to conjecture that the mirror
symmetry holds for the reliability functions, i.e.,

for each joint distribution and its
dual channel . We will show that this conjecture does not
hold in general. It will be seen that such a symmetry-breaking
phenomenon has interesting implications on the performance
of linear Slepian–Wolf codes. To the end of disproving this
conjecture, we will give a detailed analysis and comparison of
the expurgated exponents for channel coding and Slepian–Wolf
coding.

In channel coding, the random coding exponent can be im-
proved at low rates by expurgating poor codewords, and the re-
sulting exponent is referred to as the expurgated exponent. For
any discrete memoryless channel , define

where
and the minimization is over all joint distributions with

and . The expurgated exponent
is given by [15]

Alternatively, we can write as [13]

(20)

with

It is well known that the expurgated exponent
is a lower bound on the reliability function ; more-
over, it is asymptotically tight at low rates, i.e.,

[13].
Define . It

is shown in [13] that

where

if
otherwise.
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Furthermore, let be the size of the largest set
such that for all . It is shown in
[13] that

The expurgation technique can also be used in Slepian–Wolf
coding to improve the random coding exponent at high rates. It
will be seen that different types of codes and decoding rules can
lead to different expurgated exponents.

A. Csiszár and Körner’s Expurgated Exponent

Via a graph decomposition argument, Csiszár and
Körner [22] derived the following expurgated exponent
for Slepian–Wolf coding:

(21)
where the minimization is over all probability distributions

subject to the constraints
, and . Specifically, if MAP decoding

is used, then ,
, and we denote

by ; if ME decoding is
used, then , , and we
denote by .

Define

(22)

It is shown in [22] that

(23)

where the minimization is over all subject to the

constraints

, and . In view
of (21)–(23), it is easy to verify that

Let be the uniform distribution on . We have

Note that if and only if there exist
and such that

i.e., for all . Intuitively, if
for all , then given any , at most

one of and is possible; therefore, the encoder can treat and
as the same symbol, which implies that zero decoding error

probability is achievable with rate no greater than .

B. Csiszár’s Linear Coding Expurgated Exponent

Csiszár [5] derived the following expurgated exponent for
Slepian–Wolf coding by exploiting the properties of linear
codes:

where is assumed to be a prime number, and the minimiza-
tion is over all probability distributions subject to the
constraints and . We
will denote by if MAP de-
coding is used, and by if ME decoding is
used. Define

where . It is shown
in [5] that

(24)

where the minimization is over all probability distributions
subject to the same constraints as those in the definition

of . Therefore, we have

The following result can be proved via Lagrange duality.

Lemma 1:

.

Theorem 6: Assuming is a prime number, we have

(25)

for each joint probability distribution and its dual channel
, where the inequality in (25) becomes equality if the fol-

lowing condition holds:
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C1) for any , the minimum of

over all probability distributions on
is attained when is the uniform distribution.

Remark: A sufficient condition for C1) to hold is that the dual
channel is equidistant.3 It is worth noting that Theorem 6
can be viewed as a generalization of (A.2) in [5].

Proof: In view of (20), we have (26) shown at the bottom
of the page, where the inequality becomes equality if C1) is
satisfied.

Note that is achievable by linear
codes. Therefore, Theorem 6 can be viewed as a direct
consequence of the linear codebook-level duality between
Slepian–Wolf coding and channel coding. Furthermore, since

, the following state-
ments hold if C1) is satisfied:

1) linear codes can asymptotically achieve the reliability
function of the dual channel for rates approaching
zero;

2) is asymptotically tight for linear
Slepian–Wolf codes as goes to .

It is easy to verify that

Therefore, if and only if
for some . Define

3A discrete memoryless channel � is called equidistant if there exists a
number � � � such that � ���� �� ���� � � � for all pairs of
inputs � �� � [23]. In particular, all binary input channels are equidistant. In
the current setting, the dual channel� is equidistant if there exists a number
� � � such that ����� � � for all �� �� �.

It can be shown that , where
, and

if
otherwise.

For the dual channel , we have if
and only if there exist and such that

Since , it is
easy to see that implies

, and vice versa. In view of Theorem
6, we have .
Note that the inequality can be strict. Indeed, if is not
a multiple of or , then we must have

. The inequality can
be strict even if is a multiple of and .
Consider the joint probability distribution
with

, and for all .
It is easy to verify that for this distribution and its dual
channel , we have and

. Therefore,
C1) is not a redundant condition.

C. Oohama and Han’s Expurgated Exponent

Based on an interesting observation on the cardinality of
the set of sequences of the same marginal type, Oohama
and Han [12] derived the following expurgated exponent for
Slepian–Wolf coding by using ME decoding:

(27)

Comparing (27) with (1), it is clear that
. Furthermore, one can readily see that the con-

(26)
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straint in (27) is not active if
[cf., (2)]. Therefore, we have

D. Comparison

It is easy to verify that

Therefore, Csiszár and Körner’s expurgated exponent is
tightest. However, it is worth noting that Oohama and Han’s
expurgation technique and Csiszár’s linear coding argument
can be directly applied to the setting where the side information
is also encoded; in contrast, it is not clear how to generalize
the graph decomposition method in [22] to the aforementioned
general setting.

Proposition 1: Assuming that is a prime number and
(i.e., for all ), we

have

unless the following condition is satisfied:
C2) for any given , the value of

does not
depend on .

Remark: By setting , we can see that C2) implies
for all .

Proof: Note that

(28)

where the inequality in (28) is strict unless C2) is satisfied.
Proposition 2: Assuming that is a prime number, we have

under the conditions
C2) and:

C3) for any , the maximum of as a
function of is attained when is the uniform distribution
on .

Remark: A sufficient condition for C3) to hold is that
is an equidistant channel. Moreover, conditions C2)

and C3) hold simultaneously if is the uniform distribution
on and is an equidistant channel [e.g.,
and ].

Proof: It suffices to show that
under conditions C2) and C3). Since C2)

implies for all , it follows that

In view of C3), we have

Note that under condition C2), we have the equation shown at
the bottom of the following page. The proof is complete.

Since , to disprove the
conjecture raised at the beginning of this section, it suffices
to find a joint distribution and its dual channel
such that . In view
of Theorem 6 and Proposition 1, one can easily obtain suffi-
cient conditions for
to hold. The above analysis also reveals a subtle difference
between the roles of linear codes in Slepian–Wolf coding and
channel coding. Specifically, if

, then linear
Slepian–Wolf codes are suboptimal at high rates in terms
of rate-error tradeoff; in contrast, linear codes are asymptoti-
cally optimal at low rates in the dual channel coding problem.
An illustrative example is given in the next section.

IV. EXAMPLE

Consider a joint probability distribution on with
and . We assume

. It is easy to see that for this distribution
and its dual channel , we have

and , where is the binary
entropy function. Moreover, it can be verified that conditions
C1) and C3) are satisfied while condition C2) is satisfied if and
only if .
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Given , let be the unique number satisfying
and . For , we have

otherwise

otherwise

where . For , we
have

It follows from Theorems 3 and 6 that

Note that none of these exponents depends on , which is barely
surprising since the dual channel is equivalent to the bi-
nary symmetric channel with crossover probability .

For , we have

In particular

for

It can be verified that approaches
as , and approaches as

.
For , we have

where the minimization is over all joint distributions
with and . Specifically,

for

It can be verified that converges to
[for ] as , and con-

verges to as .
For the dual channel , the straight-line expo-

nent is the smallest linear function of
which touches the curve and also satisfies

. Let
be the for which . It is known
[13] that is upper bounded by for

. By the linear codebook-level duality, the dual
straight-line exponent (see the dashed lines in Figs. 1 and
2) applies to linear Slepian–Wolf codes. However, the dual
straight-line exponent does not hold for general Slepian–Wolf

Authorized licensed use limited to: Jun Chen. Downloaded on November 18, 2009 at 20:25 from IEEE Xplore.  Restrictions apply. 



5586 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 55, NO. 12, DECEMBER 2009

Fig. 2. Mirror symmetry and symmetry breaking: � � ����� � � ����.

codes since it can be dominated by at high
rates.

It is thus clear that in order to operate above the dual
straight-line exponent, one has to use nonlinear Slepian–Wolf
codes. Moreover, we can see from Fig. 2 that it is possible
for to be strictly above the dual straight-line
exponent in the high rate regime. This implies that at high rates,
nonlinear Slepian–Wolf codes under suboptimal decoding can
outperform the best linear Slepian–Wolf codes under MAP
decoding.

V. GENERAL SOURCES AND CHANNELS

Now we proceed to study Slepian–Wolf coding for general
sources and its duality with channel coding. We first quote some
definitions of entropy and mutual information of general sources
from [24], [25]. The limsup in probability of a sequence of
random variables is defined as the smallest extended
real number such that for all

Analogously, the liminf in probability is the largest extended real
number such that for all

A general source with alphabet is a sequence of
random variables with . For general
sources , and and are defined as
the limsup in probability of and

, respectively, while
and are defined as the liminf in probability of

and

Fig. 3. Mirror symmetry and symmetry breaking: � � ����� � � ����.

respectively.
We will denote the Slepian–Wolf limit for general source

by , where . It is shown
in [3] that . Note that the minimum achiev-
able rate is still even if the side information is avail-
able at both the encoder and the decoder. Therefore, similarly
to the stationary and ergodic case, the lack of encoder side in-
formation does not incur any penalty in terms of the minimum
achievable rate.

We will show that Slepian–Wolf coding for general sources
can be better understood through the linear codebook-level du-
ality. Given general source , we construct a dual channel

with ,
, and . The input is as-

sumed to be independent of and . The capacity of the
dual channel is denoted as .

It is clear that if is not stationary, then the dual
channel is also not stationary. In general, it is a formi-
dable task to find the capacity-achieving input process for a
nonstationary channel. However, due to the cyclic symmetry of
the dual channel, the capacity-achieving input process can be
easily characterized.

Theorem 7: For the dual channel , we have

Moreover, the capacity is achieved by the stationary and mem-
oryless process with the uniform marginal distribution over .
Remark: Theorem 2 is a special case of Theorem 7.

Proof: The proof is straightforward and thus omitted.

It is easy to verify that the linear codebook-level duality [cf.,
(18) and (19)] continues to hold in the current general setting.
To complete the connection, we need to show that linear codes
can achieve the Slepian–Wolf limit for general sources.
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Theorem 8: The Slepian–Wolf limit is achievable
with linear codes over when is a prime number.
Remark: Theorem 8 can be viewed as a partial generalization of
Theorem 4.

Proof: This result can be proved using the standard tech-
niques. The details are omitted.

VI. CONCLUSION

A linear codebook-level duality between Slepian–Wolf
coding and channel coding is established. This duality provides
a conceptual tool for studying linear Slepian–Wolf codes. In
particular, it reveals that linear Slepian–Wolf codes are in
general suboptimal in terms of rate-error tradeoff at high rates.
A generalization of this duality to the mismatched decoding
scenario can be found in [26].

APPENDIX I
PROOF OF THEOREM 4

First, we will quote a few basic definitions related to the
method of types [15]. For any finite set , let denote
the set of all probability distributions on . The type of a se-
quence , denoted as , is the empirical probability
distribution of . Define and

for any . A few
elementary results are listed below:

The following fundamental lemma regarding linear
Slepian–Wolf codes can be found in [5].

Lemma 2: Let . If is a prime
number, then for arbitrary positive integers and , there exists
a linear Slepian–Wolf encoding function such
that for every joint type

if , where denotes for each joint type
the number of pairs

such that for some with
the relation holds.

Now we are ready to prove Theorem 4. It is shown in [5] that
the random coding exponent is universally attain-
able by linear codes under ME decoding. Therefore, it suffices
to prove an analogous result for the correct decoding exponent

.
For any , let be a sequence of linear

Slepian–Wolf encoders as specified in Lemma 2 with
converging to as , and let be a sequence of
ME decoders. Define

Since implies , we
have

Let
with . Note the equation at the bottom of the page. Since

can be uniformly bounded away from
zero for when is sufficiently large, it follows
that

In view of the fact that is arbitrary, one can readily com-
plete the proof by a simple continuity argument.

APPENDIX II
PROOF OF THEOREM 5

Since , it follows that
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In view of Theorem 3, it suffices to show

which boils down to verifying

Let and
for . The Taylor expansion yields

where means . Therefore, by
ignoring the high-order terms which do not affect the limit, we
get

where the minimization is over subject
to the constraints:

1)
;

2) ;
3) for all .

Introduce the Lagrange multipliers for these
constraints, and define

The Karush–Kuhn–Tucker conditions yield

(29)

(30)

By (29) and constraint 3), we get

(31)

which, together with (30), implies that

(32)

Substituting (31) into constraint 2), we obtain

(33)

Similarly, it follows by (32) and constraint 3) that

(34)

In view of (32) and (34), we have

(35)

It can be seen by substituting (31) and (35) into constraint 1)
that

which, together with (33), yields

(36)

By (31), (33), and (35), it can be easily verified that

(37)

The proof is complete by combining (36) and (37).
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