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Abstract

We show that the elliptic curve analogue of the linear congruential

generator produces sequences with high linear complexity and good

multidimensional distribution.
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1 Introduction

Let p be a prime and let m ≥ 1 be an integer. We denote by IFp the field of

p elements which we also identify with the set {0, 1, . . . , p − 1}.
Let w0 and g be given elements of IFp. We recall that the linear congruential

generator of pseudorandom numbers is the sequence w1, w2, . . . of elements

of IFp defined by the recurrence relation

wn = gwn−1 = gnw0, n = 1, 2, . . . , (1)

with the initial value w0.

Let E be an elliptic curve over IFp, given by an affine Weierstrass equation

of the form

y2 + (a1x + a3)y = x3 + a2x
2 + a4x + a6,

see [2, 22]. It is known, see [2, 22], that the set E(IFp) of IFp-rational points

of E forms an Abelian group under an appropriate composition rule (which

we denote by ⊕) and with the point at infinity O as the neutral element. We

also recall that

|#E(IFp) − p − 1| ≤ 2p1/2,

where #E(IFp) is the number of IFp-rational points, including the point at

infinity O. Furthermore, it will be convenient to work with places of IFp(E).

A place H of degree d of IFp(E) corresponds to a Galois orbit of d points Hi

in E(IFpd). Let P ∈ E(IFp). The points Hi⊕P form a Galois orbit and define

a place which we denote by H ⊕ P (similarly with ⊖). Functions in IFp(E)

are Galois invariant and hence have zeros and poles at places. We identify

places of degree one and points.

Let G ∈ E(IFp) be a point of order t, that is, t is the size of the cyclic group

〈G〉 generated by G. Let H be a place of degree d of E and let

F = {f1, . . . , fr} (2)

be a set of r ≥ 1 rational functions in IFp(E) with pole divisors of the form

(fi)∞ = (i + δ)(H), 1 ≤ i ≤ r, (3)
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where

δ =

{

1, if d = 1,

0, if d ≥ 2.

Since E has genus one, such functions exist by the theorem of Riemann-Roch.

We define ρ = r + δ.

For r = 2 and H = O a natural example is given by f1(P ) = x(P ) and

f2(P ) = y(P ), where P = (x(P ), y(P )) 6= O. In particular, d = 1, ρ = 3 for

this example.

Generalising the above construction, for a given initial value W0 ∈ E(IFp),

we define the elliptic curve congruential generator of pseudorandom numbers

with respect to F as the sequence (f1(Wn), . . . , fr(Wn)) of points in IFr
p where

the Wn are defined by the recurrence relation

Wn = G ⊕ Wn−1 = nG ⊕ W0, n = 1, 2, . . . , (4)

with the initial value W0 (see also [1, 4, 6, 7, 8, 14]). If H ∈ 〈G〉 ⊕ W0 then

the sequence is not defined for periodical values of n. In these cases we take

any fixed vector (for example the zero vector) as the output of the generator.

Obviously the sequence is purely periodic with period t, which is the order

of G in the group of points of E(IFp).

It is known that the linear congruential generator produces cryptographically

weak sequences, see [5, 9, 10, 13], thus partially motivated by this fact an

elliptic curve congruential generator has been introduced in [8] and then in [6]

where some attractive properties of this generator and similar generators

have been established. On the other hand, one of the advantages of the linear

congruential generator (1) has been a variety of results about the distribution

of its elements [11, 16, 17], In [4], using some recent bounds of exponential

sums along subgroups of points on an elliptic curve from [12], a result was

established about the distribution of points Wn in the square [0, p−1]2. Here

we consider the distribution of rs-tuples of points

(fi (Wn+j) , 1 ≤ i ≤ r, 1 ≤ j ≤ s) , n = 0, . . . , t − 1,
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in an rs-dimensional cube [0, p − 1]rs. This question (for r = 2, f1(P ) =

x(P ), f2(P ) = y(P ) and s ≥ 2) has been posed in [4] and although it has

been clear that the same technique should apply, this generalisation has not

been obtained before due to lack of a certain linear independence result.

Here we close this gap and prove the required linear independence of certain

functions on elliptic curves which leads to a multidimensional analogue of [4].

Moreover, the same statement leads to a new lower bound on the linear

complexity of the components of Wn. We recall, that exactly this reason,

that is a very low linear complexity, has led to lattice reduction based attacks

on the linear congruential generator of pseudorandom numbers (1), see [5, 9,

10, 13]. Thus we show that the pseudorandom numbers (4) are free of this

disadvantage.

We remark that properties of elliptic curve analogues of some other pseudo-

random sequences have been studied in [20, 21].

Throughout the paper, the implied constants in the symbols ‘O’ may some-

times depend on the integer parameters d, r, s ≥ 1 and are absolute otherwise.

2 Preparations

Let Mr,s (IFp) denote the set of all nonzero r × s matrices

C = (ci,j, 1 ≤ i ≤ r, 1 ≤ j ≤ s)

over IFp.

For a matrix C ∈ Mr,s (IFp), a set F of functions (2) and a generic point Q

on E we consider the function

LC,F(Q) =

r
∑

i=1

s
∑

j=1

ci,jfi (Wj ⊕ Q) ,

as a function in the function field IFp(E).
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Lemma 1. For any matrix C ∈ Mr,s (IFp) with s ≤ t and any set F of

functions (2) satisfying (3), LC,F(Q) is not constant. The subgroup 〈G〉
contains at most sdρ zeros of LC,F(Q). If H ∈ 〈G〉⊕W0 it contains at most

s poles of LC,F(Q), which are of the form H ⊖ Wj for 1 ≤ j ≤ s, and no

poles otherwise.

Proof. The function fi(Wj ⊕ Q) of IFp(E) has the pole divisor

(fi(Wj ⊕ Q))∞ = (i + δ)(H ⊖ Wj),

because Q 7→ Wj⊕Q induces a translation automorphism of IFp(E). Since the

H⊖Wj are different for j = 1, . . . , s, and the condition (3) and C 6= 0 hold, we

obtain that LC,F(Q) has poles and is hence not constant. Furthermore, the

pole divisor of LC,F(Q) has degree at most sdρ and support in {H⊖Wj : 1 ≤
j ≤ s}. This latter set does not contain an element of 〈G〉 if H 6∈ 〈G〉 ⊕W0.

The statements about the poles are hereby proven.

The bound for the pole divisor implies that LC,F(Q) has at most sdρ zeros

in E(IFp), where IFp is the algebraic closure of IFp, hence (most likely even

less) in G. This proves the statement about the zeros. ⊓⊔

Our other tool are bounds of exponential sums of the form

S(C,F) =

t
∑

n=1

exp (2πiLC,F(nG)/p) ,

where C is an r × s matrix over IFp.

The following result is a partial case of Corollary 1 of [12].

Lemma 2. For any set F of functions (2) satisfying (3), the bound

max
C∈Mr,s(IFp)

|S(C,F)| = O
(

p1/2
)

holds.

Proof. For t ≤ s the bound is trivial. Otherwise, by Lemma 1 we see that

LC,F(Q) is not constant and thus Corollary 1 of [12] implies the result. ⊓⊔
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3 Main Results

Let Wn ∈ IF2
p be a sequence generated by (4).

Given a set F of functions (2), we denote by ∆s (F) the discrepancy of the

following point set
(

f1 (Wn+1)

p
, . . . ,

fr (Wn+1)

p
, . . . ,

f1 (Wn+s)

p
, . . . ,

fr (Wn+s)

p

)

, (5)

where n = 0, . . . , t − 1, in the rs-dimensional unit cube. That is,

∆r,s = sup
B⊆[0,1]rs

∣

∣

∣

∣

T (B)

t
− |B|

∣

∣

∣

∣

,

where T (B) is the number of points (5) which hit the box B = [α1, β1]× . . .×
[αrs, βrs] ⊆ [0, 1]rs of size |B| = (β1 − α1) . . . (βrs − αrs).

We recall that for at most s values of n = 0, . . . , t − 1 some of the above

functions may not be defined, and we define the corresponding block of r

coordinates in an arbitrary (but fixed) way (for example set it to zero).

Theorem 3. For any set F of functions (2) satisfying (3), the bound

∆s (F) = O(t−1p1/2 logrs p)

holds.

Proof. The result follows immediately from Lemma 1 and a standard relation

between the discrepancy and exponential sums, given by Corollary 3.11 in [17]

for example. ⊓⊔

Generalising the corresponding definition for one dimensional sequences, for

example, see [3, 15, 19], we define the linear complexity L(N) of an r-

dimensional sequence (v1,n, . . . , vr,n), n = 1, . . . , N over IFp as the smallest s

for which the following relations hold
r

∑

i=1

s
∑

j=1

ci,jvi,n+j = 0, 0 ≤ n ≤ N − s − 1, (6)

with some fixed C = (ci,j) ∈ Mr,s (IFp).
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Theorem 4. For any set F of functions (2) satisfying (3), the linear com-

plexity L(N) of the r-dimensional sequence

(f1(Wn), . . . , fr(Wn)), n = 1, . . . , N,

satisfies

L(N) ≥



















min{N/(dρ + 1), t/(dρ + 1)}, if H = W0,

min{N/(dρ + 2), t/(dρ + 1)}, if H ∈ 〈G〉 ⊕ W0,

min{N/(dρ + 1), t/(dρ)}, otherwise,

for any N .

Proof. Let s = L(N). Then s ≤ t and LC,F(nG) = 0 whenever it is defined

for n = 0, . . . , N −s−1. Using Lemma 1 we see that LC,F(nG) is defined for

at least min{N−2s, t−s} many distinct points nG in 〈G〉 if H ∈ 〈G〉⊕W0 and

for at least min{N − s, t} distinct points otherwise. In the special case H =

W0 it is defined for at least min{N − s, t − s} many distinct points because

the poles of LC,F(Q) are contained in {(t−1)G, . . . , (t− s)G}. Furthermore,

LC,F(nG) = 0 for at most sdρ points in 〈G〉. Thus min{N − s, t− s} ≤ sdρ,

min{N − 2s, t − s} ≤ sdρ and min{N − s, t} ≤ sdρ respectively. ⊓⊔

Let us choose an elliptic curve E with a cyclic point group, a generator G ∈
E(IFp), thus t = #E(IFp) ∼ p, functions fi ∈ IFp(E) with (fi)∞ = (i + 1)(O)

for 1 ≤ i ≤ r and W0 = O. Then d = 1, ρ = r + 1 and O = W0, and

Theorem 4 gives

L(N) ≥ min

{

N

r + 2
,

t

r + 2

}

. (7)

Let us now choose an elliptic curve E and G ∈ E(IFp) such that #E(IFp) = 2t

where t is the order of G. Then take W0 ∈ E(IFp)\〈G〉 and choose functions

fi as above. Thus d = 1, ρ = r + 1 and O 6∈ 〈G〉 ⊕ W0, and we obtain

L(N) ≥ min

{

N

r + 2
,

t

r + 1

}

. (8)
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Finally, we choose an elliptic curve with a cyclic point group over IFp. Let

G be a generator of this group, thus t = #E(IFp) ∼ p. We choose a place H

of degree two and let fi ∈ IFp(E) with (fi)∞ = i(H). Then d = 2, ρ = r and

H 6∈ 〈G〉 ⊕ W0 = E(IFp), and by Theorem 4 we obtain

L(N) ≥ min

{

N

2r + 1
,

t

2r

}

. (9)

If we take for example r = 1, then from (9) we obtain a sequence of pe-

riod about p with L(N) ≥ N/3 from the above constructions by taking any

function in IFp(E) which has precisely one simple pole at a place of degree

two (this is smallest possible). The easiest examples of such functions are

f(P ) = 1/(x(P )−a) where a ∈ IFp such that a is not equal to an x-coordinate

of a point of E(IFp)\{O}.
Accordingly, the bound (8) with r = 1 leads to the same result but for

sequences of period about p/2. We remark that for a random sequence of

elements of IFp one should expect the linear complexity to be close to N/2,

see [18].

4 Remarks

We observe that the implicit constant in the estimate of Theorem 3 can easily

be evaluated.

We note that when t < p1/2 log p the result of Theorem 3 is trivial. On the

other hand, using the bounds of Theorem 3.4 and Theorem 5.5 of [11] for

the linear congruential generator (1), one can obtain nontrivial results for

sequences of period t ≥ p1/3+ε and t ≥ pε for all and almost all primes p,

respectively. Obtaining similar improvements of Theorem 3 is a challenging

problem.

It is natural to ask whether curves with special point groups, which lead

to bounds (7), (8) and (9), exist and are common enough. It follows from
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Corollary 6.2 in [23] that the majority of (isomorphism classes of) elliptic

curves, namely about 75%, have indeed a cyclic point group, which is nec-

essary for (7) and (9). For (8) we need a cyclic point group of even order.

Among the curves y2 = f(x) with f(x) = x3 + ax + b ∈ IFp[x] about 50%

have precisely one point of order 2, corresponding to those f(x) which have

precisely one root in IFp ([2, p. 37]). Thus at least 25% of all (isomorphism

classes of) elliptic curves do have cyclic point group of even order (heuris-

tically we expect this to be more close to 50%). We remark that by Theo-

rem 2.1(i) of [23] every cyclic group of order within the Hasse-Weil interval

[p + 1 − 2
√

p, p + 1 + 2
√

p] can be realized as the point group of an elliptic

curve over IFp (p ≥ 5). Several more results about elliptic curves with cyclic

point groups can be found in [23, 24].

For supersingular elliptic curves more accurate results have been obtained

in [6, 7, 14] but that technique cannot be extended to other curves. Moreover,

these curves are usually considered as cryptographically weak.

Finally, one can also consider similar problems in extension fields IFq over IFp

and study the distribution of traces TrIFq/IFp
(fi(Wn)). Unfortunately we do

not know how to establish an analogue of Lemma 1 for linear combinations

of such traces.
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