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ABSTRACT

On the Linear Complexity of Hard Knapsack

Generator sequence

Dong-Hyun Choi

Department of Electri-

cal and Electronic Eng.

The Graduate School

Yonsei University

m-sequence is random sequence deterministically generated. Therefore, by com-

bining linear feedback shift register(LFSR) with nonlinear filter or nonlinear

combiner, we want to obtain higher linear complexity. One of these method

is Rueppel’s hard knapsack generator with real adder. Rueppel’s hard knapsack

generator sequence has maximal linear complexity equal to a period. However,

because it has a long stage LFSR for a long period, its hardware complexity in-

creases as long.

In this thesis we propose modified hard knapsack generator that has two addi-

tional LFSRs as knapsack weights. Thus modified hard knapsack generator has
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much lower than rueppel’s in hardware complexity. On the other hand, it has

linear complexity profile as Rueppel’s has maximal linear complexity equal to

the period. In theory, modified hard knapsack generator sequence has a period,

the least common multiple of periods which sequences generated by three LF-

SRs have. Also, the linear complexity of this sequence is derived as upperbound.

Finally, we simulate and compare the linear complexity of Rueppel’s and modi-

fied hard knapsack generator. As a result we know that they have maximal linear

complexity equal to period.

Key words : Linear complexity, Period, Hard knapsack generator, Product se-

quence, m-sequence, Real adder
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Chapter 1

Introduction

1.1 Motivation

In this thesis, We consider frequency hopping sequence which has a long period

and high linear complexity. Maximal length linear feedback shift register se-

quence (m-sequence) has been used in spread spectrum communications. But it

is very easy to predict given sequence by Berlekamp-Massey algorithm, because

m-sequence is deterministically generated random sequences. Therefore the best

one can hope for is to make the first period of a periodic sequence resemble the

output of a binary symmetric source. A binary symmetric source realizes flip-

ping an unbiased coin successively. Thus we are confronted with the problem of

a finite sequence like a binary symmetric source.

Clearly the idea of randomness also reflects the impossibility of predicting the

next digit of a sequence from all the previous ones. This property is measured by

the length of the shortest linear feedback shift register (LFSR) which can gen-

erate the given finite sequence and the length of this LFSR is referred to as the
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“linear complexity” associated to the sequence. For example m-sequence which

a length L LFSR generates has a maximal period 2L − 1 but a linear complexity

L.

In order to obtain high linear complexity many techniques have been developed.

First method is that one or more LFSRs are combined by nonlinear filter or non-

linear combiner. Another is that clock controlled LFSR is used. In cryptographic

systems these methods have been applied to key stream generator.

In this thesis nonlinear combiner and clock controlled LFSR are simultaneously

applied to “Hard Knapsack Generator”. And the period and linear complexity of

hard knapsack generator are derived in theory. In addition I propose the modified

hard knapsack generator and compare it with hard knapsack generator in view of

the period and the linear complexity.

1.2 Overview

In chapter 2, basic theory of m-sequence and nonlinear function is introduced.

Specially the period and the linear complexity of nonlinear function is included.

In chapter 3, hard knapsack generator and its property are introduced. Also mod-

ified hard knapsack generator is proposed and the property is derived in theory.

On the other hand, hard knapsack generator and modified hard knapsack genera-

tor are compared in two views of period and linear complexity by the simulation

results. Finally this thesis is concluded by the summarizing and giving some

remarks in chapter 4.
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Chapter 2

Nonlinear theory

2.1 m-sequences

The necessary and sufficient condition for an L-stage linear feedback shift regis-

ter (LFSR) to produce an m-sequence of period 2L − 1 is that the characteristic

polynomial of degree L is primitive over GF(2). We will describe some basic

properties of m-sequences of period 2L − 1. The first three properties, namely,

balance, run distribution and ideal autocorrelation property are commonly known

as “Golomb’s postulates on random sequence.” [1] [6] [4]

• Balance Property In one period of an m-sequence, the number of 1s and

that of 0s are nearly same. Since the period is an odd integer, they

cannot be exactly the same, but differ by one. This is called the

balance property.

• Ideal Autocorrelation Property A periodic unnormalized autocorrelation

3



function R(τ) of a binary sequence s(k) of period P is defined as

R(τ) =
P−1
∑

k=0

(−1)s(k)+s(k−τ), τ = 0, 1, 2, . . .

where k − τ is computed mod P .

For any integer L ≥ 2, and for any m-sequence s(k) of period P =

2L − 1, the ideal autocorrelation property of m-sequences refers to

the following:

R(τ) =

{

2L − 1, τ ≡ 0 (mod 2L − 1)

−1, τ 6≡ 0 (mod 2L − 1)

• Run Distribution Property A string of the same symbol of length l sur-

rounded by different symbols at both end is called a “run of length

l.” For example, a run of 1s of length 4 looks like . . . 011110 . . ..

The run distribution property of m-sequences refers to the fact that a

shorter run appears more often than a longer run, and that the number

of runs 1s is the same as that of 0s.

• Span Property If two vectors
(

(s(i), s(i + 1), . . . , s(i + L − 1)
)

and

(

(s(j), s(j +1), . . . , s(j +L−1)
)

, of length L are distinct whenever

i 6= j, then the sequence s(k) is said to have this property. The in-

dices of terms are considered mod P . For an m-sequence of period

P , in addition, all the not-all-zero vectors of length L appear exactly

once on the window of length L.

• Decimation Property Let d be a positive integer with gcd(2L−1, d) = 1.

4



Then the sequence u(t) = s(dt), called the decimation by d of s(t),

is also an m-sequence.

• Constant on the Coset Property For any m-sequence of period 2L − 1,

there are 2L − 1 cyclically equivalent sequences corresponding to the

2L − 1 starting points. The term constant on the coset property

refers to the fact that there exists exactly one among all these such

that it is fixed with 2 decimation. An m-sequence in this phase is said

to be in the characteristic phase. Therefore the following relation

is satisfied:

s(2k) = s(k), for all k

• Cycle and Add Property When two distinct phases of an m-sequence are

added term by term, a sequence of the same period appears and it

is a different phase of the same m-sequence. In other words, for

any given constants τ1 6≡ τ2(mod 2L − 1 ), there exists yet another

constant τ3 such that

s(k − τ1) + s(k − τ2) = s(k − τ3), k = 0, 1, 2, . . .

This is the cycle-and-add property of m-sequence.
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2.2 Nonlinear Theory of Periodic Sequences

A useful measure of unpredictability, or equivalently, randomness of a sequence

is provided by the associated linear complexity. Thus there is a need for analyz-

ing nonlinear combinations of (periodic) sequences in terms of linear complexity

as well as in terms of period, statistics, leakage etc.

The simplest possible nonlinear transformation is the product of two binary dig-

its. And the product of n variables is said to be an n-th order product. For

example, x1x2x3 is a third order product. The order of the function f is defined

to be the maximum of the order of its product terms.

Then let us consider the product of distinct phase sequences in one m-sequence.

Lemma 2.1 (General upperbound on the linear complexity of nonlinearly fil-

tered PN-sequences)

Let f be any kth-order function of k distinct phases s̃t1 , s̃t2 , . . . , s̃tk of an m-

sequence s̃

z̃ = f(s̃t1 , . . . , s̃tk).

Then, the linear complexity of z̃ is upperbound by

Λ(z̃) ≤
k

∑

i=1

(

L

i

)

The proof is referred to [5], [2].

6



Then let us consider the product of two distinct binary m-sequences.

Lemma 2.2 Let r̃ and s̃ be nonzero sequences over GF(q) with irreducible min-

imal polynomials mr̃(x) and ms̃(x) ∈GF(q)[x] whose degrees m and n are rela-

tively prime. Let T1 and T2 be orders of mr̃(x) and ms̃(x).

If sequences are added or multiplied termwise, then the period T of the resulting

sequence z̃ is lowerbound by

T ≥
T1T2

(q − 1)2

In particular, when q=2

T = T1T2

The proof is referred to [5]. By lemma 2.2, for the product sequence which is

the multiplication of two m-sequences in GF(2) the condition of relatively prime

degrees is sufficient to guarantee the product of periods.

On the other hand, let us consider the linear complexity of product sequence.

Lemma 2.3 (Simple Product)

Let r̃ and s̃ be sequences with irreducible minimal polynomials mr̃(x) and ms̃(x) ∈GF(q)[x]

whose degrees m and n are relatively prime. Then the product sequence z̃ = r̃s̃

has irreducible minimal polynomial mz̃(x) over GF(q) of degree mn.

The proof is referred to [5].

7



Example 2.1 To illustrate this principle, we make an example.

Figure 2.1: Product generator and its linear equivalent

In figure 2.1, two stages LFSR has a primitive root β for which β2 + β + 1 = 0

and three stages LFSR has a primitive root γ for which γ3 + γ + 1 = 0. Thus

sequence an and bn are

an = (β + 1)βn + ββ2n

bn = γn + γ2n + (γ2 + γ)n

8



The product sequence zn is

zn = anbn

= (β + 1)(γβ)n + β(γβ2)n + (β + 1)(γ2β)n

+ β(γ2β2)n + (β + 1)(γ4β)n + β(γ4β2)n

Therefore the product sequence has the roots γβ, γβ2, γ2β, γ2β2, γ4β and γ4β2,

which are the six conjugate roots of the irreducible polynomial x6 + x4 + x2 +

x + 1 = 0.

From now on, let us consider the knapsack function. It is defined as following.

Definition 2.1 Let N-integer weights be w1, w2, . . . , wN . Then the knapsack

function Fw(x) for binary N-tuple vector x = (x1, x2, . . . , xN) is as following.

Fw(x) = w1x1 + w2x2 + · · · + wNxN

=
N

∑

i=1

wixi (2.1)

It possesses the potential of realizing a nonlinear function with respect to GF(2).

First, the knapsack is a very simple and fast transformation, but second, it is

also a very flexible transformation(the weights are at our disposal). Thus the

problem of implementing nonlinear functions could be solved very easily - by

using integer addition.

9



Proposition 2.1 Let S be the integer sum of N-binary variables b1, b2, . . . , bN .

Then

S =
N

∑

i=1

bi

and let

S = s0 + s12 + s22
2 + . . . + sr2

r

be the binary representation of S.

Then

si =
2i
∏

(b1, b2, . . . , bN)

where
k

∏

(b1, b2, . . . , bN) =
∑

1≤i1<...<ik≤N

bi1bi2 · · · bik

N binary variables can sum to at most N. Hence their sum is always representable

by xlog2ny + 1 bits by proposition 2.1. To illustrate this principle, we make an

example. [2] [4]

Example 2.2 Suppose N=4, then 3bits suffice to represent the integer sum of

b1, b2, b3 and b4.

Figure 2.2: Least significant Bit function

10



Figure 2.3: Second-least significant bit function

Figure 2.4: Most significant bit function

Then let us consider how many nonlinear orders the knapsack function has. Let

the boolean function evaluating the jth bit of the partial sum S be fw,j(x) for

j = 1, 2, . . . , N .

Proposition 2.2 Let the knapsack equation in equation 2.1 be defined over the

integers, or over the ring of integer modulo a power of 2. When the knapsack

equation is transformed into GF(2)-arithmetic, then the function fw,j(x) has or-

11



der

ord[fw,j(x)] ≤ min{2j, N}

Let us consider the implementation of the real adder. When the two input shift

registers in figure 2.5 are initially loaded with the binary representation of 2

integers and when the feedback memory cell is initially zero, then after (n + 1)

clock cycles the (n + 1) bits corresponding to the binary representation of the

real sum will have appeared serially at the output.

Figure 2.5: Time-sharing of a 3-bit adder to produce bit serially the real sum of

two n-bit integers

Let ã and b̃ be two binary m-sequences whose primitive polynomials have

relatively prime degree L1 and L2. Then the real sum sequence z̃ has the follow-

ing properties. [5]
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• Period The real sum sequence z̃ has period

(2L1 − 1)(2L2 − 1)

• Linear Complexity The real sum sequence z̃ exhibits linear complexity

close to its period length,

Λ(z̃) ≤ (2L1 − 1)(2L2 − 1) with near equality.

13



Chapter 3

Hard Knapsack Generator

sequences

3.1 Properties of Hard Knapsack Generator

Figure 3.1: Rueppel’s Hard Knapsack Generator

14



Rueppel’s hard knapsack generator is described in figure 3.1. The key idea

is to replace the nonlinear feedforward function which is applied to the each

stages of the LFSR by knapsack whose input vector is taken to be the state of

the LFSR and whose output , the integer partial sum, is converted to its binary

representation to form key stream. Let the sequence s̃j produced at the jth output

stage of the knapsack generator. The following is well known properties. [5]

• Let the LFSR which drives the knapsack generator have length L

and a primitive connection polynomial. Also let N-stages PCRs be

clocked by N-times clock speed and bit serial real adder be cleared

after N clocks. Then output sequence s̃j has a period 2L − 1 and

linear complexity as following.

Λ(s̃j) ≤

2j
∑

i=1

(

L

i

)

j < plogLq

Λ(s̃j) ≤

L
∑

i=1

(

L

i

)

= 2L − 1 j ≥ plogLq

The period of Rueppel’s hard knapsack generator depends on the length of

driving LFSR. Thus a long period for Rueppel’s hard knapsack generator needs

a long stage LFSR and many PCRs. Also it needs a bit serial adder which has

high hardware complexity. For example, generally it is unfeasible to attack such

a sequence by means of a linear equivalent when the length L of LFSR is about

50. Thus Rueppel’s hard knapsack generator has many product terms in table 3.1.

In that case although Rueppel’s hard knapsack generator has maximum linear

complexity, its hardware complexity becomes extremely high.

15



Table 3.1: Hardware complexity for L = 50

order The number of product terms

1 50

2
(

50
2

)

= 1225

4
(

50
4

)

= 230300

8
(

50
8

)

= 536878650

16
(

50
16

)

≈ 4.92 × 1012

32
(

50
32

)

≈ 1.8 × 1013

Therefore we need to change the Rueppel’s hard knapsack genenrator for

reducing the hardware complexity but preserving the linear complexity.

16



3.2 Analysis of Modified Hard Knapsack

In this thesis we propose the modified hard knapsack generator to reduce hard-

ware complexity. Instead of two PCRs two LFSRs are replaced in figure 3.2.

Let LFSR 1,LFSR 2 and LFSR 3 have pairwise relatively prime L1, L2 and L3

stages and primitive connection polynomials in figure 3.2. Then the output se-

quence consists of the real sum of L1 product sequences.Suppose L1 = x
L
3
y.

Then we compare the hardware complexity between Rueppel’s and modified

hard knapsack generator.

Figure 3.2: Modified Hard Knapsack Generator

17



Table 3.2: Hardware complexity for L = 50 and L1 = 16

order The number of product terms

(Rueppel’s) (Modified)

1 50 16

2
(

50
2

)

= 1225
(

16
2

)

= 120

4
(

50
4

)

= 230300
(

16
4

)

= 1820

8
(

50
8

)

= 536878650
(

16
8

)

= 12870

16
(

50
16

)

≈ 4.92 × 1012
(

16
16

)

= 1

32
(

50
32

)

≈ 1.8 × 1013

We can see the fact that modified hard knapsack generator has much less

hardware complexity than Rueppel’s in table 3.2. Then we need to guarantee

that modified knapsack generator has mostly same performance as Rueppel’s in

views of period and linear complexity.

First, let us consider the period of modified hard knapsack generator sequence

in figure 3.2. In the product of two distinct m-sequences, the resulting sequence

has the following properties.

Lemma 3.4 Let σ̃1 and σ̃2 be two distinct binary m-sequences with each period

2L1 −1 and 2L2 −1. If L1 and L2 are relatively prime, then the product sequence

σ̃3 = σ̃1σ̃2 has period (2L1 − 1)(2L2 − 1) and irreducible minimal polynomial

mσ̃3(x) over GF(2) of degree L1L2.

Lemma 3.4 can be derived by lemma 2.3. Thus by lemma 3.4 two product se-

quences in figure 3.2 have irreducible minimal polynomials and period (2L1 −

18



1)(2L2 − 1) and (2L1 − 1)(2L3 − 1).

Then we consider the sum of two product sequences which are the multiplication

of two m-sequences.

Lemma 3.5 For each i = 1, 2, . . . , h, let σi be a homogeneous linear recurring

sequence with minimal polynomial mi in GF(2)[x] and least period ri. If the

polynomials m1(x), m2(x), . . . , mh(x) are pairwise relatively prime, then the

least period of the sum sequence σ1 +σ2 + . . .+σh is equal to the least common

multiple of r1, r2, . . . , rh.

The proof is referred to [3].

Let the output sequence produced at the m-th output stage of modified knapsack

generator be z̃m.

Theorem 3.1 In figure 3.2 the period of output sequence z̃m for m = 0, 1, 2, . . . , L2+

L3 − 1 is (2L1 − 1)(2L2 − 1)(2L3 − 1).

Proof: The product sequences which are multiplications of PCRs and LFSR 1

has period 2L1−1. Thus the period of output sequence z̃m for m = 1, 2, . . . , L2+

L3 − 1 depends on the two product sequences which are the multiplication of

two m-sequences. By lemma 3.4 the product sequences of two m-sequences

have irreducible minimal polynomials and period (2L1 − 1)(2L2 − 1) and (2L1 −

1)(2L3 − 1). Thus by lemma 3.5 the period of output sequence z̃m is (2L1 −

1)(2L2 − 1)(2L3 − 1).
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From now on, we will consider the linear complexity. Let the linear com-

plexity of output sequence z̃m produced at the m-th output stage of the knapsack

generator be Λ(z̃m). Suppose that modified knapsack generator has no PCR and

only 3 LFSRs. Then Λ(z̃m) is as following.

Theorem 3.2 In figure 3.2 suppose that no PCR exists. Let two distinct phase

sequences of LFSR 1 be s0 ,s1 and sequences of LFSR 2,3 be a0,b0. Then linear

complexity of the output sequence zm = ams0 + bms1 at m-th stage output bit

is as following.

Λ(zm) ≤ (L2 + L3)L1 +
(

(

L1

2

)

+ L1

)

m
∑

m′=1

m′

∑

k=1

(

L2

k

)(

L3

m′ + 1 − k

)

if m < L2 + L3 − 1 (3.1)

=
(

(

L1

2

)

+ L1

)

(2L2 − 1)(2L3 − 1) if m ≥ L2 + L3 − 1(3.2)

Proof: Initially,

z0 = a0s0 + b0s1

Λ(z0) = (L2 + L3)L1

In next stage,

z1 = a1s0 + b1s1 + a0b0s0s1

Λ(z1) = (L2 + L3)L1 + L2L3

(

(

L1

2

)

+ L1

)

20



From now on, considering the product term of a and b and neglecting the others

z0 = 0

z1 = a0b0s0s1

In 2nd stage,

z2 = a1b1s0s1 + a1a0b0s0s1 + b1a0b0s0s1

= a1b1s0s1 + a0b0s0s1(a1 + b1)

= s0s1

(

a1b1 + a0b0(a1 + b1)
)

In 3rd stage,

z3 = s0s1

(

a2b2 + a1b1(a2 + b2) + (a2 + b2)(a1 + b1)a0b0 + a1b1a0b0(a1 + b1)
)

= s0s1

(

a2b2 + a1b1(a2 + b2) + (a2 + b2)(a1 + b1)a0b0

)

Generally in m-th stage with m ≥ 2,

zm = s0s1

(

am−1bm−1 + (am−1 + bm−1)zm−1

)

= s0s1

(

am−1bm−1 + (am−1 + bm−1)am−2bm−2 + (am−1 + bm−1)(am−2 + bm−2)zm−2

)

= s0s1

(

am−1bm−1 + (am−1 + bm−1)am−2bm−2 + (am−1 + bm−1)(am−2 + bm−2)am−3bm−3

+ · · · + (am−1 + bm−1)(am−2 + bm−2) · · · (a2 + b2)(a1 + b1)a0b0

)
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Thus the linear complexity of zm

Λ(zm) ≤
(

(

L1

2

)

+ L1

)

(

L2L3 + (L2

(

L3

2

)

+ L3

(

L2

2

)

) + · · · +
m′

∑

k=1

(

L2

k

)(

L3

m′ + 1 − k

)

)

=
(

(

L1

2

)

+ L1

)

m
∑

m′=1

m′

∑

k=1

(

L2

k

)(

L3

m′ + 1 − k

)

=
(

(

L1

2

)

+ L1

)

(2L2 − 1)(2L3 − 1) if m ≥ L2 + L3 − 1

with near equality.
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3.3 Simulations and Results

Modified hard knapsack generator has 3 LFSRs and two of them operate as knap-

sack weights. Without LFSR 1 modified hard knapsack is the same as the real

summation generator in figure 2.5. But it has LFSR 1 whose bits switch the

knapsack weights.

Let the number of stages in LFSR i for i=1,2,3 be Li. First when L1 = 2, L2 =

5, L3 = 7 and no PCR exists, let observe the linear complexity of output se-

quence z̃ in table 3.3. Because of no PCR and L1 = 2, the theoretic value of

eq-3.1 and eq-3.2 is exactly same as the simulation result from 0th bit to 4th bit

and almost same in other bits.

Table 3.3: Linear complexity of each bit for L1 = 2, no PCR

Bit Position Linear Complexity

0 24

1 129

2 654

3 2019

4 4329

5 7066

6 9439

7 10914

8 11574

9 11772

10 11808

11 11811
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But if L1 > 2 and PCRs exist, exact linear complexity can’t be calculated. If

the number of input in real adder is k, then real adder has xlog ky carry outputs

and higher order product terms. In figure 3.3 we compare linear complexity for

L1 = 2, 3, 4 and the number of PCRs =0, 1, 2. When L1 = 2 and no PCR exists,

the period of output sequence is (22 − 1)(25 − 1)(27 − 1) = 11811. From 7th bit

to 11th bit the output sequences have nearly maximum linear complexity. Also

in other case from 7th bit to 11th bit they do.

Figure 3.3: Linear complexity of each bit for L1 = 2, 3, 4

Finally, we compare modified knapsack generator with Rueppel’s hard knapsack

generator. Suppose that the total number of stages in all LFSRs of modified hard
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knapsack generator is equal to the number of stages in LFSR of Rueppel’s hard

knapsack generator. Maximum Linear complexity is equal to whole period of

output sequence z̃. But Rueppel’s generator has more bits which have maximum

linear complexity than modified generator. In figure 3.4 Rueppel’s generator has

15 stages LFSR 1. Thus the period of output sequence is 215 − 1 and maximum

linear complexity is also 215 − 1 from 5th bit to 12th bit. On the other hand

modified hard knapsack generator has 3 stages LFSR 1, 5 stages LFSR 2 and 7

stages LFSR 3. The period and maximum linear complexity are (23 − 1)(25 −

1)(27 − 1). But the bits which have maximum linear complexity are from 7th bit

to 12th bit. In figure 3.5 Rueppel’s generator has 18 stages LFSR and modified

Figure 3.4: Linear complexity of modified knapsack vs Rueppel’s generator L =
15, L1 = 3, L2 = 5 and L3 = 7
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generator has 5 stages LFSR 1, 6 stages LFSR 2 and 7 stages LFSR 3. Also both

of two generator has maximum linear complexity closed to period. Therefore we

can see that modified hard knapsack generator has lower hardware complexity

than Rueppel’s generator but nearly same linear complexity profile as Rueppel’s

generator.

Figure 3.5: Linear complexity of modified knapsack vs Rueppel’s generator L =
18, L1 = 5, L2 = 6 and L3 = 7
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Chapter 4

Concluding Remarks

We know that modified hard knapsack generator also has maximum linear com-

plexity closed to the period by theorem 3.2. And the period of output sequence

becomes the product of periods which m-sequences have by theorem 3.1. Thus

by controlling the number of stages in LFSRs we have the sequence generator

with low hardware complexity but nearly same linear complexity and period as

Rueppel’s. But in theorem 3.2, I can’t generalize it for the number of product

sequences. Also we need to study the case that the product sequences and PCR

sequences are summed.

In this thesis we propose modified hard knapsack generator which has two more

LFSRs as knapsack weights than Rueppel’s. However, there are many combi-

nations that LFSRs operate as knapsack weights. In example, the distinct phase

sequences of one m-sequence or more are used as knapsack weights. Or the

generator which has no PCR and only LFSRs are used as knapsack weights. In

that case there may be generators which have higher performance and simple

structure.

27



Bibliography

[1] S. W. Golomb. Shift Register Sequences. Aegean Park Press, P.O.Box

2837, revised edition, 1982. With portions co-authored by Lloyd R. Welch,

Richard M. Goldstein, and Alfred W. Hales.

[2] Edwin L. Key. An analysis of the structure and complexity of nonlinear bi-

nary sequence generators. IEEE Tr. on Information Theory, IT-22,No.6:732–

736, Nov. 1976.

[3] R. Lidl and H. Niederreiter. Introduction to Finite Fields and Their Applica-

tions. Cambridge University Press, 1988.

[4] Robert J. McElice. Finite Fields for Computer Scientists and Engineers.

Kluwer Academic Publishers, 2nd edition, 1995.

[5] Rainer A. Rueppel. Analysis and Design of Stream Ciphers. Springer-Verlag,

1986.

[6] H.-Y. Song. Feedback shift register sequences. In John G. Proakis, editor,

Wiley Encyclopedia of Telecommunications, volume 2, pages 789–802. John

Wiley and Sons Publication, 2003.

28



²DGë�H¹כ���

���+þA�)a Hard Knapsackµ1ÏÒqtl�Ãº\P�_����+þA4�¤ú̧��̧

m-sequence��H�¦&ñ
&h�Ü¼�Ðµ1ÏÒqt÷&��H_��� ú̧�6£§Ãº\P�s���.����"f���+þA)8̈�

»¡¤	�µ1ÏÒqtl�ü<q����+þA�<ÊÃº_����½+Ë\�_�K�"fÄºo���H���+þA4�¤ú̧��̧\�¦Z�}s��¦

��ô�Ç��.&ñ
Ãº »	!lrl�\�¦���½+Ëô�Ç Rueppel_� Hard Knapsackµ1ÏÒqtl� ¢̧ô�Çs�ü<

°ú �Ér _��̧\� _�K� ]jîß�÷&%3���. �t�ëß�, ÅÒl��� U�́#Qt���� �×¼J?#Q_� 4�¤ú̧�

�̧��Z�}��4R"f ½̈�&³s�#Q�90>t���Héß�&h�s�e����.

�:r�7Hë�H\�"f��Hl��>r_� Rueppel_�µ1ÏÒqtl�\�"f 2>h_� Pure Cyclingµ1ÏÒqtl�\�¦

���+þA)8̈�»¡¤	�µ1ÏÒqtl��Ð@/�̂�<ÊÜ¼�Ð+�,���+þA�)aHard Knapsackµ1ÏÒqtl�\�¦]j

îß��%i���. ���+þA�)a Hard Knapsack µ1ÏÒqtl���H �×¼J?#Q 4�¤ú̧��̧�� Rueppel_�

µ1ÏÒqtl��Ð�� ±ú�Ü¼���"f, Õª Ãº\P�_� þj@/ ���+þA4�¤ú̧��̧�� ÅÒl�ü< °ú �Ér :£¤$í
�̀¦

Ä»t�ô�Ç��.���+þA�)a Hard Knapsackµ1ÏÒqtl�Ãº\P�_�ÅÒl���H 3>h_����+þA)8̈�»¡¤

	� µ1ÏÒqtl�\�"f Òqt$í
÷&��H Ãº\P�_� ÅÒl�_� þj�è /BNC�Ãºü< °ú 6£§�̀¦ 7£x"î
��¦,

���+þA4�¤ú̧��̧_� �©�ô�Ç °ú̀�כ¦ Ä»�̧�%i���. z�́+«>�̀¦ :�xK�"f y��y��_� Ãº\P�_� ���+þA

4�¤ú̧��̧\�¦q��§ô�Ç���õ�,���+þA�)a Hard Knapsackµ1ÏÒqtl�Ãº\P��Ér���+þA4�¤ú̧��̧_�

�'a&h�\�"f l��>r_� Rueppel_� µ1ÏÒqtl� Ãº\P�õ� @/1pxô�Ç $í
0px�̀¦ °ú�6£§�̀¦ SX�����

%i���.

Ùþ�d��÷&��H ú́�:���+þA4�¤ú̧��̧, ÅÒl�, Hard Knapsack µ1ÏÒqtl�, Y�L!lr Ãº\P�, m-

sequence,&ñ
Ãº »	!lrl�

29


