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Abstract We consider a class of nonsmooth convex optimization problems where
the objective function is the composition of a strongly convex differentiable function
with a linear mapping, regularized by the sum of both ¢;-norm and ¢;-norm of the
optimization variables. This class of problems arise naturally from applications in
sparse group Lasso, which is a popular technique for variable selection. An effective
approach to solve such problems is by the Proximal Gradient Method (PGM). In this
paper we prove a local error bound around the optimal solution set for this problem
and use it to establish the linear convergence of the PGM method without assuming
strong convexity of the overall objective function.

Keywords Proximal gradient method - Error bound - Linear convergence - Sparse
group Lasso
1 Introduction

Consider an unconstrained nonsmooth convex optimization problem of the form

min F(x) = fi(x) + f2(x), ()]
xeR”
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where f] is a nonsmooth convex function given by

A= wllxsl+ Axl, 2
JeJ
with J a partition of {1, ---,n} and A, {w;};c7 some given nonnegative constants;

Jf2(x) is a composite convex function

fa(x) = h(Ax), 3

where & : R” — R is a continuously differentiable strongly convex function and A €
R™*" is a given matrix. Notice that unless A has full column rank (i.e., rank(A) = n),
the composite function f>(x) is not strongly convex.

1.1 Motivating Applications

Nonsmooth convex optimization problems of the form (1) arise in many contempo-
rary statistical and signal applications [4, 24] including signal denoising, compressive
sensing, sparse linear regression and high dimensional multinomial classification. To
motivate the nonsmooth convex optimization problem (1), we briefly outline some
application examples below.

Example 1 Suppose that we have a noisy measurement vector d € R about an un-
known sparse vector x € R”, where the signal model is linear and given by

d~ Ax

for some given matrix A € R”*". A popular technique to estimate the sparse vec-
tor x is called Lasso [17, 23] which performs simultaneous estimation and variable
selection. Furthermore, a related technique called group Lasso [22] acts like Lasso
at the group level. Since the group Lasso does not yield sparsity within a group, a
generalized model that yields sparsity at both the group and individual feature levels
was proposed in [5]. This sparse group Lasso criterion is formulated as

1 2
min ~[|Ax —d| +J§wj||xj||+x||x||1, “4)

where the minimization of ||Ax — d||2 has a denoising effect, while the middle term
promotes or leads to sparse groups, where J is a partition of {1,2,---,n} into
groups. The £1-norm minimization sparsifies the solution x, and effectively selects
the most significant components of x.

Obviously, the sparse Lasso problem (4) is in the form of the nonsmooth convex
optimization problem (1) with 2 (-) = %H - —d||®. Moreover, if A = 0, (4) is reduced to
group Lasso; if w; =0 for all J € 7, (4) is exactly Lasso problem. We refer readers
to [1, 9] for recent applications of the group Lasso technique.
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Example 2 In logistic regression, we are given a set of n-dimensional feature vectors
a; (i=1,2,---,m), and the corresponding class labels d; € {0, 1}. The probability
distribution of the class label d given a feature vector a and a logistic regression
coefficient vector x € R" can be described by

exp(a’ x)

d=1la;x)= ————.
P |3 %) 1 +exp(a”x)

The logistic group Lasso technique [10] corresponds to selecting x by
m
min (log(l + exp(aiTx) —d;a; x Z wyllxsll-

xeR”
i=1 JeJ

Again, this is in the form of the nonsmooth convex optimization problem (1) with
A=0and

h(u) Z log(1 +exp(u;)) — diu;),

which is strongly convex in u. We refer readers to [6, 7, 13, 16, 18, 20-22] for further
studies on group Lasso type of statistical techniques.

Example 3 Consider a high dimensional multinomial classification problem with K
classes, N samples, and p covariates. Denote the data set as (71, y1), -, (tN, YN),
where for all i = 1,---, N, t; € R” is the observed covariate vector and y; €
{1,---, K} is the categorical response. The covariate vectors can be organized in
the N x p design matrix

T=@ to - )7,
and the model parameters can be grouped in a K X p matrix
x=[x1 x2 - xpl,

where x; € RX denotes the parameter vector associated with the ith covariate.
Let xo € R . Fori=1,---, N, we define

exp(1)

(l))

n =xo+xt;, and q(,n")= ——"—
>t exp(ny

The log-likelihood function is

N
£(xo,x) =Y _logq(yi,n?).

i=1
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The so called multinomial sparse group Lasso classifier [19] is given by the following
optimization problem:

P
min F(x) =—€(xo, x) + Allx |1 +wa||xj||' )

K Kxp
xpeRX  xeR =1

The above problem (5) is can be cast in the form of (1) by adding an extra (vacuous)
term O[[xol|1 + Ol|xo]l-

1.2 Proximal Gradient Method

A popular approach to solve the nonsmooth convex optimization problem (1) is by
the so called proximal gradient method (PGM). For any convex function ¢(x) (pos-
sibly nonsmooth), the Moreau—Yoshida proximity operator [15] prox,, : R" > R" is
defined as

1 2
(’X = i by - . 6
pr <p(x) arg yIIelIan" e(y) + 2 ly —xl (6)

Since % || - —x||? is strongly convex and ¢(-) is convex, the minimizer of (6) exists and
is unique, so the prox-operator prox, is well-defined. The prox-operator is known to
be non-expansive,

[ prox,, (x) = prox, ()| < llx = yll, Vx,yeR"

and is therefore Lipschitz continuous.

Notice that if ¢ (x) is the indicator function ic(x) of a closed convex set C, then
the corresponding proximity operator prox, becomes the standard projection opera-
tor to the convex set C. Thus prox-operator is a natural extension of the projection
operator onto a convex set. For problems of large dimension, the computation of the
proximity operator can be difficult due to nonsmoothness of ¢(-). However, if ¢ has a
separable structure, then the computation of the proximity operator decomposes natu-
rally, yielding substantial efficiency. For instance, for the nonsmooth convex function
f1(x) defined by (2), the proximity operator prox , can be computed efficiently (e.g.,
in closed form) via the so called (group) shrinkage operator [12].

Using the proximity operator, we can write down the optimality condition for (1)
as a fixed point equation

X = Prox, s, (x — otsz(x)), (7)

for some o > 0. The proximal gradient method (PGM) is to solve this fixed point
equation via the iteration

xkt! = prox,, , (xk — akaz(xk)), k=0,1,2,---, 8)

where o > 0 is a stepsize. Since the nonsmooth function fi (cf. (2)) has a sepa-
rable structure, the resulting proximal step prox,, » (-) decomposes naturally across
groups (and/or coordinates) and can be computed efficiently via (group) shrinkage
(see Sect. 2).
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Despite its popularity, the convergence analysis of the proximal gradient method is
still rather limited. For instance, it is only known [3, Theorem 3.4; or 2, Proposition 2]
that if the stepsize oy satisfies

_ 2
O<g<ak<a<z, k=0,1,2,---, ©)]
where L is the Lipschitz constant for the gradient V f,(x):
|V = VAWM <Lix—yl, Vx,yeR",

then every sequence {x¥}; >0 generated by the proximal gradient algorithm (8) con-
verges to a solution to (1). The rate of convergence is typically sublinear O(1/k)
[11]. The linear rate of convergence is still unknown except for some special cases.
For instance, when fj(x) = ic(x), the indicator function of the polyhedron C, the
proximal gradient method (8) has been shown [8] to be globally linearly convergent
to an optimal solution of (1), so long as the function f> has the composite struc-
ture (3). The significance of this convergence analysis lies in the fact it does not
require strong convexity of f,. More recently, Tseng [12] has proved that the PGM
is linearly convergent for the case fi(x) =), g wyllxsll, again without assuming
the strong convexity of f,. The latter is particularly important for the applications
described in Sect. 1.1. In particular, for either Lasso, Group Lasso or Sparse Group
Lasso, the number of measurements is far less than the number of unknowns. There-
fore, we have m < n, so the matrix A cannot have full column rank, implying that f»
cannot be strongly convex.

In this paper, we extend Tseng’s results of [12] to the case where f; is given
by (2), namely, fi(x) = Zjej wy|lxs|l + Allx]l1. In particular, we establish the lin-
ear convergence of the proximal gradient method (8) for the class of the nonsmooth
convex minimization (1). Our result implies the linear convergence of PGM (8) for
the sparse group Lasso problem (4) even if A does not have full column rank. This
result significantly strengthens the sublinear convergence rate of PGM in the absence
of strong convexity. Similar to the analysis of [8, 12], the key step in the linear con-
vergence proof lies in the establishment of a local error bound that bounds the dis-
tance from an iterate to the optimal solution set in terms of the optimality residual

I — prox ;, (x — V f2(x))]|.

2 Preliminaries

We now develop some technical preliminaries needed for the subsequent convergence
analysis in the next section.
For any vector a € R", we use sign(a) to denote the vector whose ith component
is
1, ifa; >0,
sign(a;) := 1 —1, ifa; <0,
[—1,1], ifa; =0.
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With this notation, the subdifferential of f (cf. (2)) [14] can be written as df] =
(-, @f1)y, ) with

(f1(x)); = wydllxsll +23lxs 11

_{ij—l—)LBoo, ifx;=0,

~ | wopdy +Asign(xy), ifxy #£0 (10)

for any J € J, where B and By, are £3-norm and £..-norm unit balls, respectively,
B={seRVI||s| <1},  Beo={teRV|[]o<1}.

Let us now consider a generic iteration of PGM (8). For convenience, we use
x, xT and « to denote x¥, x¥*1 and oy, respectively. In light of the definition of
prox-operator (6), we can equivalently express the PGM iteration (8) in terms of the
optimality condition for the prox operator

x —aVfh(x) eadf (x+) +axT.

Using the separable structure of f; (cf. (2)), we can break up this optimality condition
to the group level:

Xy —a(sz(x))J € a(afl(x+))1 —i—x}L, forall J € 7, an

where (3f1(x")), is given by (10). Notice that for any J € 7, the component vector
x;’ is uniquely defined by the above optimality condition (11).
Fix any x and any J € J. For each j € J, let us denote

0, if(x—aVx))sea(wsB+ ABsx)
Bjla) = or |[(x —aV f2(x)) ;| < @A, (12)
(x —aV f2(x)); —alrsign((x —aV f2(x));), else.

Notice that, in the second case of (12), B («) is simply equal to Shrink{_y; «;1((x —
aV fr(x));), where the shrinkage operator is the same as that in the compressive
sensing algorithms. Namely, for any y > 0, the shrinkage operator over the interval
[—y, y]is given by

0, if [ul < v,
Shrink|_, ,j(u)=qu+y, ifu<-y,
u—y, ifu>vy.

We now provide a complete characterization of the PGM iterate (8) by further sim-
plifying the optimality condition (11).

Proposition 1 The PGM iterate x* can be computed explicitly according to

(x —aV f2(x) € a(wyB+ ABs),

+_ 0,
= {,31((1)(1 —wya/||Bs@)), else. (13)
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Proof Fixany x.If (x —aV f2(x)); € a(w;B+ ABx), then it follows from (10) that
the optimality condition (11) is satisfied at 0, implying xj = 0 (by the uniqueness of
xj). The converse is also true: if (x — aV f2(x)); € a(wsB + ABx), then xj #0,
because otherwise the optimality condition (11) would be violated.

Next we assume (x — aV f2(x)); € a(w;B 4+ ABx) so xf # 0. If, in addition,
(x —aV fa(x)); € [~ar,alr], then the optimality condition (11) implies x,.+ =0
(simply check that the optimality condition is satisfied at the point 0, and use the
uniqueness of x;’).

The remaining case is both (x — aV fo(x)); € a(w;B + ABs) and |(x —
aV f2(x)) j| > ai. In this case, x}' # 0 and the optimality condition (11) implies

+
x7
(x — anz(x))j = xj+ +aw; ”x'ﬂr” +ar sign(x;r).
J

Since the terms on the right hand side have the same sign, it follows that sign((x —
aV fa(x));) = sign(x;'). Replacing the last term by sign((x — «V f2(x)) ;) and rear-
ranging the terms, we obtain

+

X
Bj(@) = (x —aVfr(x); —arsign((x —aV f2(x) ;) =x] +aw, ”x"+” (14)
J

which further implies

1
> =] = || (1w ).

X
jeJ:xj-r;éO I J I

where we have used the fact that 8;(a) = 0 whenever x}' = 0 (see the definition of
Bj(a) (12)). Hence, we have

[<7 1= 18s @] = awy.
Substituting this relation into (14) yields
x;r =Bj() (1 —wya/|Bs@)])
which establishes the proposition. g
Proposition 1 explicitly specifies how the PGM iterate x* can be computed. The
only part that still requires further checking is to see whether the first condition in (12)
holds. This can be accomplished easily by solving the following convex quadratic

programming problem:

min Y (x; —aV fa(x); — art;)’ (15)
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By Proposition 1, if the minimum value of (15) is less than or equal to azwg, then
we set x}' =(; else set

xf=Br@)(1—wya/|Bs(@)

) (16)

where S () is defined by (12). In fact, due to the separable structure of the cost
function, the minimum of (15) is attained at

tj =proj_y y((x —aV ), /ar), jeJ

and the minimum value is simply

2

Y Bia) =B

jelJ

where 8; () is defined by (12).
In light of the preceding discussion, the updating formula (13) in Proposition 1
can be rewritten as

+ if | By ()| <owy,

0,
Y= {ﬁf(a)(l —wya/llBs@)), otherwise. (17)

Hence, we can summarize the PGM iteration as follows:

Proximal Gradient Method (PGM)
Step 1 Given initial guess x° and a small positive number &, set k = 0.
Step 2 Select a step size o by some rule (e.g., Armijo), for J € 7, set

kL {0, if ||/3](f>tk)|| <oapwy;
J B ()1 —wyor/lIBy (o)), otherwise,

where 8 (o) is defined by (12).
Step 3 If ||x"‘Jrl —xk || < &, then stop, else, set k =k + 1, go to Step 2.

Another useful property in the analysis of PGM is the fact that Ax is invariant over
the optimal solution set of (1). Denote the optimal solution set of (1) by

)‘(:{x*ew | F(x*):minF(x)]. (18)
X
Proposition 2 Consider the nonsmooth convex minimization problem miny F(x) =

f1(x) + fa(x), where fi and f> are given by (2) and (3), respectively. Then Ax* is
invariant over X in the sense that there exists y € domh such that

Ax* =79, Vx*eX. (19)

Proof The argument is similar to Lemma 2.1 in [8]. Since F(x) = f1(x) + f2(x) =
f1(x) + h(Ax) is continuous and convex, the optimal solution set X must be closed
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and convex. For any x*, X € X, we have by the convexity of X that (x*+Xx)/2¢€ X.
It follows that

F(x*)=F@&) = %(F(x*) + F(X)) = F(x*;_£>

which further implies

%(fl(x*)+h(Ax*)+f1(i)+h(A)z)):fl(x ;JE)—i—h(A(x +x>>

By the convexity of i(-), we have

h(Ax*) + h(A%) . h<A<x* +x))
2 - 2 ’

Combining the above two relations, we obtain

NG5+ filF) x4 x
ROEVEAD (5745

By the convexity of fj(x), it follows that
" -
f1(x) + f1(X) S

x*+x
) /fl( D) )

This implies that W =fi (%). Therefore, we obtain

WA +hAS) _ (x4
AR (a(557))

By the strict convexity of 4(-), we must have Ax™ = Ax. O

3 Error Bound Condition

The global convergence of PGM is given by [3, Theorem 3.4]. In particular, under
the following three assumptions:

Assumptions
(A1) fiis alower semi-continuous convex functions from R” to (—oo, +00) such
that dom f # @;
(A2) f>:R"— Risconvex with a L-Lipschitz continuous gradient V f>, i.e.,

IVAx) = VAEM|<Lix—yl., VY(x,y)eR" xR

where L > 0;
(A3) fi1(x)+ f2(x) = +oo as ||x|| — +oo.
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and if the stepsize o satisfies

O<ao<y<a<—, k=0,1,2,---,
then every sequence {x*}; >0 generated by proximal gradient algorithm converges to
a solution to (1).

Let us now focus on the linear convergence of PGM. Traditionally, linear conver-
gence of a first order optimization method is only possible under strong convexity
and smoothness assumptions. Unfortunately in our case, the objective function F'(x)
in (1) is neither smooth nor strongly convex. To establish linear convergence in the
absence of strong convexity, we rely on the following error bound condition which
estimates the distance from an iterate to the optimal solution set.

Error Bound Condition Let us define a distance function for the optimal solution
set X (cf. (18)) as

distg (x) = inf [lx — y||
yeX

and define a residual function

r(x) =prox ; (x — V f2(x)) — x. (20)

Since the prox-operator is Lipschitz continuous (in fact non-expansive), it follows
that the residual function r(x) is continuous on dom f>.

We say a local error bound holds around the optimal solution set X of (1) if for
any £ > min, F, there exist scalars k > 0 and ¢ > 0, such that

distg(x) <« ||r(x) \

., whenever F(x) <&, |r(x)| <e. (1)

To simplify notations, we denote g =V f>(x) and B := B;(1) (cf. (12)). In light
of Proposition 1 and specializing the update formula (13) for the proximal step with
o = 1, we can write the residual function r(x) as

—X7, if |Bs1 <wy,

Br—xs—wiBs/IBsll. if 11> wy 22)

r(x)y :{
forall J € J.

Theorem 1 Consider the nonsmooth convex minimization problem (1) with f1(x)
and f>(x) defined by (2) and (3). Suppose fi1(x) and f>(x) satisfy the assumptions
(A1)—(A3). Then the error bound condition (21) holds.

The proof of Theorem 1 is rather technical and extends the analysis of Tseng [12].
In particular, we need two intermediate lemmas described below. For simplicity, for
any sequence {x¥}; >0 in R" \ X, we adopt the following short notations:

|, k= argn}innxk -

xeX

k= r(xk), O 1= “xk —xk
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and

W S ST 23)
3k

Lemma 1 Consider the nonsmooth convex minimization problem (1) with f1 and
J2 defined by (2) and (3), respectively. Suppose f1(x) and f>(x) satisfy assumptions
(A1)—(A3). Furthermore, suppose there exists a sequence x', x>, --- € R" \ X satis-

fying
rk
F(xk)gg“, Vk and {rk}—>0, {—}—>O 24)
and Au = 0. Let
=5k + sa. (25)
Then there exists a subsequence of {x*} along which the following:
0 gy +wsd|&5] +r0 )55, (26)

is satisfied for all J € J.

Lemma 2 Suppose f1(x) and f(x) satisfy assumptions (A1)~(A3). Moreover, sup-
pose there exists a sequence x', x?, ... € R" \ X satisfying (24). Then there exists a
k > 0 such that

|x* = 2| <k||Ax* = 5| vk 27)

The proof of Lemmas 1-2 is relegated to Appendix A and B. Assuming these
lemmas hold, we can proceed to prove Theorem 1.

Proof of Theorem I We argue by contradiction. Suppose there exists a { > min F
such that (21) fails to hold for all ¥ > 0 and ¢ > 0. Then there exists a sequence
x!, x2, ... e R"\ X satisfying (24).

Let § = Ax* for any x* € X (note that y is independent of x*, cf. Proposition 2)
and let

gF =V (%) = ATVR(AXY), g:=ATVh(). (28)
By Proposition 2, g€ = ATVh(AxF) = ATVh(3) = g for all k. Since

2

)

ke argrrbinfl (x* +a) + %Hd + g

it follows from the convexity that
Oe afl(xk —l—rk) + K+ gk,
The latter is also the optimality condition for

ke argmdin(gk +rk, d)+ fi (xk +d). (29)
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We use an argument similar to that of [12]. In particular, by evaluating the right hand
side of (29) at r* and ¥ — x*, respectively, we have

(gk+rk,rk>+f1(xk+r) (g +rk % —x)—f-fl(ik). (30)
Similarly, since x* € X and g* = g, it follows that
1
0e argrrbinfl(ik +d) + 3 ||d + 3¢ ||2
which is further equivalent to

Oeargmdin(g,d)—i—fl(ik—i—d). (31)

By evaluating the right hand side of (31) at 0 and x* +r¥ — ¥, respectively, we obtain
(8+0,0)+ fi(x* +0) < (g, xF + % = 2F)+ i (&5 + x5 + 5 =5,

ie.

AGE) < (g, x5 + % =7+ fi(xF+ ). (32)
Adding (30) and (32) yields

e R [ R e A !
By (28), the strong convexity of 4 and Lemma 2 (cf. (27)), we obtain
(g" — g, x* — ) = (VA(Ax*) = VA(), Axk — ) > o | Ax = 5| > |k =5
Moreover, since || A|| := max =1 || Ad |, it follows that
(8 = &%) = (VAG) = Vh(Ax), Arf) < LA 5" = & |]

Combining the above three inequalities gives

S L B A B [T R Gl [ Eane

I

which further implies

%”xk P < (LIAIP+1) <5 - V.
Canceling out a factor of l|xk — x| yields
e =T < @A+ 0l v
which contradicts (24). This completes the proof of Theorem 1. O

@ Springer



On the Linear Convergence of a Proximal Gradient Method 175

4 Linear Convergence

We now establish the linear convergence of the PGM (8) under the local error bound
condition (21). Let F(x) = f1(x) + f2(x) where f1 and f> are defined by (2) and (3),
respectively. Suppose that V f; is Lipschitz continuous with modulus L. Let {x}; >0
be a sequence generated by the PGM (8). There are three key steps in the linear
convergence proof which we outline below. The framework was first established by
Luo and Tseng in 1992 [8].

Step 1 Sufficient decrease. Suppose the step size «y is chosen according to (9), but
with @ < % Then for all £ > 0, we have

F() = FEH) > e =247 forsomeer >0, (33)

Step 2 Local error bound. Let X denote the set of optimal solutions satisfying (7)
and let dist (x) := min . [lx —x*||. Then for any £ > min F (x), there exist
some k, & > 0 such that

distg (x) <« [[x — prox p, [x = V fa(0)]|. (34)
for all x such that [|x — prox , [x — V fa(x)]|l < &.
Step 3 Cost-to-go estimate. There exists a constant ¢; > 0 s.t.
. 2
F(x*) = F* < ep(disth () + [T =x5)7), k. (35)

We first establish the sufficient decrease property (33). Notice that the PGM itera-
tion (8) can be equivalently written as

k= argmin{fl(x) +(Vf2(xk),x —xk)—i— L||)c —xk ||2} k=0,1,2,---.
X 20

k

Plugging the values of x = x**! and x¥, respectively, into the right hand side yields

s = P < Al

f] (xk-‘rl) + (sz(xk)’xk-‘rl _ xk) + 2ak

Since L is the Lipschitz constant of V f, it follows from the Taylor expansion of f>
that

F(xk+1) — F(xk) < fi (ka) - fi (xk) +<Vf2(xk),xk+1 —xk)—l— %”xk+l —xk”2

_L k+1 k2 £ k+1 k2
< gl P S -

e L R
20, 2 20

where the last step is due to (9). Since & < 1/L, it follows that the sufficient decrease
condition (33) holds for all k > 0 with
_1—al

= 0.
cl 7 >
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The local error bound condition ho}ds due to Theorem 1. So we need to establish
the cost-to-go estimate (35). Let X € X be s.t. distg (x¥) = || x¥ — ¥*||. The optimality
of x**1 implies

_ _ Lo
Si(E) +(V (), 5 =) 4 o5 x|

L”xkﬂ .

“°
20

> fl (xk+1) + (Vfg(xk),ka _ xk> +
implying
_ - | L
(Vfg(xk),ka — xk> + fi (ka)—fl (xk) < Edmt?{ (xk) < @ dlsti—( (xk).
Also, the mean value theorem shows

fz(ka) _ fz(ik) — <Vf2(77k), xk+1 _ )Ek>

for some ¥ in the line segment joining x**! and x*. Combining the above two rela-
tions and using the triangular inequality

I =4 o 4 e = 1 i o)
yields
)+ A1) = A7) - ()
= (VA() =)+ AW - A()
) VL0 =V () o - )

+ L[ = -

= O(H)ck"’1 —xk ||2 + dist?—( (xk)),

where the first inequality is due to the Lipschitz continuity of V f, and the second
inequality follows from the triangular inequality. This establishes the cost-to-go esti-
mate (35). We are now ready to combine the three steps outlined above to establish
the following main linear convergence result.
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Theorem 2 Assume that f| is convex and f> is convex differentiable with a Lipschitz
continuous V f>. Moreover, suppose X is nonempty and a local error bound (34)
holds around the solution set X, and that the step size oy, is chosen according to

O<a<uy<a<l/L, k=0,1,2,---.

Then the PGM algorithm (8) generates a sequence of iterates x°, x', - | x*, .. that
converges linearly to a solution in X.

Proof First, the sufficient decrease condition (33) implies [xkt! — xk)12 = 0. Since
1
[ = prox [+ = VL () < — 2 = proxg, f, [x* — eV Lo ()]]
_ l”xk _ kel H’
o

where we used the fact liminfyay > «, it follows that
||xk — prox g, [xk — sz(xk)] || — 0.

Since the function values F (xk ) is monotonically decreasing (33), it follows that the
local error bound (34) holds for some « and €. In particular, for sufficiently large &,
we have

disty (") < c|x* = prox, [x* = V2 ()]|
implying distg (x¥) — 0. Consequently, by the cost-to-go estimate (35) we have
F(x*) — F*.
Now we use the local error bound (34) and the cost-to-go estimate (35) to obtain
F(H) = P < codisg () + o441 = 2 )
< a2 = prox, [ = V ()| + [+ — )

K2€2 2

< e ¥ Pl AP el -
* Tk

K2C2 + 2 2
< ol ka _ kel H

K+ e k k+1
S Crmin a0 = FET)

Hence, we have

F(ka) _ ¥ c3 (F(xk) _ F*),

/N
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where

K2C2 +

G=—".
cyminf1, o?}

This implies the Q-linear convergence of F x*y > F*. In light of (33), this further
implies the R-linear convergence of ||xk+1 —xk ||2. Thus, {xk} converges linearly to
an optimal solution in X. d

5 Closing Remarks

Motivated by the recent applications in sparse group Lasso, we have considered in this
paper a class of nonsmooth convex minimization problems whose objective function
is the sum of a smooth convex function, a nonsmooth ¢{-norm regularization term
and an £;-norm regularization term. We have derived a proximal gradient method
for this problem whose subproblem can be solved efficiently (in closed form). More-
over, we have established linear convergence of this method when the smooth part of
the objective function consists of a strongly convex function composed with a linear
mapping, even though the overall objective function is not strongly convex and the
problem may have multiple solutions. The key step in the analysis is a local error
bound condition which provides an estimate of the distance to the optimal solution
set in terms of the size of the proximal gradient vector.

Appendix A: Proof of Lemma 1
Foreach J € 7,ifu; =0, then )?/; = )E’} and (26) holds automatically (since ¥ € X).

In the remainder of the proof, we assume iy # 0.
Since f> is given by (3), it follows from (1), (18), and (19) that

;‘(:{x

D wylxsll+Alx ]l =min F — h(5), Ax =y},
JeJ

and by the positivity of A or w; > 0 for J € J, X must be compact. In fact, the level
sets of F'(x) must also be compact.
Let

=V LN =ATVR(AXY), = ATVAG). (36)

By (19) and (36), Ax* = j and V f> (%) = g for all k, where ¥ = argmin;_g||% —
XK.

Since the level sets of F are compact, it follows from (24) that the sequence
{x*} must be bounded. By further passing to a subsequence if necessary, we can
assume that x¥ — ¥ for some X. By assumption (24), the sequence {r(xk)} con-
verges to zero. Since the residual function r(x) is continuous (cf. (20)), this im-
plies 7(¥) =0, so X € X. Hence & = ||x¥ — x¥|| < |x* — X|| = 0, so that ¥¥ — x.
Also, by (36), g¥ = V(xF) = Vfr(¥) = g. Since fi(x¥) > 0, it follows that
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h(Ax*) = F(x*) — fi(x*) < F(x*) < ¢ for all k. Since h is strongly convex, its
level set must be compact. This implies that {Ax*} and 7 lie in some compact convex
subset Y of the open convex set dom /. By the strong convexity and the assumption
that Vh is Lipschitz continuous on Y, we have

olly = 3I? <(Vh() = Vh@).y 5] and  [|VA(y) = VAG)| < Lly -5l
VyeY. (37
Since by assumption

(Axk —3)  AGF -5

= — Au =0,
Sk [k — x|

it follows that || Ax* — || = 0(8). Since Ax¥ and y are in ¥, the Lipschitz continuity
of Vhon Y (see (37)) and (36) yield

=g+ 0(|AxF — AF ) =g + oS0 (38)

Consider a group J € J. We decompose J = J(’)‘ U Jlk, where )Ef =0, iff j € J,
and if #0,iff jeJ lk In general, Jé‘, J lk vary with iteration index k. Since there
are only finitely many choices for Jéc and Jlk , by passing onto a subsequence Ky if

necessary, we can assume that J(’)‘ and Jlk are fixed. Let us denote them simply as Jy
and Jp, respectively. Then we have for all k € Ky

J=JUJi, & =0forjeJoandx}#0for;e . (39)
By further passing to a subsequence if necessary, we consider the following three

cases:

(@) B4 < wy, forall k;
(b) 1%l > wy, and X% % 0 for all k;
© 11BX1 > wy, and ¥% =0 for all k.

Case (a). In this case, the formula (22) implies that r’Jc = (r(xh)); = —x’} for
all k. Since r¥ — 0 and x* — &, it follows that ¥; = 0. Also, by (23) and (24),
k =k —k —k
—r =X o(6x) — x X
k=0T ) =%y implying ity = — lim ~L. (40)
Sk Ok k—o00 O

Since uy # 0, it follows that )E]; # 0 for sufficiently large k € Ko, so J; # @. By
V f»(x%) = g, ¥¥ € X and the optimality condition, we have
)Ek
Oeg1+w1m + asign(i%). 1)
Xy

We first consider the entries in Jo = J \ J;. Since )Eﬁo =0, it follows from (40) that
i j, = 0. By (25), we have

&, =% + 83y, =0. (42)
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Also, by (41), we have

_ 31
0= xljo € — wJ (gJO + A 51gn(xJO)) 43)
Since ||)E]J‘ || # 0, it follows from (42)

0==1%} € —C(gs +rsign(£})). VCeR.

Letting C = 1550 , we have

wy

B (

0=1%} e— g1, + Asign(£5)). (44)

It remains to consider the entries in J;. Since for j € J; and k € K, J?f # 0, there
exist a subsequence Ky € Ko and a constant vector s, ,

sign(¥}, ) =s,, fork e K1 S Ko, (45)
and by (41) we have
x§1 :—L(g] +)»sign(ik ))z—i(éj + Asy,) (46)
ek w, & wy ST

implying that )E’}] / ||)E’} || is constant and parallel to u 5, (cf. (40)). Hence, we have

% B a1

Xy . J

! —_ lim — (gjI + A 51gn(x]1))
||XJ|| k=400 ||XJ|| ||MJ|| wy

Together with the above equation and by (41), that is, xX L= ik J il (gJ, +2 51gn(x 7 ),
we have

CIEGI =8 lag |

wy

~k

Xy, _xJ| +8k 5= ( +As1gn( )) a7

Because iy, = —limk_moiﬁl /8k and iy, # 0 (from u; # 0 and u j, = 0), for suffi-
ciently large k € K1, 8 = 0(||)z’;l ), therefore, ||X%| — 87liis || > 0 and sign()?lj‘l) =
sign(i’}l) =sy,. Then for sufficiently large k € K1, by (46), (47), the two vectors )E’}]
and )22 are parallel so that

sk =k
X Xy
EARREA
Since ||)2J|| = ||)cJ1 || and ||le | = ||xJ|| we have
~k sk —k ~k
Xy Xy Xp Xy
IS0 =50 IIXJ1 G
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Substituting this into (46) and using sign(f'}l) =5y, yields

sk
x
gy, +Asign(® ) +wy l fl” —0. (48)
X7
By (44) and (48), we obtain (26).

Case (b). Similar to Case (a), we will show that the two vectors )E]; and uy are
parallel to the direction g5 + A sign(i’}), and that iljl can be written as (47), while
x§0 —x]; =uj, = O._

First, since x¥ € X and )E§ # 0, it follows that J; # @ for k € Kg. The optimality
condition and V f> (x5 = g imply (41), (45) and (46) hold for k € ;. According to
(45) and (46), the sign of various quantities are fixed for all sufficiently large k € Ky

—sign(gy,) = sign()fljl) = 51gn()cJ1 gjl) =57 = 51gn( - ng) (49)
In light of (41), we can see

i = ”;C)JJ” (g5, + »sign(x5)). (50)

We next use a limiting argument to show that i, is also parallel to the direction
&rn +A sign(;fﬁ1 )). Denote
BY =3k — g, — asign(¥ — 2/) (51)

and note that B8 = x% — ¢k — A sign(x% — gh) (cf. (12)). It follows from (23) and (38)
that

B = Bl + 8y — g5 + 5 = B + uly — 0(80). (52)
Using the optimality condition (41) and the property (49), we can simplify (51) as

i )zk
Bl =), +w ign(¥ ) — Asign(¥ - 2,,) = §1<1+"_’—,f), (53)
(B [
which, by ||;z’;l | = 14 11, further implies
1851 = 185, = 155, [ +ws > wy.

Hence, we have 1 — IUJ/||B‘]; | # 0. By % € X and (22), we obtain

0=ry=p5 -} —wJﬂJ/“:BJ” —_x1+51(1 _wJ/“:BJ

):

and by )E];O =0, we have from (51)
B% =0, and — gy, —Asign(—gy)=0. (54)
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From (53), we have
ok ok —k ~k
ﬂJl '311 _ X7 o X

A ETRET

Moreover, it follows from JZ’}O =0 and (54),

2k ~k
'6]() _ x]() _
A
Therefore, we have
¥ B
IIXJII 1851
so by (41) and (46),
a2k
/3] 1, .k By, 1, ok
—— (g7 + Asign(x7)), —— = ——(gy, + Asign(x . (55
1851 wr 5) 1851 wy & =)

Recall that f’; = r()?ﬁ) = 0. It follows from (22) and (12) with o = 1 that for suffi-
ciently large k € KCy,

BS BY
k -k k k = . k k J J
I ST T = 8~ B hsign(y, = g) —sa v <||.311|| - W)
B, B
:o((Sk)—i—wJ( L ) (56)
1851 1B

Now, using (51), Taylor expansion and (55), we obtain

By, By Bh sl —oG By By B Sl —o(

1BEI 1Bk 18X A T Bk 1Ak 18X
(B k) Sty
=L IR o) +
gk P ||ﬁj||
B _<g,1 + Asign(xh ) Spuh, ><g,1 +Asign(£’}l)>
w; BRI wy
Sruk,
+o0(Sr) +
TR

Hﬁ, I

Multiplying both sides by —5=, using (24) and (56), yields in the limit:

(57)

g +rsign(Eh) _\ /&5 + Asign(E)
s U, +uy

wy wy
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This shows that u, is parallel to the vector (gy, +Asign(3€ljl)). Since
187, + A sign(E5 )| = wy (by (46)), we have

_ u
S L P
wy

+ A mgn(xl1 ))
Combining this with (50), we obtain

_k -
IS £ &l |

wy

~k

& =55 + 8ty = (g, + »sign(xh)). (58)

where ||)E§|| - (S%”L_tjl | > O for sufficiently large k € K; (in fact, if x; # 0, then

the statement is obvious; else x; = 0, because u; = —limkﬁooilj/&( and uy #0,
8 = O(IX5 1))
Next we consider the entries in Jy. Clearly, we have )EI;O = 0 by definition. We now

show by a limiting argument that u 4, is also zero. By (22), substituting ,32 into —r§0

and merging some similar items, we have

_rJ() IBJ() +xJ() +wJﬂJ()/||ﬂJ ||

Wk

= ok J

1851

Moreover, by (38), we have

w .
+ <1 — F’ill>(g];0 +)»51gn(x§0 — gljo)).
J

k wy k wy - : k k
—ry, = ——x + <1 — —,()(gj0 + 0(8k) +)»Slgn(x10 - gJo))’
1851 1851

wy wy . ) i |
= ”Ig—k”xl;o + (1 - m)(—k sign(xy, — gJ,) +0(8k) +)»Slgn(x’;0 _ gz;o))’
J J

where the second step follows from (54). Since the signs are fixed for sufficiently
large k € ICy (cf. (49)), we have —A sign(x , — g,) + A sign(x'}0 — gljo) = (0, therefore,

k wy i
ko Mk (g ) 0.
To = gy o ( 1851 )

Multlplylng both sides of above equation w1th and letting k — +o00, we obtain by
(24) that x* 7o /8 — 0. This further implies

k <k
X7 —X
ijy= lim "% _o
k—+00 Sk
So, &5 =& + 8}t 5, = 0. Combining this with (58) yields

REIEALN

wy

~k

xJ_xJ+8k ( +A51gn(xJ))
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Using an argument identical to that for the Case (a), we can show that J?’j satisfies
(48) for sufficiently large k € K1, thus establishing the desired property (26).

Case (c). In this case 0 = )25 — X, it follows from that x; = 0. By ||,3]J‘ | > wy
(the assumption for Case (c)), it follows that x]; + r§ # 0. By the optimality condition
of the prox-operator we have

k ok k k x4y
gy +asign(xy +r7) 3 —r) —wj————, (59)
x5 + 75l
Notice that
k —k
r o ox xk—x
lim = =0, lim =L = lim L4 — g,
k—o00 8 k—oo 8  k—oo b

k k XMoo
Xy try . 5 T uy
m ﬁ= 1m X P = — .
k—=oo |lxy 1yl koo ||);_J + g_/” llusl
k k

Moreover, notice that

k4 .k k k
X, +r xX;+r
lim sign(x§ + r’}) = lim sign( J J) - sign( lim —Z J) =sign(uy).
k— 00 k— 00 Ok

k—oo O

Thus, by taking limit k — oo in (59), we obtain

g+ Asign(iis) > —wy —
i |
implying
82,
g, + Asien(82ii;) > —wy; —&
8+ hsign(Biits) 3 —wa

This is precisely the optimality condition for )211‘ = )E]; + 8,%12 J= 8,%12 7- In other words,
we have (26) as desired.

Appendix B: Proof of Lemma 2

We argue by contradiction. Suppose this is false. Then, by passing to a subsequent if
necessary, we can assume that

| Axk — 3]

1 —i . % O~
[k — XK

Since y = Ax¥, this is equivalent to {Au¥} — 0, where u* is defined by (23). Then
|lu*|| = 1 for all k. By further passing to subsequence if necessary, we will assume
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that u* — it for some i with ||iz]| = 1. Then Ai = 0 and ||iz|| = 1. Moreover,
AxF = AR + 8h) = 5 + S Aub =5+ 0(80).

Since {u¥} — i and ||it|| = 1, we have (u*, it) > % for all k sufficiently large. Fix any
such k and consider £* defined by (25), namely, =xk+ 8,%&.

Since Aii = 0, it follows Ax* = Ax*, which further implies V fo(%%) =
ATVh(AR*) = ATVRh(AX*) =V f5(i*) = g. By Lemma 1, since £¥ satisfies (25), it
follows that

0V (#), +wsol ] + 208 (60

for all J € 7. Hence x* € X. Since (x* — x*, it) = 8 (u*, it) > 8¢ /2 and ||| = 1, it
follows that

O O e (SR B

< | = 7P = =80 < |k — |7, forallo<s <1,

which contradicts x* being the point in X nearest to x¥. This proves (27).
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