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ABSTRACT 

A class of periodic binary sequences that are obtained from the incidence vectors of hyperplanes 

in finite geometries is defined, and a general method to determine their linear spans (the length 

of the shortest linear recursion over GF(2) satisfied by the sequence) is described. In particular, 

we show that the projective and affine hyperplane sequences of odd order both have full linear 

span. Another application involves the parity sequence of order n, which has period p" - 1 and 

h e a r  span uL(s)  where u = (p" - l ) / (p  - 1) and L(s)  is the linear span of a parity sequence 

of order 1. The determination of the linear span of the parity sequence of order 1 leads to  an 

interesting open problem involving primes. 

1. I N T R O D U C T I O N  

Binary sequences which satisfy recursions over GF(2)  are easy to generate and have many 

applications in modern communication systems. If the recursions involved are linear, then the 

sequences can have several desirable properties, e.g., long periods, useful correlation properties, 

and balanced statistics. Binary sequences of maximum period 2" - 1 that are generated by 

linear recursions over GF(2)  of degree n are called binary rn-sequences of span n [l]. 

These linear recursive sequences suffer from one drawback: only relatively few terms of the 

sequence are needed to solve for the generating recursion; i.e., their linear span (the length of the 

shortest linear recursion over G F ( 2 )  satisfied by the sequence) is short relative to their period. 

Such easy predictability makes binary n-sequences unsuitable for some applications requiring 

pseudorandom bits. 
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In this paper, we consider a class of periodic binary sequences that are obtained from the 

incidence vectors of hyperplanes in finite geometries. From another point of view, these se- 

quences can be obtained from q-ary rn-sequences of span n through a mapping p from GF(q)  to 

GF(2) ,  where q is a power of an odd prime. We show that the.linear span of these sequences is 

comparable to their large periods. In fact, the linear span of such a sequence S of period qn - 1 

is given by uL(s) where v = (q” - l ) / ( q  - 1) and L(s)  denotes the linear span of a sequence s 

of period q - 1. The binary sequence s is obtained by applying the defining mapping p of S to 

a listing of the nonzero elements of GF(q) according to the powers of some primitive element. 

If q is of moderate size, then the linear span of s is easily computed by the BerlekampMassey 

algorithm [2]. 

The next section introduces the notions involving the linear span of a sequence. Section 3 

describes the construction of the binary sequences obtained from finite geometries. Section 4 

establishes the upper bound of the linear span of these sequences, while section 5 shows that 

this bound is always attained. Finally, section 6 gives four examples of sequences obtained from 

finite geometries and their associated linear spans. These include the hyperplane sequences for 

both projective and affine spaces. One of these sequences, called the parity sequence, gives rise 

to an interesting open problem involving primes. 

2 .  T H E  L I N E A R  S P A N  O F  A S E Q U E N C E .  

This paper considers binary sequences and linear recursions over GF(2) .  All operations used 

are those of G F ( 2 )  unless otherwise stated. Let E denote the sequence shift operator: Es is 

the sequence with i th  term (Es); = s ; + ~ .  A sequence s = ( s o , s ~ ,  ... , s i ,  ...) satisfies a linear 

recursion of degree m if, for a, E G F ( 2 ) ,  

m 

~ i + m  + C ajsi+m-j = 0, i 2 0. 
j=1 

This recursion can be expressed in terms of the shift operator, 

m 

(Em + c a,Em-j)s = 0. 
j=1 

The polynomial f ( E )  = Em + zj”=, a,Em-J is called the characteristic polynomial of the 

recursion. If m ( E )  denotes the unique monic polynomial of least degree such that m ( E ) s  = 0, 

then the linear span of s, denoted by L(s ) ,  equals the degree of rn(E); m(E)  is called the minimal 

polynomial of s. If f ( E ) s  = 0, then from the division algorithm, m(E)lf(E). In particular, if s 

has period N ,  then (E” i 1)s = 0, so that m(E)IEN + 1, and L(s)  5 N .  
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The linear span of a sequence is one measure of its predictability. Any 'goodw pseudorandom 

sequence must have large linear span relative to its period [3], [PI- If a sequence has linear span 

L, then its linear recursion can be determined from 2L successive elements of the sequence. The 

remaining elements then can be produced from the recursion. . 

3.  SEQUENCES F R O M  F I N I T E  GEOMETRIES.  

In this section, we give the construction of a class of periodic binary sequences that are 

obtained from finite geometries. Let q = p', where p is an odd prime, and a be a primitive 

element of GF(q"). The nonzero elements of GF(qn) can be ordered using the primitive element 

a : {a' : i = 0,1, ...,qn - 2) = GF(qn)*. Elements of GF(q") can also be considered as points 

of an n-dimensional affine space, denoted by EG(n,q). We shall first establish the geometric 

structure of an affine space E G ( n ,  q)  defined by a q-ary rn-sequence of span n. 

Let Tr : GF(qn) + GF(q) be the trace function defined by Tr(z )  = z + zq + ... + zqm-'. It 

is well known that the sequence R = (R;), obtained by R; = Tr(a'), is a q - x y  m-sequence of 

span n with period qn - 1. Furthermore, one period of R has the form R = (T,PT,...,pq-'T) 

where T is a q-ary vector of length u = (qn - l ) / ( q  - I), and /3 = a" is the corresponding 

primitive element of GF(q) (5 ] .  The sequence R partitions the elements of GF(q")* into g 

subsets H,*, a E GF(q) ,  where H,* = {ai : R, = Tr(a') = u}. If we consider Ho = H,' u {0} and 

Ha = H,* for a # 0, then ll = {Ha : a E GF(q)}  forms a parallel class of affine hyperplanes in 

EG(n, q ) .  In general, corresponding to every cyclic shift E k R ,  k = 0,1, ..., w - 1, of R there is in 

EG(n,q) a corresponding parallel class of hyperplanes consisting of H i k )  = {ai-' : ai E 

Ha),a E GF(g)*, and H i k )  = ( 0 )  U {ai-' : a' E HZ}. Thus all parallel classes of hyperplanes 

in EG(n,q) can be obtained from R. 

We define periodic binary sequences, which are indexed by the elements of EG(n,q)\{O}, by 

considering the incidence vectors of subcollections of TI* = {Ha : a E GF(q)*}. In particular, 

for I E. GF(q)* and corresponding subcollection C I  = {Ha : a E I } ,  the sequence S ( C r )  h a  

period q" - 1 and i th term, corresponding to ai given by 

1, 

0, otherwise. 

if a' E Ha E CI 
s,= { 

Equivalently, if pr : GF(q)  ---* GF(2)  is defined by 

1, if a E I i 0, otherwise, 
p r ( a )  = 

then S(C1) has ith term given by S, = p r ( R ; ) .  Note that points in HO are always mapped to 0 

in GF(2). For simplicity of notation, we shall use C and p to denote CI and pr whenever I is 

understood. The purpose of this paper is to determine the linear span of S ( C r ) .  
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Ezample I :  For p = 3, n = 2 and primitive polynomial z2 + z + 2, the ternary m-sequence R 

of span 2 is given by 

czo a1 a2 a3 a4 a5 a6 a’ 

R =  (2 2 0 2 1 1  0 1 )  

The parallel class of hyperplanes corresponding to R consists of 

For I = {1,2}, S(Cr )  = (01110111) has linear span 4. For I = {1},S(C1) = (0~000011) has 

linear span 8. 

4. U P P E R  B O U N D  O N  T H E  LINEAR SPAN OF SEQUENCES F R O M  FI-  

N I T E  G E O M E T R I E S .  

For fixed n 2 l , R  = (&,Rl ,  ..., R q m - 2 )  will denote an m-sequence of span n over GF(q) .  For 

any collection C of hyperplanes obtained from R ,  S(C) = (So, S1, ..., S,p-2) will denote a binary 

sequence determined by C ;  i.e., S; = 1 if ai E Ha E C and Si = 0 otherwise. Although the 

sequence S(C)  depends on the choice of primitive polynomial, the results concerning its linear 

span will not. This is because any sequence obtained using a different primitive polynomial is 

related to S(C) by a decimation by a value relatively prime to the period. 

We introduce an array operator A which takes any sequence X of period qn - 1 and arranges 

it into the (q - 1) by v array: 

x z u - 1  
- -  I .  X U + l  . .-  I xi 

When applied to R, this operator produces the array A ( R )  with column i of the form 

(R;,pR;, ..., Pq-2R;) = &(1, /3, ..., pq-’). The sequence (1, p,p2,  ..., pq-2) is a q-ary m-sequence 

of span 1 and will be denoted by r = ( ro , r1 ,  ...,rq-2). A binary sequence s(C) of period q - 1 

is obtained by applying p to each term of r ,  where p is the mapping from GF(q)  to G F ( 2 )  

determined by C. The main result of this paper is that the linear span L ( S ( C ) )  of S(C) is given 

by u L ( s ( C ) ) .  The value of L ( s ( C ) )  is relatively easy to compute. 
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If Ri = 0, then column i of A ( R )  is the zero sequence 0. Otherwise & = pei for some 

e; E {0,1, ..., q - 2) and column i is EC'r.  In general, we define the shift sequence of R to be 

c = (eO,e l ,  ..., eqm-z )  where e ,  = co if Ri = 0 or R; = /3"i if R, # 0. Likewise, the h i t e  terms 

of (eO,el , '  ..., eqn-Z) give the shifts of the sequence s(C) occurring as columns of the (q - 1) by 

u array A(S(C) ) .  A ( S ( C ) )  contains columns of all zeros corresponding to the 00 positions in 

(eo, e l ,  ..., e"-I). By convention, we write Ews  = 0. 

Ezamplc 2: For p = 5 ,  n = 3 and primitive polynomial z3 + z2 + 2 the pary m-sequence R 

of span 3 is given in its array form as 

1 f0014120332224243340432042342201 

0032310441112124420241021421103 

0041430223331312210123013213304 
A ( R )  = 

0023240114443431130314034134402/ 

If C = {Ha : a 1 (mod 2)) then 

1 /00101001100000011000l0000100001 

0010110001110100000001001001101 

00010100011 11 11001010101101 1100 
= 

r = (1,3,4,2),s(C) = (1 ,1 ,0 ,0) ,  and the first u = 31 terms of the shift sequence e are: 

Throughout, let M ( E )  and m(E)  denote the minimal polynomials of S(C) and s(C), respec- 

tively. We shall use the notation S and s to denote the sequences S(C) and s(C) respectively 

whenever the collection C of hyperplanes is assumed. We begin to investigate the properties of 

M ( E )  and m ( E ) ,  obtaining upper bounds on the linear spans of S and s. The weight  w t ( X )  of 

a binary sequence X = (XO,  XI, ..., X N - ~ )  is the sum of any N consecutive terms of X .  Thus, 

((EN + 1)/(E + l ) )X = (EN-' + E N - 2  + ... + l )X = ( w t ( X )  (mod 2)). 

L E M M A  1. UC contains an odd number ofhyperplanes, then w t ( S ( C ) )  

contains an even number of hyperplanes, then wt (S(C) )  3 0 (mod 2). 

1 (mod 2). I fc  

PROOF. 

w t ( S )  = /El( number of elements in a hyperplane). 

Since each hyperplane in an  affine space EG(n, q )  contains q"-' elements and q is odd, w t ( S )  

1x1 (mod 2), and the result follows. 
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THEOREM 2. LfC  contains an odd number of hyperplanes in EG(n,q), then the highest 

power of (E + 1) that divides (En"-' + 1 )  divides M ( E ) .  

PROOF. Since S has period qn - 1, M ( E )  divides (En"-' + 1). But, 

((En--' + 1 ) / ( E  + 1))s = ( w t ( S )  (mod 2)) = ( 1 )  

and so M ( E )  does not divide (En"-' + 1) / (E  + 1). The result follows. I 

C O R O L L A R Y  3. LfC contains an odd number of hyperplanes, then 

( E  + l) ' (rn(E).  

PROOF. Apply the theorem to the case n = 1, and note that since q is odd, (E + 1)'1(Eq-' + 
1).  I 

Our next theorem establishes an upper bound on the linear span of the sequence S. 

T H E O R E M  4. M(E)Irn(E") so that L(S(C)) 5 u L ( s ( C ) ) .  

PROOF. We show that if m ( E )  = EJl +Ej, + ...+ E j k  ,where j1 = 0, is the minimal polynomial 

of 8 ,  then rn(E")S = 0. For i E {0,1, ..., q" - 2}, 

If R; = pei ,  then (S;, S;+,,, ..., Si+(q--f)u) = E'is, and 

(m(E")S ) ;  = (m(E)(E' 's))o = (E"'m(E)s)o = (E"'0)o = 0. 

If e; = 00, then (S;, S;+,,, ..., S,+(q--l)u) = 0, and certainly (m(E")S), = 0. Thus, rn(E")S = 0, 

so M(E)Irn(E") and L(s )  5 degree m ( E u )  = w(degree m(E)) = v L ( s ) .  1 

Two questions naturally arise when determining the linear span of S: 

(1) Is the bound in theorem 4 attained, that is, does L ( S )  = vL(s)? 

(2) What is L(s)? 

In the next section, we show that the answer to question 1 is always yes. Section 6 describes 

four particular choices of C and the respective values of L(s).  
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5 .  L I N E A R  S P A N  O F  B I N A R Y  S E Q U E N C E S  O F  F I N I T E  G E O M E T R I E S .  

In the previous section we established the upper bound ((9" - l ) / ( q  - l))L(s(C)) on the 

h e a r  span of the binary sequence s(C) obtained from affine space EG(n,q). Here, we show 

that this upper bound is always attained. In fact, we show that the minimal polynomial of S(C)  

is M ( E )  = m(Ew)  where m(E)  is the minimal polynomial of s(C). 

First, we group the terms of M ( E )  which have exponents congruent to the same value modulo 

u, and let M ( E )  be expressed as follows: 

where each f;(z) is a polynomial of degree d;. The constant term 1 must appear in M ( E )  and 

so fo(z) # 0. We shall show that f;(z) = 0 for all i = 1, ..., u - 1. 

LEMMA 5 .  I f f o ( E ) s ( C )  = 0, then M ( E )  = m(Eu). 

PROOF. 

fo(E)s = 0 * m(E)Ifo(E) 

+ degree m ( E )  5 degree fo(E) 

* degree m(E") 5 degree fo(E") 5 degree M ( E )  

By theorem 4, M(E)lrn(Eu) ,  so M ( E )  = m(E"). I 

TO show that the upper bound on theorem 4 is attained, we need to show that fo(E)s = 0. 

Involved in the proof are properties of the shift sequence e = (eo ,e l ,  ..., e p - 2 )  introduced in 

section 4. 

T H E O R E M  6. Let e = ( eo , e l ,  ..., e q m - 2 )  be the shift sequence associated with the primitive 

polynomial f(z) which generates a q-ary m-sequence R of span n. Then any u consecutive terms 

of e contain exactly (qn-' - l ) / ( q  - 1) 

PROOF. This is the number of zeros in any v consecutive terms of R. I 

co terms. 

COROLLARY 7 .  There are exactly qn-' finite terms in (eo ,e l ,  ..., ew- l ) .  

PROOF. v - ( p - l  - i ) / ( q  - 1) = p - l .  I 

In the following theorem, the elements {0,1, ..., q - 2) are identified with the elements of 

Z(q - l), the integers modulo q - 1. We use the convention that if e; E Z ( q  - l), then e; - 00 = 

c o - e ; = o o .  
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T H E O R E M  8. Let e be the shift sequence associated with the primitive polynomial f(z) 

which generates a q-ary rn-sequence R of span n. For fixed k E {1,2, ..., u - l}, the fist of 

djfferenCB ( e i + k  - e i  mod (q  - 1) : i E (0 ,  1, ..., u - 1)) contahs each element of z(q - 1) exactly 

qn-2 times. 

PROOF. See (6, theorem 2, but with rn = 11. The results in IS] are stated for the case q = 2, 

however, the proofs remain valid for any prime power q. I 

Recall that 

M ( E )  = f o ( E v )  + fi(EV)E + ... + fu-i(Ev)Ev-l 

The next lemma establishes a relationship between the polynomials f,(z) and the sequence 8 .  

LEMMA 9.  fo(E)s = (fi(E) + f 2 ( E )  + ... + fW-1(E) ) (Eo  + E + ... + Eq-*)s.  

PROOF. For a polynomial f ( E ) ,  applying f ( E " )  to S is equivalent to applying f ( E )  to every 

uth term of S, that is, applying f ( E )  to columns of A ( S ) .  Since the ifh column of A ( S )  is ECi8, 

the ith column of A ( f ( E " ) S )  is given by f ( E ) E e * s .  Recall the convention that Ems = 0. 

Now, for each k,O 5 k 5 u - 1, consider the sequence E k S  as represented by the array 

A ( E k S ) .  Every column i of the array now has a leading term &+k. Hence, every column i of 

the array A ( f k ( E " ) s k s )  is given by fk(E)Ee'+ks.  Now, M ( E ) S  = 0 implies that every column 

i in A ( M ( E ) S )  is 0, tha t  is, for i E {0,1, ..., u - I}, 

(fo(E)Ee' + fl(E)EC'+' + ... + fV-1(E)Ee'+*-l)s = 0. 

For every i ,  with ei # 03 

if and only if 

( f o ( E )  + f1(E)Ee'+l-'' + ... + f w - l ( E ) E e ' + * - ' - e i ) ~  = 0. 

Summing over i , O  5 i 5 u - 1, such that e; # cm, we have 

By corollary 7, the first sum contains qn-' terms, which is odd, thus 
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By theorem 8 and since qn-2 is odd, for each k E {1,2, ..., v - I}, 

fk(E)ECi+k-ci = - fk(E)(Eo + E + ... + Eq-') (mod 2) 
e i f m  

where terms of the form Em-e; are ignored because E"-"'s = 0. Combining the above obser- 

vations, we have 

fo(E)s = (fl(E) + f z ( E )  + ... + fW-1(E))(Eo + E + ... + E Q - 2 ) ~ .  I 

THEOREM 10. M ( E )  = m(Eu)  and SO L(S(C)) = wL(s(C)) .  

PROOF. By lemma 5, it is enough to show that fo(E)s = 0, and by lemma 9 this is equivalent 

to showing (fl(E) + ... + fuV-l(E))(Eo + E + ... + Eq-2)s  = 0. 

If C consists of an even number of hyperplanes, then wt(s)  zz 0 (mod 2); hence 

( E o  + E + ... f E q W 2 ) s  = (wt (s)  (mod 2)) = 0 

and 

f o (E) s  = 0. 

If the number of hyperplanes in C is odd, then w t ( s )  = 1 (mod 2). By lemma 9, 

( E  + l)fo(E)s = ( f i (E )  + f 2 ( E )  + ... + fv-l(E))(E + l ) ( w t ( s )  (mod 2)) 

= (fl(E) + fz(E) + ... + fv-l(E))O 

= 0; 

that is, rn(E)\(E + 1)fo(E). 

By corollary 3, ( E  + 1)21rn(E)and so (E + I)/fo(E) and fo(E) has an even number of terms. 

Similarly, theorem 2 states that ( E  + l)JM(E), SO M(E) has an even number of terms, and 

this number is given by the sum of the number of terms in f o ( E )  and the number of terms 

in fi(E) + f2(E) + ... + fw-l(E)(before mod 2 cancellation). At any rate, this implies that 

fi(E) + f z ( E )  + ... + f w - l ( E )  has an even number of terms and fo(E)s = (fi(E) + fi(E) + ...+ 
fu-l(E))l = 0. I 
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6. S P E C I A L  C A S E S  O F  B I N A R Y  S E Q U E N C E S .  

In this section we consider four particular choices of C, and analyze the linear span of each 

sequence. 

If C consists of all nonzero hyperplanes, that is, C = 11* = {Ha : a # 0}, then the sequence 

S(II*) has period u and corresponds to the anti-incidence vector of a hyperplane in an (n - 1)- 

dimensional projective space PG(n - 1,q).  In this case s = (1) and has L(s)  = 1, so theorem 

10 states that the linear span of S(IT*) is u. It is easy to see that the linear spans of a binary 

sequence X and its complement X differ by at most one. Since S(T) has period tl and L(S(n*)) 
must divide u,  L(s(II')) = L(S(II*)) = u .  

The complement of S(n*) corresponds to the incidence vector of projective hyperplane in 

PG(n - 1,q). Projective codes with the incidence matrix of points and hyperplanes as parity 

check rules have been studied by coding theorists, and the rank of this incidence matrix over 

GF(p),  where q = p', has been obtained. 

T H E O R E M  11 [7], [S ] ,  [9]. For q = p', the GF(p) rank of the incidence matrix ofpoints 

and hyperplanes in PG(n - 1,q) is 1 + (n-;:!-l)'. 

Each row of the incidence matrix is a shift of the sequence s(lT*). It is not hard to see 

that the rank of this incidence matrix over GF(2) is precisely the h e a r  span over GF(2) of 

the sequence S(lT*). In the case when q = 2', the linear span (over GF(2)) of a projective 

hyperplane sequence can be obtained from theorem 11. Combining these observations we have 

the following theorem. 

T H E O R E M  12 .  The linear span ofaprojective hyperplanesequence ofPG(n-1 ,q)  is given 

by (q" - l ) / ( q  - 1) if q is odd and 1 + n' ifq = 2'. 

On the other hand, if C consists of only a single affine hyperplane H in n*, then the sequence 

S ( H )  corresponds to the incidence vector of an affine hyperplane and has period q" - 1. The 

sequence s ( H )  corresponds to a sequence of all 0's except one 1 and has full linear span q - 1. 

Thus, by theorem 10, an affine hyperplane sequence of an affine space of odd order has full linear 

span. For affine spaces of even order results on the incidence matrix of points and hyperplanes 

of EG(n, q) apply. 

T H E O R E M  13 171. For q = p', the G F ( p )  rank of the incidence matrix of points and 

hyperplanes in EG(n,  q)  is ("~~;')'. 

Combining these facts, we have the following theorem. 
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T H E O R E M  14.  The linear span of an a f h e  hyperplane sequence of EG(n,q) is given by 

(9" - 1) if q is odd and (n + 1)' if q = 2'. 

If C consists of half of the hyperplanes in rI*, say, C = {Hp : i = O , l ,  ..., (q  - 3)/2}, then 

the sequence s(C) is a binary sequence with (q  - 1)/2 ones followed by (q  - 1)/2 zeros, which 

has linear span (q  + 1)/2. Thus, by theorem 10, the sequence s(C) has period q" - 1 and linear 

span v(q + 1)/2. 

More generally, we can consider choices of C with the first half of the sequence e(C) the 

complement of the second half. The next lemma gives an upper bound on the linear span of 

s(C). 

LEMMA 15.  I f C  is chosen so that the first half of the sequence @) is the complement of 

the second half of the sequence, then 

PROOF. Let d = (q  - 1)/2 and consider the sequence h = (Ed  + 1)s. Since 8i = S;+d for all 

i E (0,1, ..., (p - 3)/2}, the sequence h consists of all 1's and (E + 1)h = 0. Thus, 

rn(E)I(Ed + 1)(E + 1) 

and 

L(s )  5 1 + (q  - 1)/2 = (q  + 1)/2. I 

Finally, if q is an odd prime (q = p) and C consists of all the "odd hyperplanes," that is, 

C = {Ha : a 1 (mod 2)}, the sequence S(C), called the parity sequence of order IZ, has period 

p" - 1 and linear span that depends on the linear span of the parity sequence s(C) of order 

1. For all i E {0, 1, ...,p - 2}, pi+(P-l)/z = p - pi ,  and since p is odd, and pi+(p-')/' have 

different parities. Thus the parity sequence of order 1 has the property stated in lemma 15, and 

W E ) )  5 (P + 1)/2. 

For all but 14 primes less than 500, L(s (C) )  = (p + 1)/2, that is, usually L(S(C)) = v ( p  + 
1)/2 = (p" - 1)/2 + (p" - l ) / (p  - 1). For instance the parity sequence in example 2 has linear 

span (31)(3) = 93. The 14 primes with L ( s ( C ) )  < (p + 1)/2 are listed in table 1, together 

with the linear spans of the corresponding parity sequences of order 1. The determination of 

a closed form expression of the linear span of the parity sequences of order 1 is an interesting 

(and probably difficult) open problem. 
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TABLE 1 

PRIMES < 500 WITH L(s)  < ( p  + 1)/2 

P L(s )  

29 12 

113 54 

163 80 

197 96 

239 117 

277 135 

311 146 

337 163 

349 171 

373 182 

397 195 

421 207 

463 229 

491 240 

3 

3 

2 

3 

3 

4 

10 

6 

4 

5 

4 

4 

3 

6 

7 .  CONCLUSION 

We have presented general results on the linear spans of a class of binary sequences that are 

obtained from q-ary m-sequences (q odd) by mapping the elements of GF(g)  to 0 and 1. The 

linear span and minimal polynomial for these sequences are determined by considering a binary 

sequence of much shorter period q - 1. The results imply that the binary sequences under 

consideration have linear spans that are comparable to their periods, which can be made very 

long. 
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