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Abstract

It is well known that plane Couette flow for an Oldroyd-B fluid is linearly stable, yet, most numerical methods predict spurious instabilities

at sufficiently high Weissenberg number. In this paper we examine the reasons which cause this qualitative discrepancy. We identify a family

of distribution-valued eigenfunctions, which have been overlooked by previous analyses. These singular eigenfunctions span a family of non-

modal stress perturbations which are divergence-free, and therefore do not couple back into the velocity field. Although these perturbations

decay eventually, they exhibit transient amplification during which their “passive" transport by shearing streamlines generates large cross-

stream gradients. This filamentation process produces numerical under-resolution, accompanied with a growth of truncation errors. We believe

that the unphysical behavior has to be addressed by fine-scale modelling, such as artificial stress diffusivity, or other non-local couplings.

© 2005 Elsevier B.V. All rights reserved.

Keywords: Couette flow; Oldroyd-B model; Linear stability; Generalized functions; Non-normal operators; Stress diffusion

1. Introduction

The linear stability of Couette flow for viscoelastic fluids

is a classical problem whose study originated with the pi-

oneering work of Gorodtsov and Leonov (GL) back in the

1960s [1]; this problem has been further elaborated and gen-

eralized to various situations, such as Poiseuille and multi-

layered flows, and applied to different constitutive laws; see

[2–7]. The aforementioned work is based on spectral analy-

sis. For Couette flow, the eigenvalues of the linearized per-

turbation equation are always on the left half of the complex

plane, i.e., the corresponding eigenmodes decay in time. For

infinite-dimensional non-normal operators, spectral analysis

does not guarantee stability. Renardy [8] proved rigorously,

however, that Couette flow for an upper-convected Maxwell

(UCM) fluid is indeed linearly stable.

Although Couette flow is believed to be linearly stable un-

der quite general conditions, numerical simulations often fail

to predict stable behavior at sufficiently high Weissenberg

number. This discrepancy between analysis and computa-

tions has attracted much attention. Numerical studies can be
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divided into two main groups: (i) numerical solutions of the

boundary value problem defined by the linearized system

(e.g. [2,3]) and (ii) stability analysis of numerical methods

for time-dependent flows, with the objective of understand-

ing how spurious solutions emerge in computations. (e.g. [9–

11]). A more recent benchmark study which compares the

performance of various schemes in this context may be found

in [12,13]. It is important to emphasize that the emergence of

spurious instabilities is a purely linear phenomenon, but it is

precisely this “simplicity" which makes it intriguing.

For concreteness, we will refer from now on to Couette

flow of an Oldroyd-B fluid, although most of our analysis ap-

plies to a larger range of fluids. The linear partial differential

equation that governs the evolution of small perturbations has

two important characteristics: its spectrum has both discrete

and continuous components, the latter corresponding to sin-

gular eigenfunctions, and it is highly non-normal, which in

particular implies that small errors may significantly modify

its spectrum. It is common to attribute the emergence of un-

stable modes to the failure of numerical methods to properly

approximate the singular eigenfunctions. While this is (tau-

tologically) correct, it yet does not explain the mechanism

that leads to instabilities. The goal of this paper is to clarify
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why numerical computations predict the wrong behavior, and

propose ways to eliminate spurious instabilities.

In the first part of this paper we revisit the linear stability

analysis for Couette flow for an Oldroyd-B fluid. While the

spectrum itself has been known for long, controversies have

remained regarding the precise nature of the singular eigen-

functions [3,4]. This question is fully elucidated by deriving

analytical expressions for the singular eigenmodes; in partic-

ular, we find a family of distribution-valued eigenfunctions

for the stress, consisting of delta functions and their deriva-

tives, which are divergence-free, and therefore do not per-

turb the velocity field. As a consequence, these perturbations

are exact solutions of the full nonlinear system. Furthermore,

these singular eigenmodes form a basis for the construction

of a large class of classical (non-modal) solutions, which are

all decoupled from the velocity field. Such solutions are ca-

pable to sustain arbitrarily large stress gradients, which is

indicative of the local nature of the constitutive laws.

We proceed with a numerical analysis in which we com-

pare two finite-difference schemes. The first scheme, which

uses naive central differencing, exhibits the standard sce-

nario, where the straight lines of continuous spectra break

into oval-shaped structures, and unstable modes emerge at

a Weissenberg number around 10. In comparison, we con-

struct a scheme that uses staggered vector and tensor fields

[14]. This scheme is found to predict the correct spectrum

with unprecedented accuracy. A closer examination reveals

that this unexpected success is due the ability of the scheme

to represent approximations (in the sense of distributions) of

delta functions and their derivatives. If the problem is how-

ever changed, say, into Poiseuille flow, where the nature of

the singularities is different, then the staggered scheme seems

to offer no benefits over the central-difference scheme.

We then analyze the non-normal aspects of the perturba-

tion equation, through the calculation of its pseudo-spectrum.

Roughly speaking, the pseudo-spectrum provides a measure

for how sensitive is the spectrum to a perturbation of the

equations (for example, due to truncation errors). In addi-

tion, one may infer from the structure of the pseudo-spectrum

estimates on the magnitude of the transient growth. As ex-

pected, the higher the Weissenberg number is, the smaller

are the perturbations that may drive the system unstable, and

the larger is the magnitude of the transient growth. Yet, this

still does not explain what causes instabilities. Moreover, in

many cases, unstable modes become dominant long after the

transient growth has been attenuated [12]. An examination of

the most amplified solution, which can be determined from a

singular value decomposition, reveals that the long time be-

havior is dominated by solutions that belong to the family of

divergence-free stress fields described above. Although these

solutions decay in time, they develop in the transient a highly

oscillatory profile, which for high enough Weissenberg num-

ber (i.e., long transient), quickly leads to cross-stream under-

resolution. Large gradients that are aligned with the stream

are usually damped out by the advection scheme, which has

a dissipative component. This is not the case, however, with

cross-stream gradients. Thus, when the stress field oscillates

in the cross-stream direction on the scale of a single computa-

tional cell, there is no damping mechanism, and one is left “at

the mercy" of truncation errors, whose nature depends on the

scheme chosen. We claim that it is the inability of numerical

schemes to cope with such sub-grid variations which causes

the emergence of spurious modes.

A fundamental question now arises: constitutive laws such

as Oldroyd-B, UCM and other do not account for a non-local

self-interaction of the stress field, and as a result, the stress

in two neighboring stream lines evolves independently (in

Lagrangian coordinates the stress satisfies an ordinary differ-

ential equation). In reality, the stress field experiences a small

amount of diffusivity due to the random motion of the poly-

mers center of mass; the dimensionless diffusivity coefficient

is of the order of 10−9 [15], which makes it negligible on the

scales imposed by numerical computations. Stress diffusion

would precisely attenuate large cross-stream gradients, but in

order to affect numerical computations the diffusivity coef-

ficient should be about four orders of magnitude larger [16].

Is one allowed to introduce an artificially large diffusivity

without significantly modifying the results?

The idea that sub-grid scales may be generated by advec-

tion and the use of stress diffusion to dampen those out are not

new, and go back to the theoretical study of El-Kareh and Leal

[15] (where it is even speculated that the coupled momentum-

stress equations may be ill-posed without some amount of dif-

fusivity), and the numerical study of Sureshkumar and Beris

[16]. The use of artificial diffusion is now quite standard in

the computation of turbulent viscoelastic flows, where the

deformation of flow lines is extreme (see e.g. [17]). As usual,

the concern is that the addition of diffusion will result in se-

vere inaccuracy. It should be noted, however, that streamwise

diffusion is built-in in any stable advection scheme. Yet, if

the diffusivity coefficients scale with the square of the mesh

size, second-order convergence can be guaranteed, at least in

regions where the solution is sufficiently smooth. The “high-

resolution" nature of the computation has to be established

eventually via numerical convergence tests based on mesh re-

finement. Our opinion is that the same considerations should

apply for cross-stream oscillations. One cannot just “ignore"

sub-grid oscillations; they should either be damped, in order

to maintain smoothness on the scale of a single cell, and if this

introduces too large errors, sub-grid modelling is necessary.

Since the physics do account for some diffusivity, although

on a finer scale, the introduction of artificial diffusivity seems

to be a natural solution. In either case, validation via mesh

refinement is necessary.

2. Spectral analysis of Couette flow

2.1. Summary of known results

We consider an Oldroyd-B fluid in a two-dimensional

channel, x ∈ R, y ∈ [−1/2, 1/2]. In a creeping flow regime
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(inertial terms are negligible), the governing equations are

−∇p+ λ−1(1 − β) ∇ · σ + β∇2u = 0, ∇ · u = 0,

∂σ

∂t
+ (u · ∇)σ − (∇u)σ − σ(∇u)T = λ−1(I − σ), (2.1)

where u = (u, v) is the velocity, σ the conformation ten-

sor, with components σij , p the pressure, β the Newtonian

to total viscosity ratio, and λ the polymeric relaxation time,

which in our dimensionless setting coincides with the Weis-

senberg number. The velocity gradient tensor has entries

(∇u)ij = ∂ui/∂xj . The shear-flow boundary conditions are

u = (±1/2, 0) at y = ±1/2.

Normalized Couette flow corresponds to the stationary

solution:

u = (y, 0) ≡ U and σ =

(

1 + 2λ2 λ

λ 1

)

≡ �.

Adopting the standard practice, we write the solution to (2.1)

as a sum of the steady solution and a perturbation,

u(x, y, t) = U + δu(x, y, t), p(x, y, t) = δp(x, y, t),

σ(x, y, t) = � + δσ(x, y, t).

Linearizing (2.1) with respect to the functions δu, δp and δσ,

we obtain the perturbed system:

−∇δp+ λ−1(1 − β) ∇ · δσ + β∇2δu = 0, ∇ · δu=0,
(

∂

∂t
+

1

λ
+ y

∂

∂x

)

δσ = [(∇δu)� + �(∇δu)T]

+ [(∇U)δσ + δσ(∇U)T], (2.2)

which governs the evolution of small perturbations about

plane Couette flow. The boundary conditions are imposed

by the no-slip conditions: δu = (0, 0) at y = ±1/2.

The structure of the problem merits some comment: the

dynamical variables are the three components of the con-

formation tensor σ—the system (2.1) prescribes the rate of

change of σ given its current state. The velocity and the pres-

sure are “slaved" to the conformation tensor via the elliptic

Stokes equations, which can also be interpreted in terms of a

constrained optimization problem: the velocity u minimizes

the Frobenius norm:

‖λ−1(1 − β) σ − 1
2β(∇u + ∇uT)‖F , (2.3)

subject to the incompressibility constraint ∇ · u = 0. Thus,

the perturbation in the velocity δu depends linearly (but non-

locally) on the perturbation in the conformation tensor, δσ,

which implies that (2.2) can be recast in the general form

∂

∂t
δσ = Aδσ,

where A is a linear integro–differential operator. (For a UCM

fluid the momentum equation acts as a constraint on the evo-

lution of the stress, and an anisotropic Stokes-like problem

may be obtained via the so-called EEME formulation [18]).

Since the system (2.2) does not depend explicitly on the

coordinate x, it is natural to Fourier expand the perturbation

along this coordinate. Spectral analysis consists of looking

for solutions of the form

δu(x, y, t) = δu(y) eikx+ωt, δp(x, y, t) = δp(y) eikx+ωt,

δσ(x, y, t) = δσ(y) eikx+ωt,

which substituted into (2.2) yield

−∇δp+ λ−1(1 − β) ∇ · δσ + β∇2δu = 0, ∇ · δu=0,
(

ω +
1

λ
+ iky

)

δσ = [(∇δu)� + �(∇δu)T]

+ [(∇U)δσ + δσ(∇U)T]. (2.4)

Here derivation with respect to x should be interpreted as a

multiplication by ik.

For every axial wavenumber k, the linear system (2.4) is

a one-dimensional boundary value problem. Its spectrum is

the set of ω for which the system has a non-trivial solution

δσ. It is possible, following [1], to reduce (2.4) into a scalar

fourth-order equation for the stream function. The drawback

of this reduction is that the structure of the problem is thus

changed. As was emphasized above, the dynamical variables

are the components of the conformation tensor and not the

velocity, nor the stream function. In particular, the boundary

value problem (2.4) may have non-trivial solutions for which

the perturbed velocity vanishes. Such eigenfunctions would

be trivial solutions of the fourth-order scalar equation, but are

not trivial solutions of (2.4). As will be seen in Section 2.2,

this delicacy has been the source of a certain confusion in the

past.

The spectrum for a UCM fluid, i.e., for the system

(2.1) with β = 0, was fully characterized by Gorodtsov and

Leonov [1]. It consists of two discrete eigenvalues – the dis-

crete GL eigenvalues – which can be computed analytically,

and a continuous strip of eigenvalues, ω = −1/λ− iky0,

y0 ∈ [−1/2, 1/2] – the continuous, or singular GL eigenval-

ues. The real part of the two discrete eigenvalues approaches

the value −1/2λ for λ ≫ 1; in the opposite limit, λ ≪ 1,

they tend towards the continuous GL strip of eigenvalues.

The spectrum for an Oldroyd-B fluid contains an additional

continuous strip ω = −1/βλ− iky0, y0 ∈ [−1/2, 1/2] – the

continuous, or singular “viscous" eigenvalues – and a fi-

nite number of discrete eigenvalues – the discrete “viscous"

eigenvalues – the number of which tends to infinity in the

singular limit β → 0; see Wilson et al. [6] for details.

While the spectrum of this system is well-established,

there have been some controversies regarding the nature of

the eigenfunctions. The eigenfunctions associated with the

discrete eigenvalues are known to be smooth and spatially

extended. In contrast, the eigenfunctions associated with the

singular spectra are known to be singular. Sureshkumar and

Beris [3] suggested that the singular eigenfunctions were in
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fact not functions, but generalized functions, or distributions.

This possibility was ruled out by Graham [4], who, for a UCM

fluid, obtained analytical expressions for eigenfunctions that

are continuously differentiable, i.e., their non-analyticity only

reflects in the second derivative. The analysis below will show

that distribution-valued eigenfunctions do exist in addition to

those discovered by Graham.

For linear finite-dimensional systems, that is, systems of

the form ∂u/∂t = Au, where A is a matrix, and for infinite-

dimensional systems where A is a normal operator (it com-

mutes with its adjoint), the solution is stable if and only if the

spectrum of A lies in the left half of the complex plane. This

condition does not guarantee stability for operators A that

are non-normal. The implications of non-normality may be

much more dramatic than just the fact that “transient growth

may occur"; we will return to this point in Section 4. It is

however important to emphasize that the stability of Couette

flow cannot be deduced solely from an examination of its

spectrum. A rigorous stability proof for a UCM fluid, based

on Sobolev norm estimates, is given in Renardy [8].

2.2. The singular GL eigenfunctions

As mentioned above, the nature of the singular GL eigen-

functions has been debated in [3,4]. In [4] continuously differ-

entiable eigenfunctions that correspond to the strip of eigen-

valuesω = −1/λ− iky0, y ∈ [−1/2, 1/2], were constructed

for a UCM fluid. In fact, two linearly independent eigen-

functions exist for every eigenvalue along this strip. For an

Oldroyd-B fluid, the degeneracy is removed, and a single

family of “Graham-type" eigenfunctions exists for this range

of eigenvalues.

A central result in the present work is the discovery of

a new family of eigenfunctions, δσy0 (y), y0 ∈ [−1/2, 1/2],

corresponding to the eigenvalues ω = −1/λ− iky0. These

eigenfunctions are generalized functions, or distributions,

given by

δσy0 (y) =

(

−δ′′y0
(y) ik δ′y0

(y)

ik δ′y0
(y) k2 δy0 (y)

)

. (2.5)

Here δy0 is the Dirac distribution concentrated at the point

y0, defined by its action on test function: (δy0 , φ) = φ(y0);

its j-th (weak) derivative, δ
(j)
y0 is defined by (δ

(j)
y0 , φ) =

(−1)j φ(j)(y0). A straightforward substitution shows that

(2.5) does indeed solve (2.4), in a distributional sense, with

ω = −1/λ− iky0. To verify that, one needs to multiply

(2.4) by a test function φ ∈ C∞
0 ([−1/2, 1/2]), integrate over

y ∈ [−1/2, 1/2], formally integrate by parts such to transfer

all derivatives onto the smooth function φ, and verify that the

resulting expression is valid for any test function.1

1 We remind the reader that a distribution u in a space X is a linear form on

the space of test functionsC∞
0 (X), such that for every compact subsetK ⊂ X

there exist constants k, c, such that |(u, φ)| ≤ c
∑

|α|≤k supK |∂αφ|, for all

φ ∈ C∞
0 (K). This space is denoted by D

′
(X). The subset of distributions

The occurrence of distribution-valued eigenfunctions is

by itself not disturbing. Consider the much simpler problem

of a Schrödinger equation for a free particle on the line:

i�
∂ψ

∂t
= −

�
2

2m
∇2ψ.

The spectrum of this equation covers the entire real line,

and the eigenfunction that corresponds to the eigenvalue

ω = −i�k2/2m is eikx. While this eigenfunction is infinitely

differentiable, it does not belong to the spaceL2(R) in which

the problem is defined, and as such is not “better" than a delta

distribution. In fact, the correct interpretation of these eigen-

functions is as distributions in R (see von Neumann [20] for

a discussion of these and related issues). Nevertheless, these

distributions are building blocks for generating functions that

do reside within L2(R).2

The generalized eigenfunctions (2.5) have the property

that their divergence (interpreted in the sense of distributions)

vanishes identically. Thus, the corresponding velocity pertur-

bation δu is zero. Since the only non-linearity in (2.1) is due

to quadratic terms that involve multiplication of the velocity

and the conformation tensor, it follows that any tensor-valued

distribution of the form

σ(x, y, t) = � +
∑

k,y0

ak,y0 δσy0 (y) e−(t/λ)+ik(x−y0t),

with δσy0 (y) given by (2.5), is a solution (in the sense of

distributions) of the full nonlinear system (2.1), with u =

U. This family of solutions, parameterized by the sets of

coefficients ak,y0 is by itself unphysical, but it constitutes a

building block for a large class of solutions.

Indeed, replace ak,y0 by a three-time differentiable func-

tion, φ̂k(y0), where for every y0, φ̂k(y0) is the Fourier trans-

form of a three-time differentiable functionφ(x, y0). Integrate

over both k and y0, to obtain, after simple manipulations, a

family of classical solution of the form

σ(x, y, t) = � + e−t/λ

(

−∂2
yy ∂2

xy

∂2
xy −∂2

xx

)

φ(x− yt, y). (2.6)

The function φ is known in the literature as an Airy stress

function; it is first evaluated at the point (x− yt, y),and only

then differentiated with respect to x and y. Eq. (2.6) can also

be written in the alternative form:

for which the same k can be used for all compact K is called the space of

distributions of order k and it is denoted by D
′k

(X). Thus, δσy0
defined

by (2.5) belongs to the space of second-rank tensor-valued distributions of

order two in [−1/2, 1/2], since it involves at most a second derivative of the

delta distribution. See Gel’fand and Shilov [19] for a classical reference on

generalized functions.
2 A Hilbert space, for example L2(R), together with a subspace which

carries a finer topology, such as the set of test functions in R, is called a

rigged Hilbert space. This construction allows to link between distributions

and square-integrable aspects of functional analysis to formalize spectral

analysis.
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δσ(x, y, t) = e−t/λ

[(

−φyy φxy

φxy −φxx

)

+ t

(

2φxy −φxx

−φxx 0

)

+ t2

(

−φxx 0

0 0

)]

, (2.7)

where the partial derivatives of φ are evaluated at the point

(x− yt, y).

The existence of solutions of the form (2.7) can be derived

directly, without reference to spectral analysis. Let f = ∇ ·

δσ (a vector proportional to the perturbation in the polymeric

forces), then its components (fx, fy) satisfy the system of

equations

(

∂

∂t
+

1

λ
+ y

∂

∂x

)

fx = fy + (1 + 2λ2)
∂2δu

∂x2

+ 2λ
∂2δu

∂x∂y
+
∂2δu

∂y2
(2.8a)

(

∂

∂t
+

1

λ
+ y

∂

∂x

)

fy = (1 + 2λ2)
∂2δv

∂x2
+ 2λ

∂2δv

∂x∂y
+
∂2δv

∂y2
.

(2.8b)

Since f = 0 (no forcing) implies u = v = 0, it follows from

(2.8) that the space of divergence-free perturbations δσ is in-

variant under the linearized dynamics (2.2). Every δσ(x, y, t)

in this invariant subspace can be represented as

δσ(x, y, t) =









−
∂2Φ

∂y2
(x, y, t)

∂2Φ

∂x∂y
(x, y, t)

∂2Φ

∂x∂y
(x, y, t) −

∂2Φ

∂x2
(x, y, t)









.

Substituting into (2.2), we deduce that δσ(x, y, t) is of the

form (2.7).

To conclude, Couette flow of an Oldroyd-B fluid allows for

a class of divergence-free perturbations which do not perturb

the velocity field. The initial perturbation, which is deter-

mined by the function φ(x, y) is advected with the flow, and

decays as a result of the stress relaxation at a rate 1/λ. The

interesting feature is that there is no restriction on the shape

of the perturbation, which can sustain arbitrarily large spa-

tial gradients (as long as it is divergence-free). This reflects

the fact that the only non-local interaction in the Oldroyd-

B model is via the velocity field, thus the model reduces to

a local equation (ODEs) in cases where the stress does not

couple back into the velocity field.

2.3. The singular viscous eigenfunctions

The structure of the singular viscous eigenfunctions can

be deduced from the analysis in Wilson et al. [6]; there are

however certain points worth of further elaboration.

First, it follows from (2.8) that

(

∂

∂t
+

1

λ
+ y

∂

∂x

)

∇ · f = 0,

which means that the space of perturbations for which ∇ · ∇ ·

δσ = 0 is invariant under the linearized dynamics. It will be

shown that the singular viscous eigenfunctions all lie within

this invariant subspace.

The singular viscous spectrum lies on the segment ω =

−1/βλ+ iky0, y0 ∈ [−1/2, 1/2]. From the property ∇ · ∇ ·

δσ = 0, it follows that ∇2δp = 0, hence δp(y) is a linear com-

bination of eky and e−ky. Substituting into the momentum

equation for δv, we get

δv′′ − k2 δv = −µfy + c1 eky + c2 e−ky,

whereµ = (1 − β)/(βλ), and c1, c2 are integration constants.

Substituting this equation into (2.8b) with ω = −1/βλ+

iky0, we find

(y − y0)(δv′′ − k2 δv) + 2µλ δv′ + 2ikµλ2 δv

= (−µ+ ik(y − y0))(c1 eky + c2 e−ky),

where the constants c1,2 have been redefined. It can be di-

rectly verified that functions of the form

δv(y) =

(

−
1

βλ
+ ik(y − y0)

)

(c1 eky + c2 e−ky) (2.9)

are solutions of this inhomogeneous equation (with c1,2 re-

defined again), so that the general solution is obtained by

adding to (2.9) a linear combination of the two independent

solutions of the homogeneous equation:

(y − y0)(δv′′ − k2 δv) + 2µλ δv′ + 2ikµλ2 δv = 0,

which are

δv(y) = e−ky[c3 1F1(a, b, 2k(y − y0))

+ c4 U(a, b, 2k(y − y0))],

where the functions 1F1 and U are the confluent hypergeo-

metric functions [21], and a = µλ(1 − iλ), b = 2µλ. While

1F1(a, b, z) is analytic in its three arguments, the function

U(a, b, z) has an algebraic singularity at z = 0 of the form

U(a, b, z) ∼ z1−b.

The four integration constants c1–c4 should be deter-

mined, up to a proportionality factor, by the boundary condi-

tions, δv(±1/2) = δv′(±1/2) = 0. A priori there is no reason

why this linear system should have a non-trivial solution for

every y0. The existence of a solution stems from the singu-

lar nature of the equations, and consequently, the analysis

extends as for the singular GL modes to the space of gener-

alized functions.

A simple example that illustrates how do non-trivial

distribution-valued solutions emerge is the following
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second-order equation for y(t) with homogeneous boundary

conditions:

t y′′ + 5
2y

′ = 0, y(−1) = y(1) = 0. (2.10)

Away from the singularity at t = 0, this equation has two in-

dependent solutions, y = c, and y = t−3/2, however the latter

is not summable at the origin, and is therefore not a valid dis-

tribution. Yet, the function t−3/2 can be regularized giving

rise to two independent distributions which satisfy (2.10).

These two distributions, denoted by t
−3/2
+ and t

−3/2
− , are de-

fined by their action on test functions φ,

(t
−3/2
+ , φ) =

∫ 1

0

φ(t) − φ(0)

t3/2
dt,

(t
−3/2
− , φ) =

∫ 0

−1

φ(t) − φ(0)

t3/2
dt

(see Gel’fand and Shilov [19]). It can directly be verified that

any distribution proportional to

y(t) = t
−3/2
+ + t

−3/2
− − 1

is a solution of (2.10).

Similarly, the singular function U(a, b, 2k(y − y0)) gives

rise to two independent (regularized) distributions

(y − y0)2µλ−1U(a, b, 2k(y − y0))(y − y0)
1−2µλ
± .

With now five constants of integration, non-trivial

distribution-valued solutions δv(y) can be found, which sat-

isfy the four boundary conditions. By the nature of the reg-

ularization, the leading-order term in δv(y) scales like the

⌊2µλ− 1⌋ = ⌊1/β − 2⌋-th derivative of the delta distribu-

tion at y0.

3. Analysis of finite-difference approximations

Although Couette flow for an Oldroyd-B fluid is stable,

most numerical schemes predict the emergence of spurious

unstable modes at sufficiently high Weissenberg number. In

this section we compare the spectral properties of two finite-

difference approximations for time dependent flows. The first

scheme is based on standard finite-differences, and exhibits

the known splitting of the continuous spectrum into oval

structures, which, for high enough Weissenberg numbers pro-

trude into the right half plane. The second scheme uses a

staggered setting for the conformation tensor, and is found to

predict the correct spectrum with very high accuracy. It will

be shown that this success is somewhat “accidental", and the

staggered setting does not appear to perform better in general

situations.

Fig. 1. Discrete geometry for the central difference scheme.

3.1. A central-difference scheme

We start by describing a standard central-difference

scheme. The velocity field is discretized on a staggered

(Marker-and-Cell) mesh [22]: velocity variables are defined

at cell edges, with only the normal component defined at

each edge. This staggered discretization is used for all vector

fields, such as the pressure gradient and the divergence of the

conformation tensor. The conformation tensor and the pres-

sure are defined at cell centers. The geometry of the system

is depicted in Fig. 1.

Let n be the number of computational cells across the

channel, and%x = %y = 1/n be the mesh size. Pressure and

conformation tensor variables, which are cell-centered are

denoted by pi,j and σi,j , respectively, i ∈ Z, j = 1, 2, . . . , n.

The discrete velocity variables, which are edge-centered, are

denoted by ui±1/2,j , and vi,j±1/2, the indexing being self-

explanatory.

Given a configuration of the conformation tensor, we first

calculate its divergence, which is a vector field (i.e., has a

“velocity-like" representation):

(

∂σxx

∂x
+
∂σxy

∂y

)

i+1/2,j

= D+
x σ

xx
i,j + µ+

x D
0
yσ
xy
i,j,

(

∂σxy

∂x
+
∂σyy

∂y

)

i,j+1/2

= µ+
y D

0
xσ
xy
i,j +D+

y σ
yy
i,j, (3.1)

where D+
x,y, D

−
x,y, and D0

x,y are the standard forward-,

backward-, and central-difference operators along the x and y

directions; µ±
x,y are forward- and backward-averaging oper-

ators along the x and y directions, for example, µ+
x ai,j =

1
2 (ai,j + ai+1,j). One-sided stencils are used when neces-

sary at the boundary. This discretization is consistent to

second-order. Note that the derivatives of the diagonal

terms, ∂σxx/∂x and ∂σyy/∂y, use narrow stencils, benefiting

from the staggered grid. In contrast, the derivatives of the
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off-diagonal terms, ∂σxy/∂x and ∂σxy/∂y, must be approx-

imated by wider stencils, the natural choice being central

differences.

Having computed the divergence of the conformation ten-

sor at all interior edges, we proceed to compute the velocity

field, by solving the linear system of equations:

D+
x pi,j − (D+

x D
−
x +D+

x D
−
x )ui+1/2,j

= µ

(

∂σxx

∂x
+
∂σxy

∂y

)

i+1/2,j

,

D+
y pi,j − (D+

x D
−
x +D+

x D
−
x )vi,j+1/2

= µ

(

∂σxy

∂x
+
∂σyy

∂y

)

i,j+1/2

,

D−
x ui+1/2,j +D−

y ui,j+1/2 = 0, (3.2)

where as before, µ = (1 − β)/(βλ). The boundary con-

ditions are imposed by the use of ghost cells and anti-

reflective conditions for the tangential components of the

velocity.

With the velocity at hand, we turn to calculate its gradi-

ent, which has to be evaluated at cell centers. Once again,

diagonal and off-diagonal elements behave differently: the

diagonal elements exploit the staggering and result in narrow

stencils,

(

∂u

∂x

)

i,j

= D−
x ui+1/2,j,

(

∂v

∂y

)

i,j

= D−
y vi,j+1/2,

which is well-defined at all points. For the off-diagonal ele-

ments, we are forced to resort again to wide-stencil central

differences:

(

∂v

∂x

)

i,j

= µ−
y D

0
xvi,j+1/2,

(

∂u

∂y

)

i,j

= µ−
x D

0
yui+1/2,j.

Our choice of discrete operators satisfies the relation ∇2u =

∇ · ∇u, so that the discrete velocity satisfies a finite-

dimensional constrained optimization equation approximat-

ing (2.3).

The evolution of the conformation tensor is then dictated

by substituting the above expressions into the constitutive

equation:

d

dt
σxxi,j = −D−

x (ui+1/2,j µ
+
x σ

xx
i,j ) −D−

y (vi,j+1/2 µ
+
y σ

xx
i,j )

+ 2 σxxi,j

(

∂u

∂x

)

i,j

+ 2 σ
xy
i,j

(

∂u

∂y

)

i,j

−
1

λ
(σxxi,j − 1),

d

dt
σ
xy
i,j = −D−

x (ui+1/2,j µ
+
x σ

xy
i,j) −D−

y (vi,j+1/2 µ
+
y σ

xy
i,j)

+ σxxi,j

(

∂v

∂x

)

i,j

+ σ
yy
i,j

(

∂u

∂y

)

i,j

−
1

λ
σ
xy
i,j,

d

dt
σ
yy
i,j = −D−

x (ui+1/2,j µ
+
x σ

yy
i,j) −D−

y (vi,j+1/2 µ
+
y σ

yy
i,j)

+ 2 σ
xy
i,j

(

∂v

∂x

)

i,j

+ 2 σ
yy
i,j

(

∂v

∂y

)

i,j

−
1

λ
(σ
yy
i,j − 1).

(3.3)

The stationary solution of the continuous systems, σi,j =

�, ui+1/2,j = yj , vi,j+1/2 = 0 solves the discrete system

(3.3) as well. Linearizing the discrete system, Fourier ex-

panding along the x-coordinate, we obtain, for every wave

number k, a 3n-dimensional linear eigenvalue problem which

can be solved by standard methods (the 3n independent vari-

ables are the perturbed stress components δσi,j , with i fixed

and j = 1, 2, . . . , n).

3.2. Staggered discretization of tensor fields

We next describe a different discretization, which uses a

staggered discretization for tensor fields as well, keeping di-

agonal elements at cell centers and transferring off-diagonal

element to cell corners. Such a staggering has been pro-

posed by Gerritsma [14]. The motivation for this arrange-

ment of tensor field is to obtain maximally compact sten-

cils, since wide stencils often cause the appearance of spu-

rious “checkerboard" modes. In the above central difference

scheme, the gradient of vector fields and the divergence of

tensor fields use (in part) central differences, and the com-

position of these two operators yields a wide-stencil discrete

Laplacian, which does not preserve the negative-definiteness

of the Laplacian. This can be remedied by resorting to a stag-

gered discretization.

The discrete geometry of the “staggered scheme" is shown

in Fig. 2. The velocity field uses the same Marker-and-

Cell discretization, except for a vertical shift of half a cell,

so that the boundaries intersect the first and last compu-

tational cells. The discrete velocity variables are now de-

noted by ui+1/2,j , with j = 0, 1, . . . , n, and vi,j+1/2, with

j = 0, 1, . . . , n− 1; the pressure variables, which are cell-

centered, are denoted by pi,j , j = 1, 2, . . . , n− 1. The

main change affects the discretization of the conformation

Fig. 2. Discrete geometry for the staggered scheme.
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tensor: its diagonal elements remain cell-centered, and are

denoted by σxxi,j , σ
yy
i,j , j = 1, 2, . . . , n− 1. The off-diagonal

elements are now defined at cell corners and are denoted by

σ
xy

i+1/2,j+1/2, j = 0, 1, . . . , n− 1. In this new setting there

are 3n− 2 degrees of freedom per computational column: the

2(n− 1) variables σxxi,j , σ
yy
i,j , and the n variables σ

xy

i+1/2,j+1/2.

As above, the first step is the calculation of ∇ · σ, which

now benefits from a compact stencil in all its elements:

(

∂σxx

∂x
+
∂σxy

∂y

)

i+1/2,j

= D+
x σ

xx
i,j +D+

y σ
xy

i+1/2,j−1/2,

i = 1, 2, . . . , n− 1,
(

∂σxy

∂x
+
∂σyy

∂y

)

i,j+1/2

= D+
x σ

xy

i−1/2,j+1/2 +D+
y σ

yy
i,j,

j = 1, 2, . . . , n− 1. (3.4)

With ∇ · σ at hand, the velocity field is computed by solv-

ing the elliptic system (3.2). This time, no ghost cells nor

reflections are needed, as ui−1/2,0 = −1/2, ui−1/2,n = 1/2,

and by the incompressibility condition, vi,j+1/2 = 0 for j =

0, n− 1.

We then turn to calculate the velocity gradient, whose di-

agonal elements are defined at cell centers and its off-diagonal

elements at cell corners. Again, we benefit from fully com-

pact stencils:

(

∂u

∂x

)

i,j

= D−
x ui+1/2,j,

(

∂u

∂y

)

i+1/2,j+1/2

= D+
y ui+1/2,j,

(

∂v

∂y

)

i,j

= D−
y vi,j+1/2,

(

∂v

∂x

)

i+1/2,j+1/2

= D+
x vi,j+1/2.

Problems start now that we need to substitute the velocity

gradient into the third equation in (2.4). The staggered dis-

cretization of tensor fields was designed to optimally fit the

differential operators. It is however unclear how to define the

product of two tensors when their diagonal and off-diagonal

elements are defined at different points (it is also unclear

how to define positive-definiteness in this setting). Specifi-

cally, the calculation of (2.4) requires σyy at cell corners, and

σxy, ∂u/∂y, and ∂v/∂x at cell centers. The natural solution is

to resort to second-order averaging: whenever a cell-centered

variable is needed at a cell’s corner it is obtained by averag-

ing over the four nearest cell centers; the same applies when

a corner variable is needed at a cell’s center. Second-order

extrapolations are used at boundary cells. For notational sim-

plicity, we denote the cell-to-corner and corner-to-cell inter-

polated fields by overlines.

The resulting scheme is

d

dt
σxxi,j = −D−

x (ui+1/2,j µ
+
x σ

xx
i,j ) −D−

y (vi,j+1/2 µ
+
y σ

xx
i,j )

+ 2 σxxi,j

(

∂u

∂x

)

i,j

+ 2 σ
xy
i,j

(

∂u

∂y

)

i,j

−
1

λ
(σxxi,j − 1),

d

dt
σ
xy

i+1/2,j+1/2 = −D−
x (ūi+1,j+1/2 µ

+
x σ

xy

i+1/2,j+1/2)

−D−
y (v̄i+1/2,j+1 µ

+
y σ

xy

i+1/2,j+1/2)

+ σ̄xxi+1/2,j+1/2

(

∂v

∂x

)

i+1/2,j+1/2

+ σ̄
yy

i+1/2,j+1/2

(

∂u

∂y

)

i+1/2,j+1/2

−
1

λ
σ
xy
i,j,

d

dt
σ
yy
i,j = −D−

x (ui+1/2,j µ
+
x σ

yy
i,j) −D−

y (vi,j+1/2 µ
+
y σ

yy
i,j)

+ 2 σ
xy
i,j

(

∂v

∂x

)

i,j

+ 2 σ
yy
i,j

(

∂v

∂y

)

i,j

−
1

λ
(σ
yy
i,j − 1). (3.5)

As above, the corresponding spectrum can be computed by

standard methods.

3.3. Numerical results

In this subsection we present calculations of the stability

spectrum using the two numerical schemes. Throughout this

paper we use a viscosity ratio of β = 0.2. The number of grid

points along the vertical mesh is n = 196 unless otherwise

specified.

3.3.1. Central difference scheme

A typical spectrum is shown in Fig. 3 for λ = 1, k = 1.

The eigenvalues are measured in units of 1/λ; in these units

the continuous GL strip has real part −1, whereas the contin-

uous viscous strip has real part −1/β = −5. The computed

spectrum is very different than the analytical one: the GL strip

has an oval shape, similar to that reported in the literature.

The second strip is also split, and connects to the GL strip by

a horizontal strip of eigenvalues. At higher values of λ (and

k), the splitting of the GL strip is even more pronounced,

Fig. 3. Central-difference scheme: stability spectrum for λ = 1 and k = 1.
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and eventually, some of the computed eigenvalues protrude

into the right half plane, implying that the computed Couette

flow is linearly unstable. For n = 196 points, the loss of sta-

bility occurs already at λ ≈ 10. In agreement with previous

work, the convergence of the spectrum to the analytical one,

as n → ∞, is very slow.

3.3.2. Staggered scheme

In Figs. 4 and 5 we present stability spectra obtained with

the staggered scheme; the difference with the finite-difference

scheme is striking. Fig. 4 shows the spectrum for λ = 1 and

k = 1. The computed spectrum agrees perfectly with the an-

alytical prediction. There are two vertical strips of singular

eigenvalues with real parts ℜe λω = −1 and ℜe λω = −5,

respectively, two discrete GL eigenvalues, which coincide

with the predicted values within six significant digits, and

a small number of discrete viscous eigenvalues. To the best

of our knowledge, this is the first reported calculation that

produces a spectrum in which the continuous strips of eigen-

values remain straight lines within 7–8 significant digits.

Fig. 4. Staggered scheme: stability spectrum forλ = 1 and k = 1. The figure

on the bottom shows a magnification of the GL spectrum.

Fig. 5. Staggered scheme: stability spectrum for λ = 20 and k = 10. The

figure on the bottom shows a magnification of the GL spectrum.

Fig. 6. Staggered scheme: the real part of the least stable eigenvalue as

function of the wavenumber k for several values of the Weissenberg number.
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The stability spectrum for λ = 20 and k = 10 is shown in

Fig. 5. The GL part of the spectrum retains its perfect struc-

ture, with the continuous part lying on the line ℜe λω = −1

within 7–8 significant digits. The viscous part of the spec-

trum, however, distorts, becoming however even more stable.

In Fig. 6 we plot the real part of the least stable eigenvalue

(the discrete GL mode) for different value of λ. In agreement

with the analytical prediction, ℜe λω is an increasing function

of λ but remains strictly below −1/2. Thus, the staggered

scheme seems immune to spurious linear instabilities at all

ranges of parameters.

Much insight is gained by examining the computed eigen-

functions. In Fig. 7 we plot eigenfunctions corresponding to

discrete GL and viscous eigenvalues. The eigenfunctions are

Fig. 7. Staggered scheme: eigenfunctions corresponding to a discrete GL eigenvalue (top) and a discrete viscous eigenvalue (bottom).
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extended and smooth, which explains why they can be well

approximated at relatively coarse resolution.

More interesting is the structure of the eigenvectors cor-

responding to the singular eigenvalues, shown in Fig. 8. The

top portion of this figure shows the three components of

the eigenvector δσ for a singular GL mode. The function

δσyy differs from zero (within negligible errors) at a single

point, i.e., is a discrete approximation to a delta-function.

Likewise, the functions δσxy and δσxx differ from zero at

two and three points, respectively, and thus approximate

first and second derivatives of a delta function. The stag-

gered discretization correctly captures the structure of the

continuous GL modes, which explains why the eigenval-

ues can be predicted with such high accuracy. Note that as

Fig. 8. Staggered scheme: eigenfunctions corresponding to a singular GL eigenvalue (top) and a singular viscous eigenvalue (bottom).
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n → ∞, the computed eigenvectors do not converge to a

smooth function. The support of these eigenvectors shrinks

as n grows, so that convergence takes place in the space of

distributions.

The lower portion of Fig. 8 shows the three components of

the eigenvector δσ for a singular viscous mode. The discrete

eigenfunctions are dominated by the distributional nature of

the eigenfunctions, i.e., they behave like high-order deriva-

tives of the delta distribution, as predicted in Section 2.3.

One may wonder why calculations that are based on “ve-

locity formulations" show a splitting of the continuous spec-

tra, although the singular pure-stress eigenmodes are being

filtered out. While the Graham-type eigenfunctions are con-

tinuously differentiable, their third and fourth derivatives,

which are present in the equations, exhibit delta-singularities,

and therefore challenge computational schemes in a way that

is similar to the pure stress modes.

3.4. Stability spectrum for Poiseuille flow

One may wonder at this point whether the use of stag-

gered tensor fields is essential for an accurate approximation

of the conformation tensor. The question is whether the accu-

rate reproduction of the stability spectrum for Couette flow is

“accidental", or, whether it is due to some exceptional prop-

erty of the staggered scheme. As a simple test, we briefly

consider the closely related problem of Poiseuille flow for an

Oldroyd-B fluid. There, the steady velocity profile is given

by

U(y) = 4(y − 1
2 )2,

and the singular spectrum analogous to the singular GL spec-

trum lies on the segment ω + λ−1 + ikU(y) = 0. The main

difference between Couette and Poiseuille flow is that the

GL-like singular eigenfunctions for Poiseuille flow are not

Fig. 9. Poiseuille flow with the staggered scheme: the right-most part of the

spectrum for λ = 1 and k = 1.

supported at a single point, i.e., the structure of the singular-

ity is different.

The computed spectrum for λ = 1 and k = 1 is depicted

in Fig. 9. The computation uses the staggered scheme, yet the

accuracy of the spectrum is comparable to that obtained with

a non-staggered scheme, and the usual splitting of the singu-

lar spectrum occurs. An eigenfunction associated with one

of the singular eigenvalues is shown in Fig. 10; it is less lo-

calized than for Couette flow, and the singularity seems to be

dominated by a regularized power-law divergence. Moreover,

there is no decoupling between the conformation tensor and

the velocity field. Thus, we conclude that the success of the

staggered scheme for Couette flow is in some sense “acciden-

tal", and due to the very special nature of the eigenfunctions.

4. Non-normality, pseudo-spectra and transients

Spectral calculations have been a standard tool in the study

of differential equations for a long time. As commented in

a review by Trefethen [23], spectral computations are useful

for three basic reasons: (i) a physical reason – the eigenvalues

provide information about the behavior of the system, (ii) an

algorithmic reason – transformation into a basis of eigenfunc-

tions may speed up computations, and (iii) a psychological

reason – the spectrum provides a simplified picture of the

system as a set of points in the complex plane.

There is a growing awareness, however, that spectral anal-

ysis may in certain cases lead to erroneous conclusions. This

may happen in problems in which the linear operator is non-

normal. A normal operator is one that has a complete set of

orthogonal eigenfunctions, or equivalently, commutes with

its adjoint. In contrast, the eigenfunctions of a non-normal

operator are not orthogonal and may not span the entire lin-

ear space. Even if the eigenfunctions do form a complete set,

the change into eigenfunction coordinates may involve ex-

treme distortions of the space, which from a computational

point of view are ill-conditioned. Generally, the spectral prop-

erties of non-normal operators do not necessarily determine

the stability of the system: the spectrum of a non-normal op-

erator can even be empty, and examples can be constructed

where the spectrum lies entirely on the left half plane, but yet,

the system is linearly unstable (e.g, the Zabczyk example in

[23]).

The study of non-normal matrices and operators goes back

to the beginning of the 20th century. There has been a renewed

activity in this field in the last 15 years, where the stability

analysis of many physical systems has been re-examined with

new computational tools dedicated to the study of non-normal

operators. A classical example where a discrepancy exists be-

tween predictions based on spectral analysis and experiments

is Poiseuille (Newtonian) flow in a pipe: spectral analysis pre-

dicts stable behavior for arbitrarily large Reynolds number,

whereas transition to turbulence typically occurs in the lab-

oratory at a Reynolds number in the vicinity of 2000. This

discrepancy has been analyzed in [24] with emphasis on the
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role played by non-normality on the amplification of small

perturbations toward a nonlinear regime (see Orszag and Pa-

tera [25] for a thorough investigation of the mechanism that

leads to turbulence). The role of non-normality in a viscoelas-

tic context was shortly discussed by Atalik and Keunings [26]

who considered the transition from linear to nonlinear evo-

lution of perturbations.

One of the main tools in the study of non-normal operators

is the resolvent. The resolvent of an operator A is a mapping

z �→ (zI − A)−1 with z ∈ C. It is defined for z in the resolvent

Fig. 10. Poiseuille flow with the staggered scheme: real part of an eigenfunction from the continuous GL strip. The six curves show, from top to bottom, the

real part of σxx, σyy , σxy , p, u, and v. The parameters are λ = 1 and k = 1.
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set, which is the complement of its spectrum Λ(A). The ǫ-

pseudo-spectrum of the operator A is defined as

Λǫ(A) =

{

z : ‖(A− zI)−1‖ ≥
1

ǫ

}

,

i.e., it is a subset of the resolvent set for which the resolvent

operator has sufficiently large norm. Here and below, norms

correspond to the Euclidean vector norm and its subordinate

matrix norm. Equivalently, it can be defined as the closure of

the set

Λǫ(A) = {z : ∃B, ‖B‖ ≤ ǫ, z ∈ Λ(A+ B)}.

The latter definition has a more intuitive interpretation. The

number z ∈ C belongs to the ǫ-pseudo-spectrum of A if it

belongs to the spectrum of a perturbation of A, where the

norm of the perturbation is smaller than ǫ. Since computations

always involve perturbations of operators (due to truncation

and roundoff errors), the pseudo-spectrum represents a range

of behaviors that one could expect in an actual computation.

In Fig. 11 we plot pseudo-spectral contour lines for k = 1

and λ = {1, 10, 100}. The contours are labeled in logarithmic

units. These computations were performed with the Eigtool

Matlab Toolbox [27]. Roughly speaking, the contour lines

to the right of the singular GL spectrum are vertical. For

λ = 1, even perturbations with norm as large as ǫ = 10−1 do

not suffice to turn the system linearly unstable. For λ = 10

perturbation with norm as small as 10−5 can lead to in-

stability, whereas for λ = 100 unstable behavior may oc-

cur due to perturbations with norm 10−7.5. This gives an-

other perspective on why instabilities occur at large enough

Fig. 11. Contour lines of the pseudo-spectra for k = 1 and (a) λ = 1, (b) λ = 10, and (c) λ = 100, The contours are labeled using a log10 scale. The computation

uses the staggered discretization with n = 196 points, and the Eigtool Matlab Toolbox for the evaluation of the pseudo-spectra.
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Weissenberg number, without yet revealing the destabilizing

mechanism.

Pseudo-spectral calculations provide also information

about the magnitude of transient growth. If for some ǫ > 0

and constant C:

αǫ(A) ≡ max
λ∈Λǫ(A)

ℜe λ > C,

then

sup
t>0

‖etA‖ >
C

ǫ
.

The real number αǫ(A) is called the ǫ-pseudo-spectral ab-

scissa, and corresponds to the real part of the least-stable el-

ement of the pseudo-spectrum. Thus, if the ǫ-pseudo-spectra

protrude significantly into the positive reals for small ǫ, then

the norm of the evolution operator exceeds at some interme-

diate time a bound inversely proportional to ǫ. The proof is in

fact very simple [28]. Let z ∈ Λǫ(A) have positive real part.

Then, from the Laplace transform identity:

(zI − A)−1 =

∫ ∞

0

e−tzetA dt,

it follows that

1

ℜe z
sup
t>0

‖e−tA‖ ≥

∫ ∞

0

e−tℜe z‖etA‖ dt ≥

∥

∥

∥

∥

∫ ∞

0

e−tz etA dt

∥

∥

∥

∥

= ‖(zI − A)−1‖ ≥
1

ǫ
,

where the last inequality follows from the definition of the

ǫ-pseudo-spectrum. Since this inequality holds for any z ∈

Fig. 12. The scaled ǫ-pseudo-spectral abscissa αǫ(A)/ǫ vs. log10 ǫ for k = 1 and (a) λ = 1, (b) λ = 10, (c) λ = 20, and (d) λ = 100. The three lines in each

graph correspond to computations with n = 64 points (solid lines), n = 128 points (dashed lines), and n = 256 points (dash-dotted lines).
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Λǫ(A) and ǫ > 0, it follows that

sup
t>0

‖e−tA‖ ≥ sup
ǫ>0

αǫ(A)

ǫ
. (4.1)

Inequality (4.1) states that the maximum value ofαǫ(A)/ǫ,

taken over all values of ǫ, is a lower bound on the maximum

transient amplification. That is, there exists a time t0 and a

vector u (the initial conditions), such that

‖e−t0Au‖ ≥ sup
ǫ>0

αǫ(A)

ǫ
‖u‖.

In Fig. 12 we plot the value of αǫ(A)/ǫ versus log10 ǫ for

k = 1 and various values of λ. Each graph shows three curves

corresponding to different level of refinement. The graphs for

λ ≤ 20 seem to have converged, whereas the computation for

λ = 100 has not yet reached a converging regime, even for

n = 256 points.

From Fig. 12c, for example, we deduce the existence of an

initial perturbation, which, for λ = 20, is amplified, at some

intermediate time by a factor of a least 140. For λ = 100,

the transient amplification may exceed a factor of several

thousands.

A direct verification of the extent of transient amplification

can be computed by exponentiating numerically the differ-

ence operator and calculating the norm of the resulting evo-

lution operator. The results are shown in Fig. 13. Again, three

levels of refinement are used to assess the accuracy of the re-

sults. Here too, the results seem to converge well for λ ≤ 20.

As expected, the maximal transient amplification exceeds the

lower bound deduced from Fig. 12. The duration of the tran-

sient period of growth is also monotonically increasing with

the Weissenberg number.

The initial condition that leads to maximum transient am-

plification can be approximated directly from the (discrete)

operator eAt via an SVD, with t chosen such to maximize

Fig. 13. The norm of the evolution operator eAt as function of time for k = 1 and (a) λ = 1, (b) λ = 10, (c) λ = 20, and (d) λ = 100. The three lines in each

graph correspond to computations with n = 64 points (solid lines), n = 128 points (dashed lines), and n = 256 points (dash-dotted lines).
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Fig. 14. Time evolution of the most amplified initial perturbation for k = 1 and λ = 20. Each graph shows the real part of the fields σxx, σyy , σxy , and u. The

fives graphs correspond to snapshots at time t = 0, 40, 90, 120, 200.
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the curves in Fig. 13. Thus, we identified the most ampli-

fied perturbation for k = 1 and λ = 20; snapshots of its time

evolution are depicted in Fig. 14. Although the maximum

amplification occurs at time t = 90, we observe that while

the perturbation decays, it generates spatial oscillations of

increasing frequency. At time t = 200, the perturbation is

still larger in norm than the initial perturbation, while os-

cillations have a wavelength of several mesh spacings. For

slightly longer times this computation, which uses n = 256

points, can no longer resolve these cross-stream oscillations.

Note that the velocity component u is significantly smaller

in absolute value than the stress components. In fact, the solu-

tion shown in Fig. 14 exhibits a stress field with small diver-

gence, which suggests that it might be related to the family of

divergence-free stress fields identified in Section 2.2. Set for

example an Airy stress function φ(x, y) = sin(πx) cos(πy) in

(2.7). This corresponds to an initial perturbation

δσ(x, y, 0) = π2

(

sin(πx) cos(πy) − cos(πx) sin(πy)

− cos(πx) sin(πy) sin(πx) cos(πy)

)

,

which for long time t > λ is dominated by

δσ(x, y, t) ∼ π2t2e−t/λ sin[π(x− yt)] cos(πy)

(

1 0

0 0

)

.

(4.2)

Note how, for fixed x, the spatial frequency increases linearly

in time, while the duration of the transient growth scales with

the Weissenberg number. Thus, we conclude that the most

amplified perturbation is associated with non-modal solu-

tions of the form (2.7).

The interplay between transient amplification and the

formation of large cross-stream gradients can also be seen

through the integral formulation of the constitutive equation:

σ(x, t) = e−t/λF (x, t, 0)σ(x, 0)FT(x, t, 0)

+
1

λ

∫ t

0

e−(t−s)/λF (x, t, s)FT(x, t, s) ds,

where F (x, t, s) is the relative deformation gradient between

time s and t at the Lagrangian coordinate x. The steady solu-

tion σ(x, t) = � is a solution of this integral equation, with

F (x, t, s) =

(

1 t

0 1

)

.

For σ(x, t) = � + δσ(x, t) with δσ(x, 0) divergence-free, F

remains unchanged, and δσ(x, t) is explicitly given by

δσ(x, t) = e−t/λ

(

1 t

0 1

)

δσ(x, 0)

(

1 0

t 1

)

.

This expression clarifies how divergence-free stress fields

evolve. The deformation gradient, F , is responsible for the

deformation of the stress perturbation and for the transient

growth. The advection by a shearing field is responsible, on

the other hand, for the generation of high-frequency cross

stream waves.

Thus, as time evolves, “energy" is transfered to high-

frequency modes, resulting in cross-stream under-resolution

and large truncation errors. Once this happens, the behavior

of the system is difficult to predict, and notably, small pertur-

bations may be amplified. Of course, as long as the linearized

system is considered, the linear instability is imprinted in the

spectrum. The added contribution of the above analysis is the

revelation of a mechanism that may cause truncation errors

to dominate the numerical solution.

5. Addition of stress diffusivity

The fact that the Oldroyd-B and UCM equations can sus-

tain solutions that are singular is bothersome. By itself, it

does not invalidate the model, as long as we have not shown

that unphysical singular solutions may evolve from physi-

cally significant initial data. Yet, one wonders if the highly

non-normal nature of the problem, which makes it so sensi-

tive to perturbations is not an indication of model deficiency.

Thoughts along those lines were expressed by El-Kareh and

Leal [15], which analyzed the existence of solutions for con-

stitutive models of finitely extensible polymers. Their obser-

vation was that all standard methods of proof fail because

it is not possible to guarantee the regularity of the stress

across streamlines, as there is no interaction between dis-

joint streamlines. Quoting [15]: “While no proof is provided

here that solutions in some Sobolev space fail to exist without

the modifications to the model suggested here, it is certainly

true that none of the currently available methods to prove ex-

istence can be applied successfully. Our point of view is that

this is an indication of problems with the model rather than

any inadequacy of available mathematical theory.”

El-Kareh and Leal showed that existence could be proved

(up to a certain a priori assumption) if stress diffusion was

added to the constitutive model. That is, a term D∇2σ is

added to the right hand side of the constitutive law. The ad-

dition of stress diffusion has a physical justification, result-

ing from the Brownian motion of the center of mass of the

molecules. In bead-and-springs models from which macro-

scopic dynamics may be derived (up to the need for closure

assumptions in nonlinear models), there is a stochastic force

which prevents the springs to collapse to zero length. The

same source of randomness should also cause center of mass

diffusion, but this component is usually omitted by a “lo-

cal homogeneity assumption”. An estimate for the magni-

tude of the diffusivity coefficient is given in [15],D ∼ 10−9.

The question is whether such a small parameter has any

noticeable effect on the behavior of the system over larger

scales.

The addition of stress diffusivity in computations has

been considered already by Keiller [9], but only along the
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stream-wise direction. The addition of isotropic diffusivity

has been studied by Sureshkumar and Beris [16], which re-

ported that the addition of small amount of (artificial) diffu-

sivity has little effect on the regular, spatially extended eigen-

modes, while completely changing the nature of the singular

spectra; in fact, the singular spectra are destroyed and discrete

spectra emerge instead. Stress diffusion is commonly used in

turbulent viscoelastic simulations, without which gradients

grow unbounded due to the fast mixing of stream lines. In

[17], for example, it is argued that stress diffusion is necessary

in order to correctly predict the tail of the energy spectrum in

turbulent flows.

Fig. 15 shows the stability spectrum for k = 1, λ = 1,

and a stress diffusivity coefficient D = 10−4. The graphs on

the top correspond to the staggered scheme with n = 128

and n = 256 points, whereas the graphs on the bottom cor-

respond to similar calculations using the central-difference

scheme. The first observation, is that in agreement with [16]

the singular spectrum has disappeared, and instead there is a

nearly vertical finite array of discrete eigenvalues. Moreover,

the right-most part of the graph is nearly identical in all four

figures, implying that the sensitivity to the method of com-

putation and to the resolution has been significantly reduced

with the addition of stress diffusivity. This is not surprising,

as solutions are now much smoother, and therefore truncation

errors remain relatively small.

Fig. 16 shows the spectra obtained with the staggered

scheme for k = 1, λ = 1 and a diffusivity coefficient of

D = 10−6 with n = 64, n = 128, and n = 256 points. For

n = 64 the results seem identical to the diffusionless spec-

trum, which means that the diffusion length is not resolved.

As the number of points increases the structure changes, but

even forn = 256 it has not yet converged to the true spectrum.

Yes, there is a noticeable tendency of stabilization as the spa-

tial resolution approaches the characteristic stress diffusion

length.

Fig. 15. Stability spectrum for k = 1, λ = 1, and a stress diffusivity constant of D = 10−4. The upper row shows results obtained with the staggered scheme

with n = 128 (left) and n = 256 (right) point. The lower row shows the corresponding results obtained with the central-difference scheme.
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Fig. 16. Stability spectra for k = 1, λ = 1, and a stress diffusivity constant of D = 10−6. The results were obtained with the staggered scheme with n = 64,

n = 128, and n = 256 points.

6. Conclusions

The main result in this paper is the identification of a

family of non-modal stress perturbations of Couette flow,

which are divergence free, and therefore do not couple back

into the velocity field. These perturbations are exact solu-

tions of the nonlinear system. In particular, there exist initial

perturbations in this class, which for high Weissenberg num-

ber, exhibit large transient growth accompanied with the for-

mation of cross-stream oscillations whose frequency grows

linearly in time. While these perturbations have an asymp-

totic temporal profile that scales like t2e−t/λ, and therefore

eventually decay, the oscillations may, at large enough Weis-

senberg number, reach sub-grid scales before decaying. We

believe this under-resolution effect to be at the heart of the

spurious instabilities observed generically in numerical cal-

culations. We emphasize that those oscillatory solutions are

not numerical artifacts—they are bona fide solutions of the

Oldroyd-B model. Numerical problems arise due to under-

resolution.

The fact that the Oldroyd-B model is capable to sustain

stress perturbations with arbitrarily large spatial gradients,

which do not excite the velocity field is bothersome. This

can happen because the stress field interacts with itself only

through the induced velocity field, and the latter is unaffected

by divergence-free stress components. It has been argued in

the past that stress diffusion becomes important at sufficiently

small scales, which are however under the resolution attained

in numerical simulations. El-Kareh and Leal [15] have even

raised the possibility that Oldroyd-like models may be ill-

posed without the presence of non-local stress interactions,

although this speculation has never been confirmed.

Our opinion is that in any case, a numerical method should

not ignore the presence of a mechanism that creates sub-grid

oscillations. Those oscillations destroy the smoothness which

is implicitly assumed on the scale of a single computational
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cell. Thus, truncation errors become dominant, and the re-

sponse of the numerical method may become unpredictable.

Note that it is not uncommon to have situations where sharp

sub-grid variations occur, e.g., shock waves. Then, the nu-

merical scheme has to be properly designed to account for

the expected behavior of the sub-grid patterns. Shock waves

are a classical example where naive discretization may lead

to catastrophic breakdown.

A natural remedy in our case is to introduce stress diffusiv-

ity, with a diffusivity constant that depends on the mesh size,

to damp out oscillations below the scale of the mesh. Such

solution has been proposed in the past as a stabilizer, but

has usually been avoided by the computational community.

Indeed, computational rheologists have seen over the years

numerous methods with good stability properties but poor ac-

curacy, and the reluctance from corrections that smooth out

sharp variations is understandable. An exception is turbulent

flows, where sub-grid modelling is common practice even

for Newtonian flows. Yet, we repeat, sub-grid oscillations

cannot just be ignored. If local smoothing introduces large

error, which means that those oscillations are dynamically

important, then one has to resort to sub-grid modelling to ac-

count for the effects that sub-grid structures have on the large

scale dynamics. We cannot determine at this point what is

the correct approach. We believe that damping with a mesh-

dependent coefficient may eliminate spurious patterns, and

nevertheless converge with mesh refinement, but this belief

has to be substantiated by numerical tests.

We conclude this section by raising a number of issues that

remain open: (i) To what extent are our results generalizable

to more general situations? The invariance of divergence-

free stress fields is a special feature of Couette flow; in any

other situation there is a non-trivial interaction between the

stress and the velocity field. Yet, preliminary results indi-

cate that divergence-free components in the stress field play

an important role also in Poiseuille flow. It seems as if the

same combination of transient growth and passive transport

by shearing stream lines dominates numerical errors there

too. (ii) In view of the new insight gained into the problem,

the somewhat unexplained success of the DEVSSG schemes

should be re-examined. It is of particular interest to determine

whether their immunity to spurious instabilities results from

an implicit insertion of cross-stream diffusion, or some other

sort of regularization.
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