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Abstract We study the linear stability of the fifth-order Weighted Essentially
Non-Oscillatory spatial discretization (WENO5) combined with explicit time step-
ping applied to the one-dimensional advection equation. We show that it is not
necessary for the stability domain of the time integrator to include a part of the
imaginary axis. In particular, we show that the combination of WENO5 with ei-
ther the forward Euler method or a two-stage, second-order Runge–Kutta method
is linearly stable provided very small time step-sizes are taken. We also consider
fifth-order multistep time discretizations whose stability domains do not include
the imaginary axis. These are found to be linearly stable with moderate time
steps when combined with WENO5. In particular, the fifth-order extrapolated
BDF scheme gave superior results in practice to high-order Runge–Kutta methods
whose stability domain includes the imaginary axis. Numerical tests are presented
which confirm the analysis.

Keywords linear stability analysis, method of lines, WENO, multistep meth-
ods, Runge–Kutta methods, hyperbolic conservation laws

1 Introduction

The method of lines is a general technique for solving time-dependent partial dif-
ferential equations (PDEs). In this approach, the PDEs are first discretized on a
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spatial grid and a system of ordinary differential equations (ODEs) in time is ob-
tained. The approximate solution is then computed by a suitable time integrator.

Hyperbolic conservation laws are a set of PDEs, often nonlinear, whose wave-like
solutions may develop discontinuities, even in the presence of smooth initial con-
ditions. When applying the method of lines to problems involving discontinuous
solutions, in addition to linear stability, a stronger nonlinear stability is often desir-
able. Linear stability is required for preventing the numerical solutions from blowing
up, and nonlinear stability is needed for resolving discontinuities without generat-
ing spurious oscillations. Suitable spatial discretizations include total-variation-
diminishing (TVD) schemes [15, 6], total-variation-bounded (TVB) schemes [17],
essentially non-oscillatory (ENO) schemes [8, 7, 20], and weighted essentially non-
oscillatory (WENO) schemes [14, 10, 19]. These spatial discretizations are often
combined with strong stability preserving (SSP) Runge–Kutta and multistep time-
stepping schemes. SSP time-stepping schemes preserve convex boundedness and
contractivity properties of the spatial discretization combined with forward Euler,
under a modified time-step restriction [20, 18, 3, 4, 16, 11].

In this paper, we consider the popular WENO5 method [10]. WENO5 uses a
weighted combination of three stencils of the third order ENO scheme with nonlin-
ear weights. WENO5 is therefore a nonlinear spatial discretization. We freeze the
nonlinear weights and study the linear stability of the resulting linear finite differ-
ence discretization, combined with different types of explicit time-stepping schemes
applied to the one-dimensional advection equation. We note that the analysis pre-
sented here is also applicable to more general hyperbolic conservation laws with a
bounded flux derivative. The linear analysis provides insight into the behavior of
the nonlinear WENO5 method applied to nonlinear problems and problems with
discontinuous solutions.

The linear stability of WENO5 (in the above frozen-coefficient sense) has been
studied in [10, 21]. These studies consider WENO5 in combination with a time-
stepping scheme whose linear stability domain includes a part of the imaginary axis
[−iβ, iβ] with β > 0, such as the third-order SSP Runge–Kutta scheme of Shu and
Osher [20]. Here, we aim to give a more complete picture of the linear stability
of WENO5. The main result of this paper is that the inclusion of imaginary axis
is not a necessary condition, and that there are time integrators which do not
satisfy this condition and yet are suitable to use in combination with WENO5. In
particular, we show that the combination of WENO5 with either the forward Euler
(FE) method or a two-stage, second-order explicit Runge–Kutta (ERK2) method is
linearly stable provided very small time step-sizes are taken. We further show that
fifth-order multistep time discretizations whose stability domain does not include
the imaginary axis can possess suitable linear stability properties when combined
with WENO5. Of these schemes, the extrapolated BDF5 scheme is particularly
recommended. It possesses a mild linear stability restriction and performs well in
situations where other high-order schemes generate spurious oscillations.

The outline of the paper is as follows. In Section 2, we review the linear stability
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analysis for the method of lines applied to the one-dimensional advection equation.
In Section 3, we first review the linearization of WENO5 by freezing the nonlinear
weights. Then the linear stability of the resulting finite difference scheme is studied
in combination with various explicit Runge–Kutta and multistep methods. Numer-
ical tests on both linear and nonlinear problems using the fully nonlinear WENO5
are presented in Section 4 to confirm the analysis.

2 Linear Stability Analysis

We consider the one-dimensional scalar advection equation

ut + ux = 0, x ∈ [0, 1], t > 0, (1)

with periodic boundary conditions and initial conditions

u(x, t = 0) = u0(x), x ∈ [0, 1]. (2)

We study the linear stability of approximate solutions of (1) when the method of
lines is employed. In this approach, we first discretize the PDE on a uniform spatial
grid and obtain a system of ODEs in time. We then compute the approximate
solution by an explicit Runge–Kutta (ERK) or an explicit linear multistep (ELM)
time integrator.

Let ∆x = 1

N denote the spatial grid-length, where N is a natural number.
Without loss of generality, we assume N is an even number. For j = 0, 1, . . . , N ,
let xj = j ∆x and uj(t) denote the corresponding grid point and the grid function
approximating u(xj , t), respectively. On this spatial grid, we discretize (1) by a
finite difference scheme to obtain the semi-discretization,

d

dt
uj(t) =

−1

∆x
L(uj−r, . . . , uj+s). (3)

We now briefly review the type of linear stability analysis that we use in this paper.

2.1 von Neumann Analysis

von Neumann analysis is one of the most popular types of linear stability analysis,
see for example [9, 12]. It applies to linear systems of equations with periodic
boundary conditions. In this technique, the semi-discrete solution is expressed by
a discrete Fourier series in space,

uj(t) =

N/2
∑

m=−N/2

ûm(t) eiωmj∆x, ωm ∈ R.

By the superposition principle, we can use only one term in the series

uj(t) = ûm(t) eijθm , θm = ωm ∆x, (4)
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where m = −N/2, . . . , N/2.
In order to use von Neumann analysis, we assume that the operator L in (3)

can be written in the form

L(uj−r, . . . , uj+s) = z(θm)uj. (5)

Here the complex function z is called the Fourier symbol of the spatial operator L.
For example, if L is a linear operator, it can be written in the form (5). As we will
see in the next section, the operator for WENO5 can be approximated by a linear
operator in this form when the solution is smooth.

Now let the semi-discrete system (3) and (5) be discretized by an explicit time
integrator with a time step-size ∆t. Let un

j = uj(t
n) denote the solution at the

n-th time level tn = n ∆t. By inserting (4) into the resulting fully-discrete system,
we can write

un+1
j = g(ẑm)un

j , ẑm = −σ z(θm), m = −N/2, . . . , N/2, n ≥ 1, (6)

where the amplification factor g is a function of θm and the CFL number σ = ∆t
∆x .

The amplification factor is a property of the time-stepping scheme.
In standard von Neumann analysis, as a simplification, we drop the subscript

m and obtain
un+1

j = g(ẑ)un
j , ẑ = −σ z(θ), (7)

where g is now a function of θ and σ. The dependencies on m and N have thus
been eliminated. This simplification is equivalent to taking the limit N → ∞
and considering a continuous function θ instead of a discrete set θm with m =
−N/2, . . . , N/2.

A spatial discretization method combined with an explicit temporal discretiza-
tion is linearly stable if the amplification factor satisfies the condition

|g(−σ z(θ))| ≤ 1, ∀ θ ∈ [0, 2π]. (8)

This stability condition imposes an upper bound on σ which in turn enables us to
find a time step-size for which the method is linearly stable. The largest possible
number σ > 0 which satisfies this condition is denoted by σa and we call it the
algebraic stability limit for the particular spatial discretization and time-stepping
scheme. We note that this condition is not necessary for the usual definition of
stability: the right hand side can be relaxed to 1 + C ∆t. Here, we consider the
so called “absolute stability” which guarantees a stronger bound than the usual
stability (resulting in long time boundedness of the numerical solution).

Our usage of the term algebraic above is intended to be in contrast the follow-
ing geometric approach (specifically, it is independent of the concept of algebraic
stability of Runge–Kutta methods [5]). We now give a geometrical interpretation
of the linear stability [1, 13, 21]. We start with the following definitions.
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Definition 1 The spectrum of a spatial discretization scheme (3) and (5) with
N → ∞ is the set S = {−z(θ) : 0 ≤ θ ≤ 2π}.

Definition 2 The linear stability domain of an explicit time-stepping scheme with
amplification factor g(ẑ) is St = {ẑ : |g(ẑ)| ≤ 1}.

Definition 3 The geometric stability limit, denoted by σg, is the largest number
σ̃ such that the rescaled spectrum σ̃ S lies inside the linear stability domain St,

σ̃ S ⊆ St. (9)

We will refer to this condition as geometric stability condition. Note that either
approach gives the same results, and thus the algebraic and geometric stability
limits are equal, σg = σa.

Example. The operator L for upwind spatial discretization reads

L(uj−1, uj) = uj − uj−1,

and can be written in the form (5) with z(θ) = 1−e−iθ. The corresponding spectrum
S is therefore a circle of radius 1 centered at (−1, 0) in the complex plane. Now if
we use FE time discretization with g(ẑ) = 1 + ẑ, the stability domain St is a disc
whose boundary is precisely the same as S, and we have σg = 1. Moreover, it is
trivial that σa = 1. Therefore we have σg = σa = 1.

In the next section, using the geometrical interpretation of linear stability, we
will show that problems may arise when applying the standard von Neumann anal-
ysis. We then present a modification to the standard von Neumann analysis in
order to overcome such problems.

2.2 Modified von Neumann Analysis

The last step in the standard von Neumann analysis is the simplification step which
replaces the discrete set of N +1 phases θm, m = −N/2, . . . , N/2, with a continuous
phase function θ ∈ [0, 2π]. This simplification step may cause a problem for certain
spatial and temporal discretizations. We begin by illustrating the problem with
a particular example. We then show how to modify the analysis to resolve such
problems.

To illustrate the main idea, suppose that the continuous spectrum S correspond-
ing to a (fictitious) spatial discretization of the advection equation takes the form
of a cubic curve in a neighborhood of the origin in the complex plane, with

Re(z) = θ3, Im(z) = −θ, 0 ≤ θ ≪ 1.

Furthermore, suppose FE time discretization is used. The boundary of the linear
stability domain ∂St is a circle of radius 1 centered at (−1, 0) in the complex plane.
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Figure 1: The left figure shows the spectrum S of a fictitious spatial discretization
(thick-line) which takes the form of a cubic curve and the boundary of the stability
domain ∂St of FE time stepping (thin-line) in a neighborhood of the origin in the
complex plane. The right figure shows the first two eigenvalues close to origin
multiplied by a nonzero stability limit, −σgz(∆θ) and −σgz(2∆θ).

See Figure 1 (left). According to the geometric stability condition (9), we need to
rescale the spectrum S (thick-line) by σg such that it lies inside the FE stability
domain with the boundary ∂St (thin-line). The geometric stability condition (9)
can be expressed as

(1 − σ̃ Re(z))
2

+ (σ̃ Im(z))
2
≤ 1,

which gives

σg =
2θ

1 − θ4
, 0 < θ ≪ 1. (10)

Note that for the particular case θ = 0, σg S lies on ∂St. This relation shows that
in the limit as θ → 0 we obtain σg = 0 which implies that we need a zero CFL
number. This result is too strict, however, since we only need to fit the eigenvalues
on the spectrum corresponding to the N + 1 phases θm, m = −N/2, . . . , N/2. This
observation leads us to introduce the discrete spectrum.

Definition 4 The discrete spectrum S of a spatial discretization scheme (3) and
(5) is the set of N + 1 eigenvalues S = {−z(θm) : θm ∈ {0, ∆θ, 2∆θ, . . . , 2π}, ∆θ =
2π∆x}.

The discrete geometric stability condition now reads

σ̃ S ⊆ St, (11)

where σ̃ and the geometric stability limit σg are henceforth defined correspondingly.
We now apply this condition to the example in this section. In a neighborhood

of the origin, the linear stability restriction is determined by the nonzero eigenvalue
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that is closest to the origin, −z(∆θ). Using this eigenvalue and equation (10), we
obtain the following time-step restriction for FE,

σg =
4π∆x

1 − 16π4∆x4
⇒ ∆t ≤

4π∆x2

1 − 16π4∆x4
.

Using this stability limit, we can fit the discrete linear stability domain inside the
linear stability domain of FE. See Figure 1 (right) for the corresponding plot near
the origin.

Note however that checking the behaviour of eigenvalues near the origin is not
sufficient: condition (11) must be satisfied for all of S. In our calculations, this
check is carried out using a straightforward examination of the plots and a simple
bisection search.

Throughout this paper, linear stability is assessed using this modified von Neu-
mann analysis rather than the standard von Neumann analysis. This allows us to
obtain sharp bounds on time-stepping restrictions. In several cases, modified von
Neumann analysis allows us to report finite stability restrictions when the standard
von Neumann analysis would have indicated instability.

3 WENO5 Method

In this section, we study the linear stability properties of a finite difference scheme
obtained by “freezing” the nonlinear weights of the WENO5 spatial discretization.
We first calculate the stability region of this “linearized WENO5” scheme. We
then consider different time-stepping schemes and obtain proper geometric stabil-
ity limits such that their combination with linearized WENO5 is linearly stable.
Note that our numerical results in Section 4 demonstrate that this analysis of the
linearized WENO5 scheme is consistent with what we observe in practice with the
full nonlinear WENO5 method.

3.1 WENO5 Spatial Discretization

The operator L in (3) for WENO5 reads

L(uj−3, . . . , uj+2) = f̂j+1/2 − f̂j−1/2, (12)

where f̂j+1/2 is the numerical flux. In the case of linear advection, it is given by

f̂j+1/2 = w0

(

2

6
uj−2 −

7

6
uj−1 +

11

6
uj

)

+ w1

(

−
1

6
uj−1 +

5

6
uj +

2

6
uj+1

)

+

+w2

(

2

6
uj +

5

6
uj+1 −

1

6
uj+2

)

.
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The weights w0,1,2 are computed based on the smoothness indicators [10]

IS0 =
13

12
(uj−2 − 2uj−1 + uj)

2 +
1

4
(uj−2 − 4uj−1 + 3uj)

2 ,

IS1 =
13

12
(uj−1 − 2uj + uj+1)

2
+

1

4
(uj−1 − uj+1)

2
,

IS2 =
13

12
(uj − 2uj+1 + uj+2)

2
+

1

4
(3uj − 4uj+1 + uj+2)

2
.

The weights are given by

wl =
αl

∑2

k=0 αk

, αl =
dl

(ǫ + ISl)2
, l = 0, 1, 2,

where d0 = 1

10
, d1 = 6

10
, d2 = 3

10
, and ǫ is a small number typically introduced to

avoid singularity.

3.2 Linearization of WENO5

In regions where the solution is smooth, Taylor expansion of the smoothness indi-
cators gives

ISl =
13

12

(

(∆x)2 u′′

j

)2
+

1

4

(

2 ∆xu′

j + cl (∆x)3 u′′′

j

)2
+ O((∆x)6), l = 0, 1, 2,

where c0 = −2

3
, c1 = 1

3
, c2 = −2

3
, u′

j = ux(xj , t), u′′

j = uxx(xj , t) and u′′′

j =
uxxx(xj , t). We therefore have

ISl = C
(

1 + O((∆x)2)
)

, l = 0, 1, 2.

If u′

j 6= 0, then C =
(

∆xu′

j

)2
, and if u′

j = 0, then C = 13

12

(

(∆x)2 u′′

j

)2
[10].

Therefore, C is a nonzero quantity and independent of l. As a result of this, we
can show

wl = dl + δl, δl = O((∆x)2),

2
∑

k=0

δk = 0, l = 0, 1, 2. (13)

For example in the case 1/u′

j = O(1), we have

δl = bl

u′′′

j

u′

j

(∆x)2 + O((∆x)4), b0 =
3

25
, b1 =

−12

25
, b2 =

9

25
.

Neglecting the small terms δl, we obtain

f̂j+1/2 =
2

60
uj−2 −

13

60
uj−1 +

47

60
uj +

27

60
uj+1 −

3

60
uj+2,
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and the operator L is

L = −
2

60
uj−3 +

15

60
uj−2 −

60

60
uj−1 +

20

60
uj +

30

60
uj+1 −

3

60
uj+2.

Considering solutions of type (4), we get

z(θm) =
16

15
sin6 θm

2
+ i

(

−
1

6
sin 2θm +

4

3
sin θm +

16

15
sin5 θm

2
cos

θm

2

)

.

Since the eigenvalues −z(θm) sit on the spectrum S in a clock-wise order as θm

increases from 0 to 2π, in order to be consistent with the standard polar form of
numbers in the complex plane, which have a counter clock-wise order in θm, we
replace θm by 2π − θm and write

zm := z(θm) =
16

15
sin6 θm

2
+ i

(

1

6
sin 2θm −

4

3
sin θm −

16

15
sin5 θm

2
cos

θm

2

)

.

(14)
The corresponding spectrum is obtained by multiplying (14) by −1 and is shown
in Figure 2.

−2 −1.5 −1 −0.5 0 0.5 1
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

Figure 2: The spectrum S of the finite difference scheme resulting from linearizing
WENO5 in smooth regions.

Note that, as the above formula suggests, for small values of θm and 2π − θm,
the eigenvalues lie very close to the imaginary axis. This is the main reason that
a time discretization whose linear stability domain St includes a part of imaginary
axis [−iβ, iβ] with β > 0 has been considered in [10, 21]. This will then ensure
that (11) holds for some σ̃ > 0. However, as we will show in this section, the
inclusion of the imaginary axis is not a necessary condition, and there are many
time integrators which do not satisfy this condition and yet are suitable to be
combined with WENO5.
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It is particularly important to study the spectrum in a neighborhood of the
origin where θm values are small. This can be done analytically using Taylor ex-
pansions of the function z(θ) around θ = 0 [21]. Thus, in order to find the largest
σ̃ such that (11) holds for a particular time-stepping scheme, we first analytically
study the spectrum of linearized WENO5 in a neighborhood of the origin and find a
scale σg such that the rescaled spectrum σg S is contained in St. Then, by a simple
bisection search algorithm, we find a possibly new σg for the remaining eigenvalues
(apart from the origin). Finally, we select the minimum of the two obtained values
as the geometric stability limit for the particular time-stepping scheme.

To carry out our analysis, we will need to approximate S near the origin. Using
the Taylor expansion, the function (14) in a neighborhood of the origin for small
values 0 < θm ≪ 1 reads

Re(zm) =
1

60
θ6

m + O(θ8
m), Im(zm) = −θm + O(θ7

m). (15)

Remark 1 The neglect of the small terms δl in (13) near the origin is only for
simplification. If we include these terms, instead of (15) we obtain (as in [21])

Re(zm) =
7

60
θ6

m + O(θ8
m), Im(zm) = −θm + O(θ7

m).

This shows that near the origin, the actual spectrum lies farther from the imaginary
axis than what we consider in (15). Therefore, the simplification of neglecting the
δl in our linearization of WENO5 may give stricter-than-necessary stability bounds
for the WENO5 scheme.

3.3 Temporal Discretizations

We now consider a variety of time discretizations from the class of ERK and ELM
methods and study their linear stability when combined with linearized WENO5.
A focus of our studies is methods whose stability domain does not include a part
of the imaginary axis.

We discretize the semi-discrete system (3) and (5) by either an s-stage, order-p
ERK method, or a k-step ELM method. An s-stage, order-p ERK method applied
to the semi-discrete system can be written as (7) with the amplification factor [2]

g(ẑ) = 1 +

p
∑

l=1

ẑl

l!
+

s
∑

l=p+1

ẑl b⊤ Al−1 1. (16)

Here the elements of matrix A ∈ R
s×s and vector b ∈ R

s are the coefficients of the
Butcher tableau, and 1 = (1, . . . , 1)⊤. Note that u0

j is given by the initial data (2).
A general k-step ELM method for (3) and (5) has the form (e.g., [5])

un+1
j =

k
∑

l=1

(al + bl ẑ)un−l+1
j , ẑ = −σ z(θ), n ≥ k ≥ 1. (17)
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Here u0
j is given by the initial data (2), and the other k − 1 starting vectors

u1
j , . . . , u

k−1
j are either given or computed by an appropriate starting procedure.

We note that since un
j = (g(ẑ))l un−l

j , 0 ≤ l ≤ n, the amplification factor for ELM
methods is implicitly given by

ẑ =
(g(ẑ))k −

∑k
l=1

al (g(ẑ))k−l

∑k
l=1

bl (g(ẑ))k−l
. (18)

3.3.1 Forward Euler Method

We start with the FE method and show that there exists a geometric stability limit
σg > 0 such that the combination is linearly stable, albeit for impractically small
time steps. FE can be seen both as a one-stage, order-one ERK method and as a
one-step, first order ELM method. The amplification factor for FE is g(ẑ) = 1 + ẑ,
and therefore its stability domain is a disc with radius one and centered at (−1, 0)
in the complex plane. Figure 3 shows the boundary of the stability domain ∂St of
FE together with the spectrum S of linearized WENO5.

−2.5 −2 −1.5 −1 −0.5 0 0.5
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

Figure 3: The discrete spectrum S of linearized WENO5 in smooth regions (thick-
line) and the boundary of the stability domain ∂St of forward Euler (thin-line).

In this case, the geometric stability condition (11) can be expressed as

(1 − σ̃ Re(zm))
2

+ (σ̃ Im(zm))
2
≤ 1,

with zm given in (14). After some algebraic manipulation, we obtain for θm 6= 0,

0 < σg =
2Re(zm)

(Re(zm))2 + (Im(zm))2

=
120 sin4 θm

2

−96 cos8 θm

2
+ 564 cos6 θm

2
− 1076 cos4 θm

2
+ 769 cos2 θm

2
+ 64

.
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This shows that the combination of linearized WENO5 and FE is stable provided
the above condition is satisfied. For small values 0 < θm ≪ 1, by Taylor expansion
we have

σg =
1

30
θ4

m + O(θ6
m).

For the closest eigenvalue to the origin, −z(∆θ), we obtain the following time-step
restriction for FE,

σg =
(2π)4

30
∆x4 ⇒ ∆t ≤

8π4

15
∆x5 ≈ 51.95 ∆x5.

Satisfying this restriction requires prohibitively small time steps, which makes the
combination of linearized WENO5 and FE impractical. This is also true of the (fully
nonlinear) WENO5 and FE combination as confirmed in Section 4.1.1. Nonetheless,
this result demonstrates an important principle, specifically that imaginary axis
inclusion is not a necessary property for achieving linear stability. This fact will
prove useful when we consider time-stepping schemes whose order matches that of
the underlying spatial discretization.

3.3.2 Second-order Runge–Kutta Method

We now consider the family of ERK2 methods with the amplification factor given
by (16) with s = p = 2,

g(ẑ) = 1 + ẑ +
ẑ2

2
.

The boundary of the stability domain, ∂St = {ẑ : |g(ẑ)| = 1}, can be obtained
by setting g(ẑ) = ei φ, with φ ∈ [0, 2π], and solving the second-order algebraic
equation,

ẑ2 + 2ẑ + 2 − 2ei φ = 0. (19)

The spectrum S of linearized WENO5 and ∂St of ERK2 are shown in Figure 4.
After some algebraic manipulation of (19), and using the Taylor expansion for

small values of 0 < φ ≪ 1 in a neighborhood of the origin we obtain

Re(ẑ) = −
1

8
φ4 + O(φ6), Im(ẑ) = φ −

1

6
φ3 + O(φ5).

This implies that ∂St can be approximated around the origin by the curve

Re(ẑ) ≈ −
1

8
(Im(ẑ))4.

Setting Im(ẑ) = −σ̃ Im(zm) ≈ σ̃ θm in (15) we find that in a neighborhood of the
origin the condition (11) is satisfied if Re(ẑ) ≥ −σ̃ Re(zm). In fact, this condition
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Figure 4: The discrete spectrum S of linearized WENO5 in smooth regions (thick-
line) and the boundary of the stability domain ∂St of second order ERK (thin-line).

ensures that for small values of θm the rescaled spectrum σ̃ S lie strictly to the left
side of the boundary of the linear stability domain ∂St. Thus

−
1

8
(σ̃ θm)4 ≥ −

1

60
σ̃ θ6

m ⇒ σg =

(

2

15

)1/3

θ2/3
m .

As before, the time-stepping restriction arises from the first nonzero eigenvalue of
the discrete linearized WENO5 spectrum closest to the origin. Using Taylor series,
we obtain the time-step restriction for ERK2,

∆t ≤

(

8π2

15

)1/3

∆x5/3 ≈ 1.73 ∆x5/3.

This shows that the combination of WENO5 and any ERK2 scheme may not be
practical, since very small time steps are required.

3.3.3 Five-step, Fifth-order Multistep Methods

In this section we study two popular five-step, fifth-order ELM methods (17) [5].
The first one is the fifth-order explicit Adams method (Adams5), and the second
one is the fifth-order extrapolated backward differentiation formula (eBDF5). The
coefficients of these two schemes are given in Table 1.

By (18) and setting g(ẑ) = ei φ, with φ ∈ [0, 2π], the root locus [5], which
includes the boundary of stability domain ∂St, is explicitly given by

ẑ =
e5iφ − a1 e4iφ − a2 e3iφ − a3 e2iφ − a4 eiφ − a5

b1 e4iφ + b2 e3iφ + b3 e2iφ + b4 eiφ + b5

.
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Table 1: The coefficients in form (17) of two five-step, fifth-order linear multistep
schemes.

Adams5 eBDF5
m am bm am bm

1 1 1901/720 300/137 300/137
2 0 -2774/720 -300/137 -600/137
3 0 2616/720 200/137 600/137
4 0 -1274/720 -75/137 -300/137
5 0 251/720 12/137 60/137

Figure 5 shows the boundary of the stability domains ∂St of Adams5 and eBDF5.
Using the Taylor expansion around φ = 0, we obtain

Re(ẑ) = −γ φ6 + O(φ8), Im(ẑ) = φ + O(φ7), (20)

in a neighborhood of the origin where γ = 95/288 for Adams5 and γ = 5/6 for
eBDF5. Therefore ∂St can be approximated near the origin by the curve

Re(ẑ) ≈ −γ (Im(ẑ))6.

Now by (15) and setting Im(ẑ) = −σ̃ Im(zm) ≈ σ̃ θm, the condition (11) is satisfied
in a neighborhood of the origin if Re(ẑ) ≥ −σ̃ Re(zm). Then

−γ (σ̃ θm)6 ≥ −
1

60
σ̃ θ6

m ⇒ σg =

(

1

60 γ

)1/5

,

which gives σg = 0.5504 and σg = 0.4573 for Adams5 and eBDF5, respectively.
These geometric stability limits are adequate for those eigenvalues on the spectrum
S which are close to origin. A simple numerical computation shows that in order
to fit all eigenvalues into the stability domain St, we need to take σg = 0.123 and
σg = 0.238 for Adams5 and eBDF5, respectively. See Figure 5.

3.3.4 A Fifth-order Predictor-Corrector Method

In this section we study a fifth-order predictor-corrector [5] time-stepping method
(PC5). We first apply the four-step, fourth-order explicit Adams method (the
predictor) to (3) using (5). This yields

ũn+1
j = un

j + ẑ

(

55

24
un

j −
59

24
un−1

j +
37

24
un−2

j −
9

24
un−3

j

)

.

We then use the four-step, fifth-order implicit Adams method as the corrector,

un+1
j = un

j + ẑ

(

251

720
ũn+1

j +
646

720
un

j −
264

720
un−1

j +
106

720
un−2

j −
19

720
un−3

j

)

.
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Figure 5: The rescaled discrete spectrum σg S of linearized WENO5 in smooth
regions (thick-line) and the boundary of the stability domain ∂St of Adams5 (left
figure, thin-line) and eBDF5 (right figure, thin-line).

It can then be shown that the root locus of PC5 is obtained by solving the second
order algebraic equation,

(

13805

17280
g3 −

14809

17280
g2 +

9287

17280
g −

2259

17280

)

ẑ2 +

(

897

720
g3 −

264

720
g2 +

106

720
g −

19

720

)

ẑ +

+g3 − g4 = 0,

where g = ei φ, with φ ∈ [0, 2π].
Using the Taylor expansion around φ = 0, we obtain (20) with γ = 53281/518400

in a neighborhood of the origin. Therefore, choosing σg = 0.6950, the eigenvalues
close to the origin of the rescaled discrete spectrum σgS lie inside the stability do-
main St of PC5. A simple numerical computation shows that in order to fit all the
eigenvalues into the stability domain St, we need to take σg = 0.565. See Figure 6.

3.3.5 High-order Explicit Runge–Kutta Methods

In this section we consider two different high-order Runge–Kutta methods whose
linear stability domains include a part of imaginary axis: the three-stage, order-
three SSP Runge–Kutta scheme (SSPRK(3,3)) [4] with

A =









0 0 0

1 0 0

1

4

1

4
0









, b =









1

6

1

6

2

3









,
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Figure 6: The rescaled discrete spectrum σg S of linearized WENO5 in smooth
regions (thick-line) and the boundary of the stability domain ∂St of PC5 (thin-
line).

and the seven-stage, order-five Dormand–Prince scheme (DP5) [2, 5] with

A =

































0 0 0 0 0 0 0

1

5
0 0 0 0 0 0

3

40

9

40
0 0 0 0 0

44

45
− 56

15

32

9
0 0 0 0

19372

6561
− 25360

2187

64448

6561
− 212

729
0 0 0

9017

3168
− 355

33

46732

5247

49

176
− 5103

18656
0 0

35

384
0 500

1113

125

192
− 2187

6784

11

84
0

































, b =

































35

384

0

500

1113

125

192

− 2187

6784

11

84

0

































.

These methods require three and six function evaluations at each time step, respec-
tively. We note that, despite the fact that the DP5 method has seven stages, it
uses only six function evaluations per step because the last stage is evaluated at
the same point as the first stage of the next step (the “FSAL” or first-stage-as-
last property [5]). Figure 7 shows the rescaled discrete spectrum σg S of linearized
WENO5 and the boundary of the stability domains ∂St of these two Runge–Kutta
methods. We will use these Runge-Kutta methods in numerical computations as a
comparison with methods which do not include a part of the imaginary axis.

In Table 2, we summarize the linear stability time-step restrictions and the
number of function evaluations per time step for all the time-stepping schemes
considered in this paper.
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Figure 7: The rescaled discrete spectrum σg S of linearized WENO5 in smooth
regions (thick-line) and the boundary of the stability domain ∂St of SSPRK(3,3)
(left figure, thin-line) and DP5 (right figure, thin-line).

4 Numerical Tests

In this section we consider two different scalar 1D hyperbolic conservation laws:
the advection equation and Burgers’ equation. We consider 1-periodic boundary
conditions and different types of initial data. We numerically compute the approx-
imate solution using the WENO5 spatial discretization combined with the different
time-stepping schemes discussed above in order to verify the analytic results. Note
that our analysis in Section 3 was based on linearizing the WENO5 scheme. Our
calculations here use the fully nonlinear WENO5 procedure.

4.1 Advection Equation

We begin with the linear advection equation (1) with 1-periodic boundary condi-
tions and two different choices of initial data

u0(x) = f1(x) = sin(2π x), and u0(x) = f2(x) =

{

1, 0 ≤ x ≤ 0.25,
0, 0.25 < x < 1.

We use a uniform spatial grid with N = 100 grid points (∆x = 0.01) and discretize
the PDE on this grid using the WENO5 discretization.

4.1.1 First- and second-order time stepping

We first consider FE time stepping with the step size ∆t = 50 ∆x5 and compute
the approximate solution until the final time T = 0.1. This requires approximately
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Table 2: Linearly stable time step-sizes of different time-stepping schemes for the
linear advection equation discretized in space with linearized WENO5.

Time stepping Maximum time step-size Function evaluations

FE 51.95 ∆x5 1

ERK2 1.73 ∆x5/3 2
Adams5 0.123 ∆x 1
eBDF5 0.238 ∆x 1
PC5 0.565 ∆x 2

SSPRK(3,3) 1.43 ∆x 3
DP5 1.79 ∆x 6

2 × 107 time steps. Figure 8 (left column) shows the numerical solutions and the
exact solutions at the final time T = 0.1 with different initial data, and Figure 8
(right column) shows the total variation of the numerical solutions as a function of
time. Next, we use the midpoint ERK2 time stepping with

A =

[

0 0
1

2
0

]

, b =

[

0
1

]

.

We take the step size ∆t = ∆x5/3 and compute the approximate solution until the
final time T = 50.5. The numerical and exact solutions at the final time T = 50.5
and the total variation of the numerical solutions as a function of time are shown in
Figure 9. In this experiment we find that the FE and ERK2 time-stepping schemes
are stable, when combined with WENO5 spatial discretization and a suitable time
step-size. We remark that because of the very strict time-stepping restriction, the
combination of either FE or ERK2 time stepping with WENO5 discretization may
not be practical in real computations.

4.1.2 Fifth-order time stepping

Because WENO5 is a fifth-order spatial discretization, it is natural to choose a time
discretization which is fifth order as well. We now numerically study the fifth-order
schemes listed above, i.e., Adams5, eBDF5, PC5, and DP5. Our examples select
time step-sizes which satisfy the geometric stability condition, since otherwise nu-
merical blow-up is observed. For example, Figure 10 shows the numerical solution
at the time T = 0.05 when Adams5 is employed with ∆t = 0.13 ∆x, that is with a
CFL number just slightly larger than the geometric stability limit (∆t = 0.123 ∆x).
We see that the numerical solution blows up early in the time integration. We em-
phasize that this instability occurs with the fully nonlinear WENO5. This indicates
that our analysis (based on linearized WENO5) correctly predicts the linear stabil-
ity bound of WENO5.
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Figure 8: The left figures show the numerical and the exact solutions at the final
time T = 0.1 using FE time stepping for two different initial data. The right figures
show the total variation of the numerical solutions as a function of time. The time
step-size ∆t = 50 ∆x5 is chosen.

Note that our computations use the exact solution u(x, t) = u0(x− t) to obtain
the first four starting values for the multistep schemes. Similar results are observed
when employing the SSPRK(3,3) method for the starting procedure.

We continue by considering ∆t = 0.1 ∆x and Adams5. This time step-size does
not violate the geometric stability condition. Although the numerical solution is
linearly stable and does not blow up, we observe tiny oscillations in the first few
time steps (see Figure 11). These oscillations, which disappear quickly as time
passes due to the dissipative property of WENO5 and the linear stability of the
time integrators, may be a result of nonlinear instability. A similar behavior is
observed for the other fifth-order time-stepping methods. By numerical experiment,
we find that these tiny oscillations do not form if we choose the time step-sizes
∆t ≤ 0.02 ∆x, ∆t ≤ 0.20 ∆x, ∆t ≤ 0.20 ∆x and ∆t ≤ 1.00∆x for Adams5, eBDF5,
PC5 and DP5, respectively. The numerical and exact solutions at the final time
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Figure 9: The left figures show the numerical solutions and the exact solutions at
the final time T = 50.5 using ERK2 time stepping for two different initial data.
The right figures show the total variation of the numerical solutions as a function
of time. The time step-size ∆t = ∆x5/3 is chosen.

T = 50.5 and the total variation of the numerical solutions as a function of time are
shown in Figure 12 for eBDF5. The plots for Adams5, PC5 and DP5 are visually
identical.

Among the three fifth-order ELM time-stepping methods (none of which have
stability domains which include a part of imaginary axis [−iβ, iβ] with β > 0)
the eBDF5 scheme is the most efficient with respect to the avoidance of spurious
oscillations.

A comparison of the performance of eBDF5 with that of DP5 (note that DP5 is
a well-known fifth-order time-stepping method whose stability domain does include
a part of the imaginary axis) is also interesting. We consider the initial condition
u0(x) = f2(x) and use a uniform spatial grid with N = 200 grid points. We choose
the time step-size ∆t = 0.2 ∆x for eBDF5. Noting that the eBDF5 and DP5
methods require one and six function evaluations at each time step, respectively,
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stepping for the second initial data, f2. The time step-size ∆t = 0.13 ∆x is cho-
sen. The numerical solution blows up because the geometric stability condition is
violated.
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Figure 11: The numerical and exact solutions at the final time T = 0.5 using
Adams5 time stepping for the second initial data, f2. The time step-size ∆t =
0.1 ∆x is chosen. The numerical solution is linearly stable, but tiny oscillations are
present.

we choose the time step-size ∆t = 1.2 ∆x for DP5. Figure 13 compares the exact
result against the numerical solutions obtained by these two time-stepping methods
at time T = 0.02. The figure also gives the total variation of the numerical solutions
as a function of time from t = 0 to t = 2. The eBDF5 scheme is preferred for this
example since the DP5 scheme produces small oscillations in the numerical solution.
These oscillations occur at the beginning of the evolution and damp out as time
passes. We note that this oscillatory behavior of the DP5 method can be eliminated
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Figure 12: The left figures show the numerical solutions and the exact solutions at
the final time T = 50.5 using eBDF5 time stepping for two different initial data.
The right figures show the total variation of the numerical solutions as a function
of time. The time step-size ∆t = 0.2 ∆x is chosen.

by taking a smaller time step-size, ∆t = ∆x.

4.2 Burgers’ Equation

As a second example, we consider the nonlinear Burgers’ equation

ut +

(

u2

2

)

x

= 0, x ∈ [0, 1], t > 0,

with 1-periodic boundary conditions and the initial data u0(x) = 2 + sin(2π x). As
before, we select a uniform spatial grid with N = 100 grid points and discretize the
PDE on this grid using the WENO5 discretization.

For this problem the CFL number is σ = ∆t
∆x max |u(x, t)| and our choice of

initial conditions dictates max |u(x, t)| = 3. For each time-stepping method, we
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Figure 13: The left figure shows a zoomed view of the numerical solutions and the
exact solutions at the final time T = 0.02 using eBDF5 and DP5 time stepping.
The right figure shows the total variation of the numerical solutions as a function
of time from 0 to 2. The time step-sizes ∆t = 0.2 ∆x and ∆t = 1.2 ∆x are chosen
for eBDF5 and DP5, respectively.

choose time step-sizes ∆t ≤ σg ∆x / max |u(x, t)|, based on the geometric stability
limit on σ. We compare the numerical solutions arising from different methods with
a reference solution obtained using a very fine grid.

Figure 14 shows the numerical and the reference solutions at the final time
T = 0.1 as well as the total variation of the numerical solution as a function of
time. We begin by considering the FE time-stepping method with the step size
∆t = (1/3) 50 ∆x5, just slightly smaller than the geometric stability limit. The
results are numerically stable and free of oscillations. We remark that due to the
severe time-step restriction we do not attempt to compute to T = 30.5, as is used
in our other results below.

We next consider the midpoint ERK2 scheme with the time step-size ∆t =
(1/3)∆x5/3. The numerical and the reference solutions at the final time T = 30.5
as well as the total variation of the numerical solution as a function of time are
provided in Figure 15. The results are stable and aside from a small initial jump,
the total variation decreases with time.

A study for a selection of fifth-order schemes was also carried out. The numerical
and the reference solutions at the final time T = 30.5 along with the total variation
of the numerical solutions are provided in Figure 16 for eBDF5 using the time
step-size ∆t = 0.05 ∆x. The results are qualitatively similar to the ERK2 scheme.
We further note that similar results were observed for the other fifth-order time
integrators, i.e., Adams5, PC5 and DP5 using the step sizes ∆t = 0.02 ∆x, ∆t =
0.1 ∆x, and ∆t = 0.3 ∆x, respectively.

As mentioned above, there is an initial jump in the total variation of the nu-
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Figure 14: The left figure shows the numerical and the reference solutions at
the final time T = 0.1 using FE time stepping. The right figure shows the to-
tal variation of the numerical solution as a function of time. The time step-size
∆t = (1/3) 50 ∆x5 is chosen.
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Figure 15: The left figure shows the numerical and the reference solutions at the
final time T = 30.5 using ERK2 time stepping. The right figure shows the total
variation of the numerical solution as a function of time. The time step-size ∆t =
(1/3)∆x5/3 is chosen.

merical solutions when the shock first forms at about T = 0.2. This jump arises
for all the schemes we considered, including the SSP time-stepping schemes. See
Figure 17 for results with the well-known SSPRK(3,3) scheme. Note that eBDF5
outperforms SSPRK(3,3) in this example: if we select ∆t = 0.15 ∆x, which cor-
responds to the computational work for the eBDF5 calculation in Figure 16, the
solution gives severe oscillations.
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Figure 16: The left figure shows the numerical and the reference solutions at the
final time T = 30.5 using eBDF5 time stepping. The right figure shows the total
variation of the numerical solution as a function of time. The time step-size ∆t =
0.05 ∆x is chosen.
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Figure 17: The left figure shows the total variation of the numerical solution as a
function of time using SSPRK(3,3) time stepping. The right figure shows a zoomed
view. The time step-size ∆t = 0.1 ∆x is chosen.

5 Conclusion

We have studied the linear stability of the WENO5 spatial discretization combined
with explicit time-stepping schemes applied to the one-dimensional advection equa-
tion. Our main approach was a specialized linear stability analysis of the linear fi-
nite difference scheme resulting from freezing the nonlinear weights of the WENO5
method. Numerical tests then demonstrated that our results carry over to the fully
nonlinear WENO5 case.
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The main result is that it is not necessary for the stability domain of the time
integrator to include a part of the imaginary axis. In particular, we have shown that
the combination of WENO5 with the forward Euler and second-order Runge–Kutta
methods is linearly stable provided very small time step-sizes are taken. In real
computations, however, applying these two time integrators may not be practical
because of the extremely strict time-stepping restrictions that they possess. We
have further studied a variety of fifth-order multistep time discretizations whose
stability domain does not include the imaginary axis but possess suitable linear
stability properties when combined with WENO5. We have also shown that in
practice these methods respect the TVD property of the solution in a similar way
to strong stability preserving Runge–Kutta schemes; that is, they seem to have
good nonlinear stability properties provided a suitably small time step is chosen.

A comparison between these multistep methods and high-order Runge–Kutta
methods whose stability domain includes the imaginary axis has been presented.
According to our analysis and numerical tests, the former class of methods (with
no imaginary axis inclusion) may be competitive with the latter class (with imag-
inary axis inclusion), in terms of both accuracy and computational efficiency. We
particularly recommend the eBDF5 scheme. The eBDF5 scheme has a mild time-
stepping restriction and good monotonicity properties (see [16]) and gave the best
performance of the fifth-order schemes we considered in our experiments.
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