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theory is based on eight unknowns: the averaged displacements, the averaged macrorotations of the cross-sections, and the

averaged microrotations. This means that one has to introduce eight boundary conditions. The static boundary conditions in

Eringen’s plate cannot be presented as forces and moments at the boundaries like in the Kirchhoff type theories [70]. From

the point of view of the direct approach Eringen’s micropolar plate is a deformable surface with eight degrees of freedom.

The theories of plates and shells and the theories based on the reduction of the three-dimensional equations of the

micropolar continuum are presented in various publications. In [10,29,61,63] various averaging procedures in the thickness

direction together with the approximation of the displacements and rotations or the force and moment stresses in the

thickness direction are applied. As a result, one gets different numbers of unknowns and the number of two-dimensional

equilibrium equations differs. For example, Reissner [63] presented a generalized linear theory of shells containing nine

equilibrium equations. In addition, Reissner worked out the two-dimensional theory of a sandwich plate with a core having

the properties of the Cosserat continuum [62]. The variants of the micropolar plate theory based on the asymptotic methods

were developed in [1, 14, 47, 65, 66]. The Γ-convergence based approach to the theory of plates and shells was developed

in [48, 49, 51].

The direct approach in the theory of shells based on Cosserat’s ideas was applied also in [72]. In contrast to [23], shells

are regarded as deformable surfaces with material points at which three directors are prescribed. The directors have the

following properties: they are orthogonal unit vectors. The deformations of the shell are presented by a position vector and

a properly orthogonal tensor. This variant of shell theory based on the direct approach was developed and continued, for

example, in [15, 18, 19, 67, 68]. It must be noted that this variant is very similar to the one presented within the general

non-linear theory of shells and discussed in the monographs of Libai & Simmonds [42] and Chróścielewski et al. [12],

see also [16, 17, 42, 69]. The two-dimensional equilibrium equations given in [12, 42] one gets by exact integration over

the thickness of the equations of motion of a shell-like body. The deformation measures, which are the same as those

introduced within the framework of the direct approach, can be defined as work-conjugate fields to the stress and the stress

couple tensors.

In [8] the general theory with six degrees of freedom was transformed to theory of shells with five degrees of freedom

(similar to the Reissner theory) introducing some constraints for the deformations. This variant of the theory was discussed

in [2–4,6,9,73]. In [36] the method presented in [8] was applied to the three-dimensional case. It must be noted that the main

problem in application of the direct approach is the definition of the constitutive equations. They should be formulated for

the two-dimensional measures of stresses and measures of deformations. This means that some effective stiffness properties

should be introduced. For anisotropic elastic plates the identification procedure for the effective stiffness properties is

discussed in [3, 4, 6, 8, 73], for the viscoelastic case in [2, 5, 7].

The aim of this paper is the discussion of a six-parameter linear theory of plates within the framework of the direct

approach. The plate is regarded as a deformable surface with material points which have the same number of degrees of

freedom as a rigid body. The deformations are described by two fields: the translation and the rotation fields. This theory

will be named also the theory of micropolar plates, but it should be noted that the theory is different from Eringen’s theory

of micropolar plates as will be demonstrated later.

This paper can be regarded as a further development of the papers [53, 54], which were published in the early 80th of

the last century and which are not well-known. In those papers the direct approach was applied and some effective stiffness

properties were determined. The present theory can be regarded as a special case of the six-parameter theory presented

in [12, 19, 42]. But it should be noted that with the help of this special case one can better explain the interlink between the

direct approach and the approaches which are based on the reduction of the three-dimensional theories. In addition, one

can get an answer on the question where the two-dimensional and the three-dimensional equations are interlinked. It should

be underlined that the presented plate model is more general in comparison with the Kirchhoff or Reissner plate models.

The interaction between different parts of the two-dimensional Cosserat continuum is realized by forces and moments,

distributed on the lines interlinking the parts. It should be noted that the vector of the distributed inner moment may have an

arbitrary direction which is not the case for the Kirchhoff or Reissner plate theories. The advantage of the suggested theory

in comparison with the more complex theories (for example, Eringen’s theory of micropolar plates, Cosserat’s surfaces

or third-order theories) is that any interaction can be represented by forces and moments alone and not by higher-order

stress resultants such as, for example, bi-moments or dipoles. The general order of the system of differential equations here

is equal to twelve. In this case one has to formulate six boundary conditions. On the free boundary one has to prescribe

distributed force and moment loadings. This means that the plate can carry a moment loading with arbitrary direction,

which is distributed on the surface and along the boundary contour.

The paper is organized as follows. In Sect. 2 we present the governing equations of the linear micropolar plate theory

formulated within the framework of the direct approach. We consider a micropolar plate as a deformable surface which the

deformation is described by the fields of the translation vector v and the rotation vector θ. In other words, we consider a

plate as a two-dimensional Cosserat continuum. The equilibrium equations are deduced and the linear constitutive equations

are presented. Following [25], in Sect. 3 we recall the basic equations of the linear theory of micropolar elasticity. In Sects. 4



and 5 we discuss the relation between the two-dimensional and three-dimensional equilibrium conditions as well as the

reduction of the three-dimensional constitutive equations to the two-dimensional ones. For the homogeneous plate-like

body we calculate the effective stiffness properties using special approximation of the translation and microrotation vectors

of the micropolar plate-like body. In particular, we discuss the elastic stiffness corresponding to the drilling moment. An

example of calculations of the elastic stiffness properties for a plate made of two porous materials is given in Sect. 6.

2 Micropolar plates equations based on the direct approach

In this section we present the basic equations of the theory of micropolar plates based on the so-called direct approach.

Within the framework of the direct approach we consider a micropolar plate as a two-dimensional Cosserat continuum. In

other words, we consider a micropolar plate as a deformable plane surface, see Fig. 1. Each material point of the surface

is an infinitesimal rigid body with 6 degrees of freedom (3 translations and 3 rotations). In addition, the theory presented

here is limited by small displacements and rotations and the quadratic strain energy function. Hence, the deformations of

the micropolar plate are described by the translation vector v and the rotation vector θ which are defined on the surface M.

The basics of the non-linear theory of micropolar shells are presented in [8, 9, 15, 18, 19, 72, 73]. Let us note that the

governing equations of the micropolar shells and plates coincide with the relations of the general 6-parametric nonlinear

shell theory presented in [12, 16, 17, 41, 42]. The linear variant of this theory is given in [12].

M

C∗ M∗
ν

n C ≡ ∂M

Fig. 1 Deformable plane surface.

Within the framework of the direct approach the balance of momentum and the balance of moment of momentum are

formulated as follows

F
∗
s ≡

∫

M∗

q dA +

∫

C∗

ts ds = 0, M
∗
s ≡

∫

M∗

(x × q + c) dA +

∫

C∗

(x × ts + ms) ds = 0, (1)

where q and c are the surface loads (forces and moments), x is the position vector of the plane surface M, × is the cross

product, ts and ms are the surface analogues of the stress vector and the couple stress vector, respectively. From Eqs. (1) we

obtain the local form of the balances of momentum and moment of momentum as well as the static boundary conditions.

Using the surface analogues of the Cauchy theorem we introduce the force tensor T and the moment tensor M by the

relations
ν ·T = ts, ν ·M = ms,

where ν is the unit vector externally normal to C (ν ·n = 0), and · is the dot product. Then the local equilibrium equations

are

∇s · T + q = 0, ∇s ·M + T× + c = 0, (2)

where T× denotes the vector invariant of the second-rank tensor T defined by the relation T× ≡ (Tmnim ⊗ in)× =
Tmnim × in

1, ∇s is the surface (plane) nabla (Hamilton) operator, ∇s = iα
∂

∂xα
, ∇su = iα ⊗ u,α, i1, i2, i3 are the

Cartesian base vectors, (. . .),α is the partial derivative with respect to the Cartesian coordinate xα, α = 1, 2. The tensors T

and M have the properties

n ·T = 0, n · M = 0. (3)

Hence, T and M take the form

T = Tαβiα ⊗ iβ + Tα3iα ⊗ n, M = Mαβiα ⊗ iβ + Mα3iα ⊗ n (α, β = 1, 2). (4)

Here we assume that i3 = n. Let us note that in the literature on shell they use another coordinate representation for M:

M = iα ⊗ mα = iα ⊗ [n × Mαβiβ + Mα3n].

Here we will use (4)2 for the sake of simplicity.

1 This operation was introduced originally by J. W. Gibbs, see [71]



In Cartesian coordinates Eqs. (2) can be transformed to

T11,1 + T21,2 + q1 = 0,

T12,1 + T22,2 + q2 = 0,

T13,1 + T23,2 + q3 = 0,

M11,1 + M21,2 + T23 + c1 = 0,

M12,1 + M22,2 − T13 + c2 = 0,

M13,1 + M23,2 + T12 − T21 + c3 = 0,

(5)

where qm = q · im, cm = c · im, m = 1, 2, 3. It is evident that in this theory the action of the drilling moment c3 is possible

to take into account. For example, such possibility may be useful to describe the interaction of the plate and the rigid body

or for description of the deformations of multifolded plates.

The static and kinematic boundary conditions take the form

ν ·T = t∗s, ν · M = m∗
s along Cf , v = v0, θ = θ0 along Cu. (6)

Here t∗s and m∗
s are external force and couple vectors acting along the boundary of plate Cf , while u0 and θ0 are given

functions describing displacements and rotations of the plate boundary Cu, respectively.

The linear strain measures are

ǫ = ∇sv + A × θ, κ = ∇sθ, (7)

where A ≡ I−n⊗n is the first metric tensor (two-dimensional or plane unit tensor). Note that when the plate deformation

corresponds to the rigid body motion, i.e. when v = a + ω × x, θ = ω with the constant vectors a, ω, then ǫ = κ = 0.

Using the technique presented in [12, 42] one may show that the linear strain measures (7) are work-conjugate to the

stress measures T and M. Indeed, let us introduce two arbitrary smooth vector fields w and ω. By dot multiplying the

equilibrium equations (2) and the static boundary conditions (6) on w and ω, we obtain the integral identity

∫

M

[(∇s · T + q) · w + (∇s · M + T× + c) · ω] dA +

∫

Cf

[(ν · T − t∗s) · w + (ν ·M− m∗
s) · ω] ds = 0.

(8)

Using the identity T× · ω = −T · ·(A × ω)T , where (. . .)T denotes the transpose, and the Gauss-Ostrogradski theorem

we transform Eq. (8) to the form

∫

M

[
T · ·(∇sw + A × ω)T + M · ·(∇sω)T

]
dA

=

∫

M

(q · w + c · ω) dA +

∫

Cf

(t∗s · w + m∗
s · ω) ds +

∫

Cu

(ν · T · w + ν ·M · ω) ds. (9)

The vector field w, in particular, can be interpreted as the kinematically admissible virtual translation w ≡ δv and the

vector field ω as the kinematically admissible virtual rotation ω ≡ δθ, such that w = ω = 0 on Cu, where δ is the symbol

of variation. If one assumes that w ≡ δv and ω ≡ δθ then we obtain ∇sw + A × ω = δǫ and ∇sω = δκ. Then the

last line integral in (9) identically vanishes, two integrals in the second row of (9) describe the external virtual work, while

the first volume integral in (9) describes the internal virtual work performed by the stress measures on the work-conjugate

virtual strain measures, that means Eq. (9) represents the principle of virtual work

∫

M

(
T · ·δǫT + M · ·δκT

)
dA =

∫

M

(q · w + c · ω) dA +

∫

Cf

(t∗s · w + m∗
s · ω) ds. (10)

The internal virtual work density in (10) is given by the expression σ = T · ·δǫT + M · ·δκT . Hence, the linear strain

measures ǫ and κ introduced in Sect. 2 are work-conjugate to the surface stress tensor T and the surface couple stress tensor

M, respectively. The introduction of the strain measures in the three-dimensional micropolar continuum as work-conjugate

to the stress and couple stress tensors is discussed in [58].



For the isotropic plate the surface strain energy density is given by the relation [17, 19]

2W = α1tr
2ǫ‖ + α2tr ǫ2

‖ + α3tr
(
ǫ‖ · ǫ

T
‖

)
+ α4n · ǫT · ǫ · n

+β1tr
2κ‖ + β2trκ2

‖ + β3tr
(
κ‖ · κ

T
‖

)
+ β4n · κT · κ · n. (11)

Here ǫ‖ = ǫ ·A, κ‖ = κ ·A, and αi, βi are the elastic constants, i = 1, 2, 3, 4. The surface stress and couple stress tensors

take the form

T ≡
∂W

∂ǫ
= α1Atr ǫ‖ + α2ǫ

T
‖ + α3ǫ‖ + α4ǫ · n ⊗ n, (12)

M ≡
∂W

∂κ
= β1Atr κ‖ + β2κ

T
‖ + β3κ‖ + β4κ · n ⊗ n. (13)

For the homogeneous isotropic micropolar plates one can write the equilibrium equations (2) in terms of v and θ taking

into account the linear strain measures (7)) and the constitutive equations (12) and (13)

(α1 + α2)∇s∇s · vs + α3∇s · ∇svs + α4∇s · ∇s(v · n)n + (α3 − α2)∇s(θ · n) × n

+α4(∇sθs)× + q = 0,

(β1 + β2)∇s∇s · θs + β3∇s · ∇sθs + β4∇s · ∇s(θ · n) ⊗ n

+(α3 − α2)∇s × vs − 2(α3 − α2)(θ · n)n + α4[∇s(v · n) × n − θs] + c = 0,

(14)

where vs = v ·A, θs = θ · A.

The surface strain energy W should be positive definite, from which follow the inequalities

2α1 + α2 + α3 > 0, α2 + α3 > 0, α3 − α2 > 0, α4 > 0,

2β1 + β2 + β3 > 0, β2 + β3 > 0, β3 − β2 > 0, β4 > 0.
(15)

Note that for an isotropic three-dimensional micropolar solid we have 6 elastic moduli while the micropolar plate Eq. (11)

contains 8 elastic stiffness parameters. The increase of the number of parameters in the two-dimensional theory of plates in

comparison with the three-dimensional theory can be related as the minimum to two items:

• Reduced symmetry of the constitutive equations. If we understand the constitutive equations for the plate as tensorial

relations T = T(ǫ, κ) and M = M(ǫ, κ), these relations should be invariant with respect to some transformations

which are elements of the symmetry group of the material. In the case of two-dimensional equations (plates, shells)

a smaller number of elements belongs to the symmetry group than in the three-dimensional case. For example, in the

three-dimensional theory of elasticity the constitutive equations for the isotropic material are invariant with respect to

the rotations about an arbitrary axis, while for the isotropic shells the symmetry group contains only the rotations about

the normal axis, see [17]. This means the symmetry properties for plates and shells are not so restrictive in comparison

with the three-dimensional ones.

• Reduction of three-dimensional equations to two-dimensional. For the Kirchhoff theory, if this theory is considered

within the direct approach, one obtains three independent stiffness parameters. They are determined by the following

three parameters: the Young modulus of a bulk material E, the Poisson ratio ν, and the plate thickness h. In the Reissner

theory an additional property is the shear correction factor k, see [37, 70], which can be regarded as an independent

property. So Reissner theory is related to four stiffness parameters in comparison with the theory of elasticity, where

the two Lamè coefficients are enough. From this we can make the conclusion that in any plate or shell theory one can

obtain an increase of parameters even in the Kirchhoff or Reissner theories.

Thus, one needs to identify these elastic moduli. The identification is not a trivial procedure even in the theory of elastic

plates with less degrees of freedom. Therefore, one may

• determine αi, βi directly using the experimental data on thin-walled specimens;

• express αi, βi via the elastic moduli of the bulk material and the plate thickness.

Both ways have some advantages and disadvantages.

In [12] the following relations for the elastic moduli appearing in (11), (12), and (13) were used

α1 = Cν, α2 = 0, α3 = C(1 − ν), α4 = αsC(1 − ν),



β1 = Dν, β2 = 0, β3 = D(1 − ν), β4 = αtD(1 − ν), (16)

C =
Eh

1 − ν2
, D =

Eh3

12(1 − ν2)
,

where αs and αt are dimensionless coefficients. Note that in [12] it was assumed the linear isotropic behaviour of the

bulk material considering the Hooke law. αs is similar to the shear correction factor introduced in the plate theory by

Reissner [59] (αs = 5/6) and by Mindlin [43] (αs = π2/12), see also [37]. αt plays the same role for the moment stresses.

The value αt = 0.7 was proposed in [56, 57]. For several problems considered in [12] numerically the influence of αt

on the solution was analyzed. It was shown that for homogeneous shells with some boundary conditions this influence is

insignificant if αt < 1.

3 Basic equations of the three-dimensional micropolar elasticity

Following [25], in this section we recall the governing equations of the linear micropolar elasticity. Let the micropolar body

occupies the domain V ∈ IR3. The equilibrium conditions of any part of a micropolar body occupying the volume V∗ ⊂ V
consist of the following relations

F
∗ ≡

∫

V∗

ρf dV +

∫

S∗

tdA = 0, M
∗ ≡

∫

V∗

ρ(r × f + ℓ) dV +

∫

S∗

(r × t + m) dA = 0, (17)

where f and ℓ are the mass force and mass couple vectors, respectively, ρ is the density, r is the position vector, S∗ = ∂V∗,

t and m are the stress and couple stress vectors, respectively, F∗ and M
∗ are the total force and the total couple acting on

V∗. Hence, for any part of the micropolar body Eq. (17)1 states that the total force is zero, while Eq. (17)2 states that the

total moment is zero.

Using the Cauchy theorem we introduce the stress tensor σ and the couple stress tensor µ

n · σ = t, n · µ = m, (18)

where n is the unit normal to S∗. From Eqs. (17) follow the local equilibrium equations and the static boundary conditions.

The first ones are

∇ · σ + ρf = 0, ∇ · µ + σ× + ρℓ = 0, (19)

where ∇ is the three-dimensional nabla operator, ∇ = ∇s + i3
∂
∂z . Equation (19)1 is the local form of the balance of

momentum while Eq. (19)2 is the balance of moment of momentum. In Cartesian coordinates these equilibrium equations

are

σmn,m + ρfn = 0, µmn,m + ǫnptσpt + ρℓn = 0, σ = σmnim ⊗ in, µ = µmnim ⊗ in.

The static boundary conditions have the following form

n · σ = t0, n · µ = m0 at Sf . (20)

Here t0 and m0 are the surface forces and the surface couples acting on the corresponding part of the surface Sf of the

micropolar body, S = Su ∪ Sf ≡ ∂V . The kinematic boundary conditions consist of the following relations

u = u0, ϑ = ϑ0 at Su, (21)

where u0 and ϑ0 are given functions at Su. Other types of the boundary conditions may also be formulated.

The small deformations of the micropolar media are usually described by using the vector of translation u and the vector

of microrotation ϑ. From the physical point of view, u describes a displacement of a particle of a micropolar body while

ϑ corresponds to a particle rotation. The linear stain measures, i.e. the linear stretch tensor ε and the linear wryness tensor

æ, are given by the relations

ε = ∇u + ϑ × I, æ = ∇ϑ, (22)

where I is the unit three-dimensional tensor. In [25] Eringen used (∇ϑ)T as the linear wryness tensor. Here we use the

definition (22)2 for the consistency with the definition of ε. In Cartesian coordinates Eqs. (22) have the form

ε = εmnim ⊗ in, εmn = un,m + ǫnmkϑk, æ = æmnim ⊗ in, æmn = ϑn,m.



For an isotropic solid the constitutive equations are

σ = λItr ε + µεT + (µ + κ)ε, µ = αItræ + βæ
T + γæ. (23)

In Eqs. (23), λ, µ, κ, α, β, γ are the elastic moduli which satisfy the inequalities [25, 50]

2µ + κ ≥ 0, κ ≥ 0, 3λ + 2µ + κ ≥ 0, β + γ ≥ 0, γ − β ≥ 0, 3α + β + γ ≥ 0.

Within the framework of the micropolar continuum the experimental identification of the elastic moduli was discussed

in [27, 28, 38, 40, 45, 55], see also the data in [25, 26] and the web site by P. Neff2. Substituting Eqs. (23) into Eqs. (19) one

may derive the equilibrium equations in terms of the fields u and ϑ. For homogeneous micropolar bodies these equations

are

(λ + µ)∇∇ · u + (µ + κ)∇ · ∇u + κ∇× ϑ + ρf = 0,
(24)

(α + β)∇∇ · ϑ + γ∇ · ∇ϑ + κ∇× u − 2κϑ + ρℓ = 0.

If one assumes κ = 0 then from Eq. (23)1 it follows that σ = σT . In this case σ× = 0 and the boundary-value problem

(19), (20), and (21) splits into two independent BVPs formulated in terms of u and ϑ, respectively. In addition, if we

assume that α = β = γ = 0 then µ ≡ 0 and with ℓ = m = 0 the considered boundary-value problem reduces to the

BVP of the classical linear elasticity. Thus, the equilibrium conditions of a three-dimensional micropolar medium contain

the equilibrium conditions of the Cauchy continuum as a special case.

4 Micropolar plate’s equilibrium equations derived by the through-the-thickness in-

tegration procedure

In this section we show the relations between the three-dimensional and two-dimensional formulations of the Cosserat

continuum presented above. Let us consider the plate-like body occupying the volume V = {(x, y, z) ∈ IR3 : (x, y) ∈
M ⊂ IR2, z ∈ [−h/2, h/2]}, see Fig. 2. Here h is the plate thickness. For the sake of simplicity we assume that h = const.
We denote the boundary of the plate-like body as S = Sν

⋃
S+

⋃
S− ≡ ∂V , where S± = {(x, y, z) : (x, y) ∈ M, z =

±h/2 and Sν = {(x, y, z) : (x, y) ∈ C ≡ ∂M, z ∈ [−h/2, h/2]}, and assume the following boundary conditions at S±

n± · σ = t±, n± · µ = m±, (25)

where t±, m± are given functions, and n± = ±i3.

z

i3

i2

i1

h

x

M

V∗

S+
∗

S−

S+

y

Fig. 2 Plate-like body.

Let us apply the integral equilibrium conditions (17) to the plate-like body with V∗ = {(x, y, z) : (x, y) ∈ M∗ ⊂ M,

z ∈ [−h/2, h/2]} and S∗ ≡ ∂V∗ = Sν
∗

⋃
S+
∗

⋃
S−
∗ , see Fig. 2. Note that the unit normal to S±

∗ coincides with ±i3 while

the unit normal to Sν
∗ takes the form n = ν, where ν is the unit normal to the plane curve C∗ = ∂M∗, ν · i3 = 0.

Considering the identities

∫

V∗

(. . .) dV =

h/2∫

−h/2

∫

M∗

(. . .) dAdz,

∫

Sν
∗

(. . .) dA =

h/2∫

−h/2

∫

C∗

(. . .) ds dz

and Eq. (18)1 we derive the relation for the total force vector acting on V∗

F
∗ =

∫

M∗

〈ρf 〉dA +

∫

C∗

ν · 〈σ〉ds +

∫

S+
∗

t+ dA +

∫

S−
∗

t− dA, 〈(. . .)〉 =

h/2∫

−h/2

(. . .) dz. (26)

2 http://www.mathematik.tu-darmstadt.de/fbereiche/analysis/pde/staff/neff/patrizio/Home.html



The position vector r of the plate-like body takes the form r = x + zi3, where x is the position vector of M. Hence, the

total couple is given by

M
∗ =

∫

V∗

ρ [(x + zi3) × f + ℓ] dV +

∫

Sν
∗

[(x + zi3) × t + m] dA

+

∫

S+
∗

[(
x +

h

2
i3

)
× t+ + m+

]
dA +

∫

S−
∗

[(
x −

h

2
i3

)
× t− + m−

]
dA

=

∫

M∗

[〈ρℓ〉 + x × 〈ρf〉 + i3 × 〈ρzf〉] dA +

∫

Sν
∗

[m − ν · σ × x − zν · σ × i3] dA

+

∫

S+
∗

(
x × t+ +

h

2
i3 × t+ + m+

)
dA +

∫

S−
∗

(
x × t− −

h

2
i3 × t− + m−

)
dA. (27)

Taking into account the identity

∫

S±
∗

(. . .) dA =

∫

M∗

(. . .) dA

we reduce Eq. (27) to the following form

M
∗ =

∫

M∗

[
〈ρℓ〉 + x × 〈ρf〉 + i3 × 〈ρzf〉 + x × (t+ + t−) +

h

2
i3 × (t+ − t−) + m+ + m−

]
dA

+

∫

Cν
∗

[ν · 〈µ〉 − ν · 〈σ〉 × x − ν · 〈zσ × i3〉] ds. (28)

Introducing the notations

q = 〈ρf〉 + t+ + t−, c = 〈ρℓ〉 + m+ + m− + i3 × 〈ρzf〉 +
h

2
i3 × (t+ − t−) (29)

we transform Eqs. (26) and (28) to the relations

F
∗ =

∫

M∗

q dA +

∫

C∗

ν · 〈σ〉ds,

(30)
M

∗ =

∫

M∗

[x × q + c] dA +

∫

C∗

[ν · 〈µ〉 − ν · 〈zσ × i3〉 − ν · 〈σ〉 × x] dA.

The comparison of Eqs. (30) and (1) leads to the determination of the surface stress tensor and the surface couple stress

tensors by the following relations

T = 〈A · σ〉, M = 〈A · µ〉 − 〈A · zσ × i3〉. (31)

If µ = 0 then Eqs. (31) reduce to the definition of the stress resultant tensor and couple resultant stress tensors given, for

example in [8, 42, 73]. Let us note that from Eq. (31)2 it follows that the transverse shear moments Mα3 depend only upon

the couple stress tensor µ. Indeed, M · i3 = 〈A · µ · i3〉.
Thus, if one assumes the definitions (29) and (31) for the surface loads and the surface stress measures then the two-

dimensional balance equations (1) are the exact consequence of the three-dimensional equilibrium conditions (17). On the

other hand, Eqs. (1) and (2) are the exact two-dimensional equilibrium conditions expressed in the terms of the surface

stresses and couples derived using the direct approach. This means that the presented in Sect. 2 theory of micropolar plates

is the general linear theory of plates based on the concept of forces and couples acting on a deformable plane surface

embedded in three-dimensional space.



5 Micropolar plate’s constitutive equations derived by the through-the-thickness

integration procedure

In this section we calculate the tensors T and M using Eqs. (31). Let us assume that the plate-like body is homogeneous in

z-direction, i.e. that the micropolar moduli λ, µ, κ, α, β, γ do not depend on z.

In the “standard” theory of plates the assumption σ33 = 0 is applied, see [70]. Using this assumption from Eq. (23)1 we

obtain that

ε33 = −
λ

λ + 2µ + κ
(ε11 + ε22).

Hence, Eq. (23)1 transforms to

σ = λ̃I(ε11 + ε22) + (µ + κ)ε + µεT = λ̃I(ε11 + ε22) + (µ + κ)∇u + µ(∇u)T + κI× ϑ, (32)

where λ̃ =
λ(2µ + κ)

λ + 2µ + κ
. The following relations hold true

∇s = A · ∇, A× ϑ = ϑ × i3 ⊗ i3 + ϑ3A × i3 = ϑs × i3 ⊗ i3 + ϑ3A× i3,

A · ∇u = ∇sus + (∇su3) ⊗ i3, A · (∇u)T = (∇sus)
T + us,3 ⊗ i3,

where us ≡ A · u, ϑs ≡ A · ϑ. Thus, we obtain

A · σ = λ̃A∇s · us + (µ + κ)(∇sus + ϑ3A × i3) + (µ + κ)(∇su3 + ϑ × i3) ⊗ i3

+µ(∇sus + ϑ3A× i3)
T + µus,3 ⊗ i3 − µϑ × i3 ⊗ i3. (33)

Introducing the notations

hǫ̃ = ∇s〈u〉 + A× 〈ϑ〉, ǫ̃‖ = ǫ̃ ·A,

one gets the relation

T = λ̃hAtr ǫ̃ + (µ + κ)hǫ̃‖ + µhǫ̃T
‖ + (µ + κ)h(ǫ̃ · n) ⊗ n−µh

[
〈ϑ〉 × i3 − 〈us,3〉

]
⊗ i3. (34)

The comparison of Eqs. (34) and Eq. (12) shows, that they have the same structure and that there is only one difference –

the underlined terms in Eq. (34). If we assume that the following relation holds true

〈ϑ〉 × i3 = 〈us,3〉, (35)

Eqs. (34) and (12) coincide up to notations.

Let us consider Eq. (31)2. M consists of two terms. The first one is given by the relation

〈A · µ〉 = αA
(
∇s · 〈ϑs〉 + 〈ϑ3,3〉

)
+ β

[
(∇s〈ϑs〉)

T + 〈ϑs,3〉 ⊗ i3

]
+ γ (∇s〈ϑs〉 + ∇s〈ϑ3〉 ⊗ i3) . (36)

Using Eq. (33) we obtain the relation

A · σ × i3 = λ̃A× i3∇s · us + (µ + κ)(∇sus) × i3 + µ(∇sus)
T × i3 − κϑ3A,

and then the second term in Eq. (31)2 takes the form

〈A · zσ × i3〉 = λ̃A × i3∇s · 〈zus〉 + (µ + κ)∇s〈zus〉 × i3 + µ(∇s〈zus〉)
T × i3 − κ〈zϑ3〉A. (37)

Introducing the vector ψ = −〈zus〉 × i3, Eq. (37) may be transformed to the following form

〈A · zσ × i3〉 = −µA∇s · ψ − (µ + κ − λ̃)∇sψ − (λ̃ − µ)(∇sψ)T − κ〈zϑ3〉A. (38)

Hence, using Eqs. (36) and (38) we obtain the expression for M

M = αA
(
∇s · 〈ϑs〉 + 〈ϑ3,3〉

)
+ β

[
(∇s〈ϑs〉)

T + 〈ϑs,3〉 ⊗ i3

]
+ γ (∇s〈ϑs〉 + ∇s〈ϑ3〉 ⊗ i3)



+µA∇s · ψ + (µ + κ − λ̃)∇sψ + (λ̃ − µ)(∇sψ)T + κ〈zϑ3〉A

= A∇s · (α〈ϑs〉 + µψ) +
[
∇s

(
β〈ϑs〉 + (λ̃ − µ)ψ

)]T

+∇s

(
γ〈ϑs〉 + (µ + κ − λ̃)ψ

)
+ γ∇s〈ϑ3〉 ⊗ i3

+A
(
α〈ϑ3,3〉 + κ〈zϑ3〉

)
+ β〈ϑs,3〉 ⊗ i3. (39)

One can see that Eq. (39) is inconsistent with Eq. (13), in general. The structure of M in Eq. (39) differs from Eq. (13) by

the underlined terms. For consistency we assume that the following relations hold true

〈ϑ3,3〉 = 0, 〈ϑs,3〉 = 0, 〈zϑ3〉 = 0. (40)

For example, Eqs. (40) are satisfied if ϑ is a even function of z.

To introduce the effective wryness tensor κ̃ let us assume that

〈ϑs〉 = −
1

l2
〈zus〉 × i3, (41)

where l is a parameter which has the dimension of length. Then M takes the form

M =
(
α/l2 + µ

)
A∇s · ψ +

(
β/l2 + λ̃ − µ

)
(∇sψ)T +

(
γ/l2 + µ + κ − λ̃

)
∇sψ + γh∇sθ̃3 ⊗ i3, (42)

where hθ̃3 = 〈ϑ3〉.
Note that we assumed the relations (35) and (41) which may not be satisfied simultaneously, in general. The assumptions

(35), (40), and (41) are satisfied identically if one applies the following approximation of u and ϑ with l2 = h2/12

u(x, y, z) = v(x, y) − zφ(x, y), ϑ = φ(x, y) × i3 + ϑ3(x, y)i3, φ · i3 = 0. (43)

This means that the couple stress tensor µ does not depend on z, while the stress tensor σ depends on z linearly as in [24,25].

But the approximation (43) is more restrictive than used by Eringen [24, 25]. The analogous to (43) approximation was

assumed in [29] where the theory of the linear three-dimensional Cosserat pseudo-continuum was used [44, 52]. Relations

(43) do not coincide with the constraint of the Cosserat pseudo-continuum because here ϑ �= 1

2
∇×u. Equations (43) state

that only in-plane components of the microrotation vector coincide with in-plane components of the macrorotation vector
1

2
∇× u.

Assuming Eqs. (43), the tensors T and M take the form

T = λ̃hA∇s · v + (µ + κ)h∇svs + µh(∇svs)
T + κhϑ3A× i3 + (µ + κ)h [∇s(v · i3) − φ] ⊗ i3

= λ̃hAtr ǫ̃ + (µ + κ)hǫ̃‖ + µhǫ̃T
‖ + (µ + κ)h(ǫ̃ · n) ⊗ n,

M =

{(
λ̃

h3

12
− βh

)
A∇s · φ +

(
µ

h3

12
− αh

)
(∇sφ)T +

[
(µ + κ)

h3

12
+ (α + β + γ)h

]
∇sφ

}

+γh∇sϑ3 ⊗ i3

=

(
αh − µ

h3

12

)
Atr κ̃ +

[
γh + (2µ + κ + λ̃)

h3

12

]
κ̃‖ +

[
β − λ̃

h3

12

]
κ̃T
‖

+γhκ̃ · n ⊗ n,

ǫ̃ = ∇sv + A × θ = ∇sv + ϑ3A × i3 − φ ⊗ i3, θ = ϑ, κ̃ = ∇sθ. (44)

As a result the effective stiffness parameters are given by the relations

α1 = λ̃h ≡
λ(2µ + κ)

λ + 2µ + κ
h, α2 = µh, α3 = (µ + κ)h, α4 = (µ + κ)h,

(45)

β1 = αh − µ
h3

12
, β2 = βh − λ̃

h3

12
, β3 = γh + (2µ + κ + λ̃)

h3

12
, β4 = γh.

The in-plane stiffness parameters α1, α3, α3, and the transverse shear stiffness α4 depend linearly on h. The dependence

of βi, i = 1, ...4 on h is more complicated. From Eqs. (45) it is evident that βi have the linear asymptotes when h tends to

zero: βi ∼ h. The considered case differs from the case of Kirchhoff’s plate or Reissner’s plate when βi ∼ h3.



To illustrate the dependence of the elastic stiffness on the thickness let us consider the bending stiffness of a micropolar

plate which is given by

D = (2µ + κ + λ̃)
h3

12
+ γh.

Introducing the technical constants

G =
2µ + κ

2
, ν =

λ

2λ + 2µ + κ
, l2b =

γ

2(2µ + κ)
,

where G is the shear modulus, ν is the Poisson ratio, lb is the characteristic length under bending, see [25], we obtain the

expression

D =
Gh3

12(1 − ν)

[
1 + 2

l2b
h2

]
. (46)

The dependence D/D̃ on h is given in Fig. 3, where D̃ =
Gh3

12(1 − ν)
is the value of the bending stiffness used by

Eringen [24, 25]. From Fig. 3 it is seen that the micropolar properties are inessential if h > 2lb.

D

D̃

1

hlb 2lb

Fig. 3 Dimensionless bending stiffness D/D̃ vs. the dimensionless

thickness h/lb.

It should be noted that the formulation procedure of the two-dimensional constitutive equations applied in this section

is the same like in the case of the Kirchhoff theory. It is well-known that the Kirchhoff theory cannot predict the transverse

shear stiffness in a right manner. In the Kirchhoff theory the stiffness parameters are undetermined. An analogous situation

we have here if we try to determine the stiffness related to the drilling moment. The value β4 can be obtained only with the

help of the values of the micropolar parameters. In addition, the value of the shear stiffness α4 = (µ+κ)h predicted here in

the classical case is equal to the shear correction factor 1, and one gets an overestimation in comparison with Reissner’s 5/6
or Mindlin’s π2/12. Such over- or underestimation of the stiffness corresponding to the drilling moment is also possible

with the used approach. But by this value one can see the influence of the micropolar properties on the stiffness parameters.

In particular, Eqs. (45) and (46) demonstrate the size-effect, which is present in the micropolar elasticity, see [25, 38–40].

The analysis of the formulas (45) and (46) show that the influence of the micropolar properties is essential if the thickness

of a plate h has the same value as the characteristic length of the microstructure of a material. This means that the influence

of the micropolar properties may be significant for very thin plates.

The equilibrium equations for the forces in the present theory (2)1 are the same like in Eringen’s theory if the equilibrium

is assumed, see Eqs. (5.27.5) and (5.27.6) in [25]. The equilibrium equations for the moments (2)2 are different from

(5.27.7)–(5.27.9) in [25]. The differences can be obtained comparing the structure, in addition the number of unknowns is

different. Eringen used the linear approximation

u(x, y, z) = v(x, y) − zφ(x, y), ϑ(x, y, z) = ξ(x, y), φ · i3 = 0, (47)

with two vector fields φ(x, y), ξ(x, y). Eringen’s plate equations and the equations of the present theory are the same in the

case if one can assume the in-plane behavior only: v = v1(x, y)i1 + v2(x, y)i2, θ = θ3(x, y)i3. The constitutive equations

in [25] are written in terms of the following stress and couple stress resultants

T =
1

h
〈σ〉, M =

1

h
〈µ〉, M =

1

h
〈zσ〉,



which are expressed in terms of v, φ, and ξ.

Gevorkyan [29] obtained the constitutive equations for the T and M in the form (12), (13) with constants α1, α2, α3

coinciding with (16) but with α4 = 0. The drilling moments Mα3 are generated by the couple stress tensor µ only. The

constants βi have different values then (16) or (45).

Reissner [63] introduced the stress resultants T, the force-stress couple M
σ, and the moment-stress resultant Mµ

T = 〈σ〉, M
σ = 〈µ〉, M

µ = 〈zσ〉

taking into account the transverse shear forces and the drilling moment. He used the linear approximation in z coordinate for

the stresses acting in the three-dimensional plate-like body. The constitutive equations in the Reissner theory are expressed

in the distinct rotational strain measures corresponding to M
σ and M

µ.

Comparing the present theory with Reissner theory [59,60], our system of equations contains an additional parameter –

the component of the rotation vector θ3. In Reissner’s theory it is assumed that θ3 = 0. Here the sixth equilibrium equation

(5)6 is nontrivial since in the six-parameter theory the components of the moment tensor M13 and M23 are included. In

Reissner’s theory M13 = M23 = 0. From this point of view the transition from the present theory to Reissner’s theory can

be realized assuming that the components of the moment tensor M13 and M23 and the drilling moment c3 are equal zero.

In addition, the shear correction factor should be taken into account for the transverse shear stiffness α4.

It should be noted that the constitutive equations presented here and the effective stiffness parameters are based on

various assumptions on the inner plate structure and the deformations:

• The plate is homogeneous.

• The normal stress σ33 = 0. This means that like in the Kirchhoff theory the normal stresses σ33 can be neglected in

comparison with the other stress tensor components.

• 〈ϑ〉 × i3 = 〈us,3〉, 〈ϑ〉 × i3 = 1

l2 〈zus〉.
• 〈ϑ,3〉 = 0, 〈zϑ3〉 = 0.

If we neglect all hypotheses or only a part of them one gets another effective stiffness parameters for the micropolar

plate. This conclusion is especially related to the drilling stiffness. An alternative approaches one can apply:

• The comparison of some boundary-value problems of the three-dimensional micropolar theory of elasticity (for ex-

ample, tension and bending problem for a parallelepiped, shear and torsion of a prism) with the conjugated two-

dimensional problems. In the case of a nonpolar continuum this was demonstrated in [3, 4, 6, 73]. In these papers, for

example, the nonclassical values for the transverse shear coefficient were obtained.

• The consistent approximation of the energy of the micropolar continuum. For the case of a nonpolar continuum this

was realized in [56, 57].

6 Example of the elastic stiffness parameters for the micropolar plates

As an example let us consider the elastic stiffness parameters using the experimental data presented by Lakes [38, 40], see

Table 1. Using the size-effect, Lakes established that some foams demonstrate the micropolar elastic behavior. In Table 1

PS is a low-density polystyrene closed-cell foam, while PU is a high-density rigid polyurethane closed-cell foam.

The corresponding elastic stiffness parameters are presented in Table 2. Let us note that the moment stiffness β4 is less

than other bending stiffness parameters. Here we also present the elastic stiffness parameters if one neglects the micropolar

properties, i.e. if κ = α = β = γ = 0. The the corresponding columns in Table 2 are marked by the index *. It is seen that

the micropolar constants play a role if the thickness of the plate is of the order of ∼ 10−2m for the first foam and ∼ 10−3 m

for the second one. On the other hand it means that the plate thickness is approximately equal to the size of the foam cell.

The application of the plate theory to such structures is under consideration.

7 Conclusions

We discuss here the general six-parametric or micropolar linear plate theory with two vector fields of the translations and

of the rotations as the independent kinematic variables. Within the proposed theory one may take into account an external

surface drilling moment. Within the direct approach the equilibrium conditions and the constitutive equations are formulated

as for the two-dimensional Cosserat continuum. This means that we consider a plate as a deformable surface with three

orthonormal directors attached at any point of the surface. We are restricted by the case of infinitesimal translations and

rotations. The equilibrium equations are deduced from the two-dimensional integral equilibrium conditions which state that



Table 1 Micropolar constants for two materials [38, 40].

Foam, PU Foam, PS

Shear modulus, MPa G =
2µ + κ

2
1.1 104

Poisson’s ratio ν =
λ

2λ + 2µ + κ
0.07 0.4

Characteristic length (torsion), mm lt =

√
β + γ

2µ + κ
3.8 0.62

Characteristic length (bending), mm lb =

√
γ

2(2µ + κ)
5.0 0.33

Coupling number N2 =
κ

2µ + κ
0.09 0.04

Polar ratio Ψ =
β + γ

α + β + γ
1.5 1.5

Table 2 Effective stiffness of a plate made of different porous materials (h has the dimension m).

Elastic Foam, PU Foam, PU * Foam, PS Foam, PS *

constants

α1, N/m 106 λ̃h 0.165h 0.165h 138.67h 138.67h

α2, N/m 106 µh 1.001h 1.1h 99.84h 104h

α3, N/m 106 (µ + κ)h 1.199h 1.1h 108.16h 104h

α4, N/m 106 (µ + κ)h 1.199h 1.1h 108.16h 104h

β1, N·m 106 αh − µ
h3

12
−2.6 · 10−6h − 0.083h3 −0.092h3 −6.7 · 10−6h − 8.3h3 −8.67h3

β2, N·m 106 βh − λ̃
h3

12
−10−4h − 0.014h3 −0.014h3 −2.5 · 10−5h + 11.6h3 −11.5h3

β3, N·m 106 γh + (2µ + κ + λ̃)
h3

12
1.1 · 10−4h + 0.197h3 0.197h3 4.5 · 10−5h + 28.9h3 28.8h3

β4, N·m 106 γh 1.1 · 10−4h 0 4.5 · 10−5h 0

the total force and the total moment vectors acting on any part of the surface are zero. The linear strain measures ǫ and

κ are introduced as work-conjugate to the surface stress tensor T and the surface couple tensor M, respectively. For the

linear isotropic elastic behavior the two-dimensional constitutive equations are presented. These equations are the linear

tensor-valued functions of ǫ and κ and contain eight elastic constants, in general. Then, starting from the tree-dimensional

linear micropolar elasticity we show that the two-dimensional equilibrium conditions are the exact consequence of the

three-dimensional integral balances of momentum and moment of momentum if the introduced surface stress and couple

stress tensors are the stress resultant and the moment stress resultant tensors, respectively.

For the homogeneous material and using some special approximations of the displacements and the microrotations of

a micropolar plate-like body, we calculated the stress resultant and the moment stress resultant tensors as functions of the

averaged strain measures. Hence, on the base of the three-dimensional constitutive equations of a micropolar isotropic ma-

terial we found the effective stiffness parameters of the plate. The non-homogeneous material properties and determination

of the elastic stiffness properties of a micropolar plates are discussed.
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