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Abstract

Recent work has shown that learning an ensemble consisting of multiple models and

then making classifications by combining the classifications of the models often leads to
more accurate classifications then those based on a single model learned from the same

data. However, the amount of error reduction achieved varies from data set to data set.

This paper provides empirical evidence that there is a linear relationship between the

degree of error reduction and the degree to which patterns of errors made by individual
models are uncorrelated. Ensemble error rate is most reduced in ensembles whose con

stituents make individual errors in a less correlated manner. The second result of the

work is that some of the greatest error reductions occur on domains for which many

ties in information gain occur during learning. The third result is that ensembles con

sisting of models that make errors in a dependent but "negatively correlated" manner

will have lower ensemble error rates than ensembles whose constituents make errors

in an uncorrelated manner. Previous work has aimed at learning models that make

errors in a uncorrelated manner rather than those that make errors in an "negatively
correlated" manner. Taken together, these results help provide an understanding of

why the multiple models approach yields great error reduction in some domains but

little in others.

Keywords: Multiple models. Error correlation. Combining classifiers. Averaging.



1 Introduction
Recent years have seen much work in learning multiple models for the purpose of reducing
classification error.^ Studies involving the use of multiple models typically learn a set of
models from one set of training examples. This ensemble makes classifications by combining
the clcissifications of its constituents. The error rate of this ensemble is usually compared to
that of a special, single model that results from using a deterministic learning procedure on
the same training examples. Most of the empirical work on multiple models has shown that
the ensemble is able to achieve more accurate classifications than the single model.

Besides the impressive empirical evidence that shows that classification error rates can

be reduced by learning and using multiple models, there are also relevant theoretical results.
Hansen k Salamon (1990), for example, show that if the models make errors independently,
and if they all have the same error rate and if that error rate is less than 0.5, then the
expected error rate of the ensemble will go down in proportion to the size of the ensemble.
Perrone & Cooper (1993) and Breiman (submitted) also present similar theoretical results
for regression. Buntine (1990) applies Bayesian probability theory (e.g. Ripley, 1987) to
classification and shows that the expected posterior probability of a class given a test exam
ple can be computed by combining the posterior probabilities of all the hypotheses in the
hypothesis space. Empirical results (Buntine, 1990; Ali & Fazzani, 1995; Oliver k Hand,
1995) use a small set ofhighly probable models to approximate the result of combining the
posterior probabilities over the entire hypothesis space and show that the ensemble achieves
a lower error rate than the special single model.

In our earlierwork (Ali k Fazzani, submitted) we demonstrated that using an ensemble it
was possible to achievean error-rate just one-seventh that of the single model error-rate. This
was accomplished on the wine domain from the UCI repository (Murphy k Aha, 1992) using
an ensemble consisting of eleven rule-set models. However, our results and those of Breiman
(submitted) indicate that the amount of error reduction varies greatly. For some domains
(e.g. Iris, Breast Cancer) the multiple models approach does not lead to any reduction in

This naturally brings up the following question; "What are the factors that determine
whether or not significant reduction in error will be obtained?" In Ali k Fazzani (submit
ted) we empirically demonstrate how two domain characteristics (amount of class noise and
number of irrelevant attributes) play an important role in whether significant error reduction
will be obtained. They also have a major influence on the amount of error reduction that
will be obtained. Other work on this question is presented in (Breiman, 1994) in which he

^Some examples are:
Decision trees: Kwok & Carter, 1990; Buntine, 1990; Oliver k Hand, 1995; Breiman, 1994.
Rules: Kononenko k Kovacic, 1992; Kovacic, 1994; Smyth ei ai, 1990.
Rule sets: Gams, 1989; Ali k Pazzani, 1995.
Neural networks: Hansen k Salamon, 1990; Perrone k Cooper, 1993; and many others.
Bayesian networks: Madigan k York, 1993.
Regression: Perrone k Cooper, 1993; Breiman, submitted.



identifies a property of the learning algorithm that may be relevant to its ability to reduce
error through the multiple models approach. Breiman postulates that algorithms that are
"unstable" in the sense that small changes in the training data will lead to large changes
in functional behavior on test examples will be helped by the multiple models approach. In
contrast, we concentrate on exploring properties of a domain which will have a bearing on
the amount of error reduction.

This recent work has taken for granted that the multiple models approach yields sig
nificant error reduction in some domains and seeks to understand when these significant
reductions will take place. This leads to the main question addressed in this paper: "What
influences the amount of error reduction?" In particular, we are interested in exploring the
widely held belief (articulated by Hansen & Salamon (1990)) that error is most reduced for
domains for which the errors made by the models are made in an independent manner. This
is also echoed in Kong &: Dietterich (1995) in which they hypothesize that error-correcting
output codes are able to reduce error because they rely on learning several functions (models)
that vote to make a classification and that those functions make errors in an uncorrelated

manner. The validation of this hypothesized link between independence (uncorrelatedness)
of individual model errors and overall error reduction is the main goal of this paper.

Our results show that there is a negative correlation between the amount of error reduc
tion and the degree to which patterns of errors made by individual models are correlated.

(That is, ensembles whose models make errors in an uncorrelated manner provide greater
error reduction.) However, this begs the question: why is it that on some domains it is easy
to learn models that make uncorrelated errors whereas it is difficult for other domains? We

present results that show that one important factor in answering this question is the average
number of ties in gain (information gain, for example) experienced by the learning algo
rithm. For domains in which many gain ties are experienced, it is possible to learn models
that make errors in a relatively uncorrelated manner, and hence these are the same domains

on which some of the greatest reductions of error are obtained. The single-model learning
program must arbitrarily choose from among the set of tied candidates. The multiple models
approach, on the other hand, can explore several of the alternatives and retain more than

one model.

2 Error reduction and error correlation
Now we present precise definitions of the degree of error reduction (Er) and the degree of
error correlatedness (^e)- Twoobvious measures comparing the error of the ensemble(Eg) to
the error of the single model (Et) are error difference {Eg —Eg) and error ratio [Eg = Eg/Eg).
We use error ratio because it reflects the fact that it becomes increasingly difficult to obtain
reductions in error as the error of the single model approaches zero. Error ratios less than 1
indicate that multiple models approach was able to obtain a lower error rate than the single
model approach. The lower the error ratio, the greater the error reduction and the better
the situation.

Let the ensemble ^ consist of the models and let the true, target function be



Table 1: Relationship between correlatedness and statistical independence.

<j)e > <t>' Positively correlated

<j)c = <j>* Uncorrelated

<j>e < <f>* Negatively correlated

Dependent errors ,

Independent errors

Dependent errors

denoted by /. Therefore, f(x) = y means that example x belongs to class y. In order to
define "the degree of error correlatedness," let p{fi{x) = fj{x), fi{x) ^ f{x)) denote the

probability that models fi and fj make the same kind of error, (^e is then just the average of
the probability of making the same kind of error taken over all pairs in the ensemble. That

^ r VIT - 11 ^ ^ PiM^) = ^ f{x)) (1)
The higher the values of the more correlated the errors made by members of the ensemble.
The values of (j>e for the data sets presented in Table 2 were estimated on the test set of

examples. Therefore, they cannot be used by the learning algorithm but provide us with an
understanding of why error is reduced more in some data sets.

There is an intimate link between making uncorrelated errors and making errors in a
statistically independent manner. Let C denote the number of classes and let (f)* denote the

following special value of <f)e:

m = S = k)x J2piM^) = 0 Xpifji^) = 0

This is the value of (^e would be obtained if all the members of the ensemble made errors

in a pairwise, statistically independent manner for each class in the data. This value is used
to define the meaning of "negatively correlated" as shown in Table 1.

Some authors (Hansen &: Salamon, 1990; Perrone, 1993) have demonstrated that making
errors in an uncorrelated (independent) manner leads to a lower error rate for the ensemble
and produces some desirable results relating to error reduction. Kong Sz Dietterich (1995)
attribute the success of their error-correcting output code method to its ability to learn

functions that make uncorrelated errors. However, our analysis above suggests that because

(j)* is not the lowest possible value obtainable, one should aim to learn ensembles whose

models make errors in an "negatively correlated" manner. In Section 5.3 we present further

arguments for the hypothesis that ensembles whose members make errors in an negatively
correlated manner will have lower ensemble error rates than ensembles whose members make

errors in an uncorrelated (independent) manner.



3 Learning decision tree ensembles
We use the method oftop-down induction of decision trees (ID3: Quinlan, 1986) with 1-step
lookahead with respect to entropy minimization to learn a single trpe. Pruning is not used
because we do not want the error reductions to be confounded with the pruning method.
Unknown attribute values are handled by the method of token averaging (Quinlan, 1986).

Stochastic search is used to generate multiple trees. We consider all decision tree splits
whose resultant entropy (Quinlan, 1986) is within some factor /3 of the entropy of the split
with the lowest entropy. For our experiments, we set this factor to 1.25. The probability of
choosing a split from this set is proportional to l/Entropy.^ We have not experimented with
other values of /3 - we hypothesize that our results will hold for other values of /S in (1, oo).

4 Evidence combination
The only other decision one needs to make in making a stochastic version of an algorithm
is how to combine evidence and classifications of the learned models in order to make an
overall classification by the ensemble. We consider four evidence combination functions to
demonstrate that our results on the relation between error reduction and the tendency to
make correlated errors is not sensitive to the type of combination function.

• Uniform Voting - The classification predicted by each tree is noted and the class that
is predicted most frequently is used as the prediction of the ensemble. For the other
combination functions, each tree must provide a measure of confidence in addition to
its classification.

• Distribution Summation (Clark Sz Boswell, 1991) - This method assocates a C-component
vector (the distribution) with each leaf. C denotes the number of classes. The vector
records the numbers of training examples that reached that leaf. In order to produce a
classification for the ensemble for a test example, that example is filtered to the leafof
each decision tree. Then, a component-wise summation of the vectors associated with
those leaves is done. The prediction of the ensemble corresponds to the class with the
greatest value in the summed vector.

• Likelihood Combination (Duda at al., 1979) - This method associates a "degree of
logical sufficiency" (LS) for each class i with each leafj. In the context ofclassification,
the LS of a leaf j for C/ass, is defined by

p{x e ext{j)\x 6 Classi)

p{x € ext{j)\x ^ Classi)

^To prevent zero values for Entropy, we used the Laplace approximation for the probabilities involved
in the Entropy expression. Briefly, the Laplace approximation for the probability of some discrete random
variable which has been observed to occur in / of T trials is ^ where k denotes the number of possible
values for the variable.



where ext{j) denotes the set of examples that filter to leaf and where a: is a random
example. These LS's are combined using the odds form (the odds of a proposition with
probability p are p/(l —p)) of Bayes rule:

0{Classi\M) oc 0{Classi) x l[0{ClasSi\Mj)
i

where M is the set of learned decision trees and Mj is the j-th tree. 0{ClasSi) denotes
the prior odds of the f-th class. For model j, 0{Classi\Mj) is set to the LS of class
i stored at leaf j. Finally, the test example is assigned to the class with the highest
posterior odds, 0{Classi\M).

• Bayesian Combination (Buntine, 1990) - According to Bayesian probability theory, we
should assign test example x to the class c with the maximum expectation for p{c\x, x)
taken over T, the hypothesis space of all possible decision trees over the chosen set of

attributes:

Er{p{c\x,x)) = pic\x,T) Xp{T\x)
TeT

{x denotes the set of training examples.) The posterior probability of a tree T, p{T\x),
is calculated as in (Buntine, 1990). For the "degree of endorsement," p(c|x,T), made
by tree T for class c for example x, we use a Laplace estimate from the training data
(see Ali & Pazzani (1995) for details).

5 Experimental results
For our experiments we randomly chose domains from the UCI repository of machine learning

databases (Murphy & Aha, 1992) ensuring that at least one domain from each of the major
groups (molecular biology, medical diagnosis ...) was chosen. These include molecular-
biology domains (2), medical diagnosis domains (7), relational domains (6 variants of the
King-Rook-King (KRK) domain, Muggleton et a/., 1989), a chess domain with a "small
disjuncts problem" (KRKP; Holte et ai, 1989), and attribute-value domains (4 LED variants
and the tic-tac-toe problem).

For most of the domains tested here, we used thirty independent trials, each time training

on two-thirds of the data and testing on the remaining one-third. The exceptions to this

are the DNA promoters domain for which leave-one-out testing has traditionally been used

and we follow this tradition to allow comparability. Other exceptions are trials involving
the King-Rook-King domain. For this domain, the training and test sets are independently
drawn (rather than being mutually exclusive) from the set of all 8® board configurations.
Whenever possible we tried to test learned models on noise-free examples (including noisy
variants of the KRK and LED domains) but for the natural domains we tested on possibly
noisy examples. The "large" variant of the Soybean data set (Murphy Sz Aha, 1992) was
used and the 5-class Heart data set variant was used.



Table 2: Comparison of errors made by single decision tree and an ensemble consisting of
eleven stochastically-learned decision trees combined with the Uniform Voting function. An
"i" suffix indicates number ofirrelevant attributes, an "e" indicates number of examples, an
"a" represents level of attribute noise and a "c" indicates level of class noise. A indicates
a significant reduction in error, a indicates a significant increase.

Domain Base Number 1 Dec. Tree 11 Dec. Trees

Error Training Error Uniform Voting
Rate Examples Rate Error Rate

Led 8i 90.0% 30 23.7% 9.4%
Led 17i 90.0% 30 31.4% 12.3%
Tic*tac-toe 34.7% 670 15.8% 5.2%
Krkp 48.0% 200 5.8% 5.2%
Krk lOOe 33.4% 100 7.3% 4.4%
Krk 200e 33.4% 200 4.0% 1.7%
Krk 160e 5a 33.4% 160 12.4% 8.6%
Krk 320e 5a 33.4% 320 7.8% 5.7%
Krk 160e 20c 33.4% 160 16.1% 11.8%
Krk 320e 20c 33.4% 320 12.7% 9.6%
Led 20a 90.0% 30 10.0% 10.0%
Led 40a 90.0% 30 26.0% 21.7%
DNA 50.0% 105 17.0% 6.4%
Splice 46.6% 200 23.9% 12.2%
Mushroom 50.0% 100 1.6% 1.2%
Hypothyroid 10.0% 200 2.1% 1.9%
BC-Wisconsin 34.5% 200 6.5% 4.4%
Voting 38.0% 100 6.9% 6.4%
Wine 60.2% 118 5.9% 2.8%
Iris 66.7% 50 4.9% 5.3%
Soybean 85.4% 290 12.4% 11.9%
Horse'Colic 36.6% 245 17.1% 14.0%
Hepatitis 20.4% 103 24.3% 20.4%
Lymph. 45.3% 110 28.9% 26.5%
Audiology 74.7% 145 31.0% 22.3%
Diabetes 34.9% 200 31.6% 27.0%
B.Cancer 29.8% 190 35.1% 35.6%
Heart 45.9% 200 50.0% 45.3%
Primary-tumor 75.3% 225 63.6% 59.8%

5.1 Link between error reduction and error correlation
Table 2 presents results using 29 data sets from 21 domains. (We distinguish the terms
"data set" and "domain" in that a data set also involves specifiying algorithm-independent
parameters such as training set size, level of class noise etc.) For 72% of the data sets in
Table 2 there is a significant reduction in error rate when classifications are made using an
ensemble of eleven trees (combined using Uniform Voting). No significant change in error
occurs on the remaining data sets. Hence, on all the data sets, there is either a significant
reduction or no change in error rate. The values of Er and used in this between-domain
experiment represent an average over thirty trials.

However, the main point of this paper is not to demonstrate that error is reduced due to
the multiple models approach. Rather, we seek to explain the amount of error reduction as
a function of the tendency to make correlated errors, (j)^. The linear correlation coefficient

{rEr,<l>^) between error correlation {(t)e) and error ratio {Er) can be used to measure how well
<l)e linearly models error ratio. If the error ratios and (f)^ values for the data sets in Table 2 for
the 19 data sets for which there was significant error reduction are plotted in a scatter-plot
and a least mean-squares linear fit is done, it can be determined that the tendency to make
correlated errors explains 60% of the variance in the error ratio variable {r\^ ^ = 0.60).
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Figure 1: The figures above illustrate that greatest error reduction is obtained for ensembles
which make less correlated errors (have lower values of </ie). One point represents one data
set - a combination of a domain and a specific training set size.

This is empirical evidence for the hypothesis that there is a negative correlation between
the degree to which error is reduced and the degree to which individual model errors in the
ensemble are made in an correlated manner. However, it is better to conduct several trials

to estimate the statistic so we conducted 10 trials. Within each of these "meta-trials,"

30 trials per data set were run. For the i-th meta-trial we decided to use i x 10% of the
training data. So, for example, on the Tic-Tac-Toe domain, the original training set size was
670 training examples so this was augmented by 30 trials at 67 examples, 30 trials at 134
training examples etc.

Of the resulting 260 data sets (from 20 domains), significant error reduction occurred on
163 occasions when using Uniform Voting. The figure shows that under the Uniform Voting
combination function (top left of Figure 1), 49% of the variance in amount of error reduction
is explained by the tendency to make the same correlated errors. This value is more reliable
than the 60% value for mentioned earlier because it uses approximately ten times as much

data. The figure also shows that for the other three combination functions the degree to
which error is reduced is negatively correlated with the degree to which constituents in the
ensemble make individual errors in an correlated manner.

Because r is distributed normally for samples of large (greater than 30) size we can
apply a significance test to see what the probability of achieving a r of 0.70 (r^ = 0.49)



under the null hypothesis, Hq, would be for 162 degrees of freedom. In this case, the null
hypothesis would be that the population correlation, p, between Er and (j)e is 0. For each of
the four combination functions, the probability of attaining the observed r values under Hq,
is less than 0.0005 (120 degrees of freedom were used). Therefore, we can confidently say
that the perceived linear correlation between (f>e and Er is very unlikely to arise by chance.
The 95% confidence intervals around are [38%, 60%] for Uniform Voting, [20%, 44%] for
Bayesian combination, [28%, 49%] for Distribution Summation and [32%, 56%] for Likelihood
Combination.

That we can empirically discover the negative correlation between amount of error re
duction and tendency to make correlated errors is quite encouraging given that the data sets
vary widely in optimal Bayes error level and along other dimensions. Secondly, is a pair-
wise measure, whereas what the error rate under Uniform Voting counts is the proportion
of the test examples on which at least six models made an error (assuming an ensemble size
of eleven). Another limitation of is that it assumes all models have equal voting weight.
This is only true under the Uniform Voting combination function and that is why the
under that function is higher than under other functions.

In other experiments, we calcuated within each domain. Note that this is between
and error rate, not error ratio. This within-domain experiment factors out the influence

of optimal Bayes error rate which may vary from domain to domain. For the within-domain
experiments, a separate value for <^e is calculated per trial, rather than averaging over 30
trials. In these experiments, we obtained very high values for for most domains; up to
96.8% for tic-tac-toe.

In order to gain insight into why <^e explains so much of the variance in error ratio consider
the simpler problem ofmodeling variation in error rate within a given domain. Assume that
N trials have been conducted to yield N ensemble error values. Assume that the simplest
evidence combination method (Uniform Voting) is used and that the data set contains two
classes and that the ensemble contains just two models. In this situation, an ensemble error
occurs if both the models make an error or if the models disagree and the tie is broken so as
to cause an error. Assume that ties occur on a negligible proportion of the cases. Under these
assumptions, (j)g is an exact measure of ensemble error {Ee). As is a pairwise measure,
how well it models within-dataset ensemble error depends on the size of the ensemble.

To summarize: our results provide an explanation of why the multiple models approach
leads to great error reduction in some domains but hardly any in other domains. The results
show that there is a negative correlation between the amount of error reduction and the
amount of correlatedness of errors - the less correlated the individual model errors, the
better the ensemble is at reducing error.

5.2 Gain Ties
The amount of error correlation provides a post-hoc way of understanding why the multiple
models approach reduces error more for some data sets than for other data sets. In this
section, we explore whether we can approximately predict (during learning) the expected
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Figure 2: Error ratio as a function of average gain ties for decision trees (left) and rule
sets (right) (Ali & Pazzani, submitted). The ensembles of decision trees contained eleven,
stochcistically learned decision trees with respect to the entropy gain function. The ensembles
of eleven rule sets were learned using stochastic hill-climbing and combined using likelihood
combination. Similar plots are obtained for other evidence combination methods.

amount of error reduction due to the use of multiple models. In other words, we seek to
understand why the stochastic learning algorithm produces models that make less correlated

errors in some data sets and more correlated errors in other data sets.

The motivation for postulating this hypothesis is the observation that each time the
stochastic generation method is run, it uses the same training data. However, it is able to
generate different descriptions because it randomly picks from the decision tree nodes whose
gain is within some factor ^ E (l,oo)) of the entropy of the best node. If there are
many such nodes then the possibility for syntactic variation from description to description
is greater. It is our hypothesis that greater syntactic variety leads to descriptions that make
less correlated errors. Hence, if we can measure (during learning) the amount of potential
syntactic diversity, we can estimate the degree to which the resulting models will make
correlated errors.

As a first approximation measure of the amount of syntactic variety in a data set as
experienced by a learning algorithm, consider the number of literals that tie for the highest
information gain. If n literals tie for gain, that event is recorded as representing n —1 ties
in gain. The total number of ties experienced during learning a model is then divided by
the number of literals in the model to produce the quantity g - the "average number of gain
ties" for that data set. Values of g used in Figure 2 represent averages over thirty trials. A
large number of such ties are a problem for a hill-climbing deterministic learner but represent
an opportunity for the multiple model learner. Figure 2 plots error ratio as a function of

average gain ties (each point represents results for one data set from Table 2). The figure
shows that some of the largest reductions in error are obtained for data sets for which such

ties are frequent. For instance, there were, on average, 14.2 gain ties on the Wine data set
and 8.1 for the Splice data set! This underscores the difficulty experienced by a greedy.



Table 3: An arbitrary arrangement of individual model errors on 100 test examples. A "X"
indicates an individual model error. An ensemble error occurs for test examples (columns)
in which there are more than 2 individual model errors.

Modell

Model2

Models

Model4

Models

Egl Eg2

X X

Eg99 Eg 100

X

X

X

X X

hill-climbing algorithm on such data sets. Even with further look-ahead, the single-model
approach still can only produce a single model as its output. Therefore, unless the sample
size is very large, the single-model approach will still be at a disadvantage. The figure also
shows that a high average value for ties in gain appears to be a sufficient but not necessary
condition for significant reduction of error. For example, the multiple models approach is
able to achieve low error ratios on the Tic-Tac-Toe and the noise-free LED variants (bottom
left of Figure 2) even though there are not many ties in gain for those data sets.

The gain ties measure is a rough approximation of the potential for syntactic diversity
and the hypothesized resulting diversity of errors. For instance, the measure can be fooled
by multiple definitions of attributes. We tried some variants that took the variability in the
extensions of the candidate decision nodes into account but found no measure that provided
a significantly better estimation of error reduction. Other measures that counted "near gain-
ties" orgain ties weighted by the number ofexamples at that node also did not yield a better
estimate of error reduction.

5.3 Negatively Correlated Errors
In this section we consider whether making errors in a negatively-correlated manner leads
to lower values of error reduction than if the errors are made in an uncorrelated manner.
Consider what an optimal arrangement of errors (that minimizes ensemble error rates) would
look like. That is, we consider what kind of pattern of individual model errors will lead to
the lowest possible ensemble error rate given that we cannot vary the error rates of the
individual models. Although we cannot vary their rates we can vary the examples on which
the trees make their errors.

Consider an arbitrary pattern of errors as shown in Table 3 for 5 learned models and
100 test examples. Assume that Uniform Voting is used so an ensemble error occurs if there
are more than 2 errors for any example. Therefore, in order to minimize the ensembleerror
rate, the models should make errors in a pattern that minimizes the number of columns in
which more than 2 errors are made.

Now, because we are able to rearrange the errors but we are not able to modify theerror



rates it follows that we can permute each row. The ensemble error minimization procedure
operates by ordering the models - most error-prone first. Then the errors of the second model

are permuted so that as many of them as possible occur on examples that were correctly

classified by the first model. That is, the models should make errors on disjoint subsets (to
as great a degree as possible) rather than on independently drawn subsets. This process
continues so that for each model we arrange for the mistakes to be made on examples on

which the fewest mistakes have been made by previous models. However, once the number

of errors on an example exceeds [^J (T is the number of models) then an ensemble error is
conceded on that example. Then in order to keep minimizing ensemble error rate, it is best

to arrange for subsequent models to make their errors on such "conceded" examples.
From this analysis it becomes clear that in order to minimize the number of ensemble

errors, it is better for the constituent models to make errors in a dependent but negatively
correlated way rather than in an independent (uncorrelated) way. Of course, it is better for
the errors to be made in an independent way than to be made in a positively correlated (and
dependent) manner.

4>e is a perfect measure of ensemble error rate within a domain given that only two
models are in the ensemble, the domain only contains two classes and that ties occur on

a negligible proportion of the examples. However, for ensembles of larger sizes, consider
how the arrangement of errors such as that in Table 3 impacts the ability of (j)e to measure

ensemble error rate. The number of ensemble errors simply counts the number of columns

in the table on which more than \^\ errors occurred. Therefore, any rearrangement in the
pattern of errors on the columns in which or fewer errors occurred has no bearing on the
number of ensemble errors as long as the rearrangement does not cause more than [yj error
to occur in any given column. But these rearrangements do have an impact on (f>e which is

simply a pairwise (2nd order) measure. A -order measure would be needed to perfectly
model the ensemble error rate. This explains why does not do a perfect job of modeling
error rate within data sets or of modeling error ratio between data sets.

6 Related work
Our work is related to that of Kwok & Carter (1990) because they were the first to look at the
effect of syntactic diversity on ensemble error rate. They showed that ensembles consisting
of decision trees in which the root node varied had lower error rates than ensembles in

which the root node was not varied. Their conclusion (using two domains) was that greater
syntactic diversity led to lower ensemble error rates. Our gain ties measure is an attempt
to quantitatively measure the potential for syntactic diversity. However, it would be best

to measure diversity in the functional space. Work in functional diversity has been done
by Perrone & Cooper (1993) although they do not incorporate this goal into their learning
algorithm or offer an explanation of why it is possible to learn functionally more diverse
ensembles on some domains.

Our work on correlation is also related to that of Kong & Dietterich (1995) in which they
attribute the power of the Error-Correcting Output Codes (ECOC) approach to the fact that



it involves learning several approximations of the target function / and then voting among
those approximations. Kong and Dietterich hypothesize that the ECOC approach works
because the approximations make uncorrelated errors. However, they use "uncorrelated" to
mean "non-identical" and their work is not concerned with a quantitative measure of error
correlation or with explaining the amount of error reduction.

Finally, our work is related to the concept boosting work of Schapire (1990) and adaptive
boosting (Freund h Schapire, 1995). His boosting algorithm is the only learning algorithm
which incorporates the goal of minimizing correlated errors into the learning mechanism.
However, the number oftraining examples needed by that algorithm increases as a function of
the accuracy of the learned models and has only been demonstrated for on-line (incremental)
learning with upto 100,000 examples (Drucker et al., 1994). Adaptive boosting is constructed
to require fewer training examplse than boosting. Adaptive boosting works by first building
a model using deterministic search over the entire training set. Incorrectly classified training
examples are assigned a greater probability of appearing in a new training set. Each training
set is of the same size as its predecessors and may include replicates of training examples.
However, adaptive boosting relies on the assumption that the data is not overfitted. If the
first model achieves 100% accuracy over the training set, the adaptive boosting algorithm
terminates having just learned a single, overfitted model.

7 Conclusions
The paper provides an understanding of why the multiple models approach leads to striking
reductions in error on some domains whilst on other domains there is no reduction in error.
Our finding is that the amount of error reduction is negatively correlated with the degree to
which the models in the ensemble make errors in a correlated manner. We use quantitative
definitions for error reduction and the degree to which models make errors in a correlated
manner to empirically show that there is a linear relationship between these two variables.
The results are based on experiments using 260 data sets from 20 domains crossed with four
evidence combination methods. Although this paper only presents results for decision trees,
our earlier work (Ali & Pazzani, submitted) shows that the linear relationship between error
reduction and amount oferror correlation also holds for models consisting of rule sets.

But why does stochastic learning produce models in one domain whose errors are uncor
related whilst in another domain it produces models with highly correlated errors? This is
answered by the second result of the paper: in domains in which many ties ingain are expe
rienced, the errors of the resulting models are relatively uncorrelated and so the reduction
in error is relatively large. Although this simple measure - gain-ties - has limitations, it is
as useful in predicting error reduction as some of its more complex variants.

The third result of the paper is that our analysis predicts that ensembles whose models
make errors in a dependent but "negatively correlated" manner should have lower ensem
ble error rates than ensembles whose models make errors in an independent (uncorrelated)
manner. This supersedes previous beliefs that one of the goals of multiple models learning
is to learn models that make errors in an independent (uncorrelated) manner.
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