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On the Local Behaviour of Solutions of Degenerate
Parabolic Equations with Measurable Coeflicients (*).

E. DI BENEDETTO

0. — Introduction.

We will prove interior and boundary Hélder continuity for weak solu-
tions of degenerate parabolic equations with principal part in divergence
form, of the type

(0.1) u,— diva(z, t, w, ,u) + bz, t, u, V,u) =0 in D(Lr)

where Q is a region in R¥, £, = 02X (0,T), 0<T < oo, and V, denotes
the gradient with respect only to the space variables o = (zy, @y, ..., Zx).

The functions a: R2¥+2-»R¥ and b: R2¥+2—+R, are only assumed to be
measurable and satisfying the structure conditions

[A,] a(w, t, u, Vou): Vous ColVoulp— @y, 1), p>2
[Az] l“z‘('% t, u, qu)l< C’1|V,u|1’*1 + (Pl(w; t) ’ i = 1a 27 R N ’
[A;] |b(z, t, u, Vou)| < Co|Vou)? + @q(m, 1),

where C,, i =0,1,2 denote given positive constants and ¢,, ¢=20,1,2
are given non-negative functions defined on £, and subject to the condi-
tions ()

[A,] Do,y (Pf" @ € Lz (L27)

(*) Partially supported by NSF Grant DMS-8502297.

(*) Throughout the paper the notation of [11] is employed.

Pervenuto alla Redazione il 20 Giugno 1985 e in forma definitiva il 15 Gen-
naio 1986.
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where 1/p + 1/p’'=1 and ¢, #>1 and satisfy

1 N
0.2)  FHE=1—m,
and
. . P 1 P . p—1
(0.2) (i) de[1,00]; Te[l_nla p(l-—%l)—l]’ "16(057)
if N =1,
(0.2) (ii) gje[ga—%v_—_;l—),oo]; i"e[l_l_xl,oo]; € (0, 1)

if N>1, p<W,

o it el w3

ifl< N<p.

Given the structure econditions [A,]-[A;], the degeneracy of (1.1) is of
the same nature of

(0.3) u,= div (|V,u[>~2Vu) in D'(Q;), p>2.

When p = 2, major developments, in the theory of loeal regularity
of (0.1) have been brought about the discovery of the Harnack inequality
of Moser [14, 15], for linear elliptic and parabolic equations with bounded
and measurable coefficients. The Harnack inequality can be used to imply
the local Holder continuity of the solutions. The latter regularity statement
had been proved previously by De Giorgi [3] in the elliptic case and Lady-
zenskaja-Uralt’zeva [11] in the parabolic case.

In the case of an elliptic equation, the extension of these results from
p =2 to any p > 1 is quite direct and the theory can now be considered
fairly complete [16,17,19].

The parabolic case is complicated by the dissymmetry of the space
and time parts of the operator in (0.1), and at our knowledge no regularity
results are available if p differs from 2. In particular, non-negative weak
solutions of (0.1) do not in general satisfy the Harnack inequality. To see
this we consider the following explicit solution of (0.3), construeted in [1].

1 _ Jﬂ)”l(ﬂ—l)}(ﬂ—l)/(m—z) Rt
(0.4) w(@,t) = R(t)"’{l (R(t) ’ [z < R(t)

0 s lz| > R(t)

P 1/(N¥(p—2)+9)
©05) RO =(—2 + 21,21

, t>0.
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This solution exhibits a behaviour similar to the solutions of the porous
medium equation; that is, it is of compact support in the space variables
for alli > 0. Clearly for a cylinder @ intersecting the free boundary |x| = R(3),
the Harnack inequality fails to hold (see also Remark B section 7 of [4]
p. 118). Nevertheless the solution w is C**(R¥X[e, T1), YO <e< T < oo.

By a weak solution of (0.1) in £,, we mean a function ue V,,(£27) =
= C(0, T; L)) N L*(0, T; H>(Q)), satisfying

t, b
(0.6) fu(w) t)pla, T)dwl +f f
o

Q Gy,

“{— up,+ a(x,t,u, V,u)-V.p + b(w, t, u, V.u)p}dodr = 0

for all p € W};"(QT) such that g.€ Ly(2r), and for all ¢,, t,, 0<<t;<<tf,<T.
We assume throughout that

[As] we Le(80y) .
REMARK 0.1. If [A,] is replaced by the more restrictive condition
(AT [b{z, t, u, V,u)| < Ca|V ul1 4+ ola, 1),

then a local L™ bound for # can be calculated by a simple modification of
De Giorgi-Moser techniques (see for example [11] page 102-109). The proof
gives an explicit but complicated (due to the mentioned dissimetry) bound
of [u],q over a cylinder @ in terms of the norm [u],, over a larger
cyolinder @'. We have chosen to omit such calculation since they result
from a variant of known techniques.

With 02 we denote the boundary of 2 and set

(0.7) Br=0R2x(0,T]; I'=8ufx{0}.

Clearly I' is the parabolic boundary of £2;.

The statement that a constant y depends only upen the data, means
that y can be calculated only in dependence of the varicus constants ap-
pearing in [A,]-[A,], [|#]w,0, and the dimension N. We can now state our
main results.

I. — Interior regularity.

THEOREM 1. Let ue V,,(Q2r) N L2(2;) be a weak solution of (0.1), and
let [A,)-[As] hold. Then (w,t) — u(x,t) is locally Holder continuous in r
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and for every compact set X C £r, there ewists a constant y depending only
upon the data and dist(XK, I'), and a constant o€ (0,1) depending only upon
the data, such that

I“’(wx; t,) — u(a,, tz)] <7(|w1— mzlx + Itl_ tzla/p) ’
for every pair of points (a1, 1), (2,,1,) € K.

REMARK 0.2. Since our arguments are local in nature to prove Theorem 1,
we do not need to have a solution in the whole £,. It is sufficient to have
a «local» solution; i.e. u€ Vy5(2:) N Lin(Qy), satisfying (0.6). Also we
may assume g, ¢}, @€ L2X(Qr).

II. - Boundary regularity.

I1I-(a) Regularity at t=0.

We assume that (0.1) is associated with initial data

{0.8) (@, 0) = wuy(w) ,

and on u, assume
[A¢] @ ->uy(x) is continuous in £ with modulus of continuity we(-).

Since we assume that u € C(0, T; L*(2)), the initial datum (0.8) is taken
in the sense of (0.6) where ¢,>0.

THEOREM 2. Let we C(0, T; I¥(Q)) N L*(0, T; H*(2)) be a weak solu-
tion of (0.1) which takes on initial data (0.8) and let [A,]-[As] hold. Then
(@, t) — u(w, t) is continuous in !§><[0, T1, and for every compact set Xc Q2
there exist a function g — w(p): Rt — Rt continuous and non-decreasing such
that

[y, 2;) — u(as,, tz)l<w(lw1_ T| 4 [t — tzlllp)

for every pair of points (21,1), (%, t) € KX[0, T]. The function w(-) can
be determined in terms of the data and we(*).
If in particular

(4

wo(0) = @7, Ge(0,1),

then (x,t) — u(x, t) i Holder continuous in Bx [0, T'], and for every compact
set 3o c Q there exist a constant y depending only upon the data and dist(3, 02),
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and a constant o € (0,1) depending upon the data and G such thai

[w(@s, ) — w(@y, )| <p(|or— 22} + |t — ta|o'7)
for every pair of points (xy,t,), (2., 1) € XX[0, T].

REMARK 0.3, If % — Uo(x) is only known to be continuous in a open
subset £’ of Q2 then the stated regularity can only be claimed in the set
Q'x[o0, T].

II-(b) Regularity at Sy {(Dirichlet data).
S

The boundary 0£2 is assumed to satisfy

[A.] Ja*e (0,1), R,> 0 such that Va,e 02 and every ball B(z,, R) cen-
tered at z,, with radius R < R,,

meas[Q2 N B(x,, B)]<(1 — o*) meas B(x,, R) .

We suppose that (0.1) is associated with Dirichlet data f(z,?) on Sr
(taken in the sense of the traces) satisfying

[As] (w,t) —f(x,t) is continuous on Sy with modulus of continuity
wy(*)

THEOREM 3. Let u € V,,(27) N L*(2y) be a weak solution of (0.1) asso-

ctated with Dirichlet data f on Sy, and assume that [A,][A,] and [A,]-[As}

hold. Then (w,t) — u(x,1) is continuous in QX (0, T] and Ve > 0 there exwist
a positive non-decreasing continuous function o — we(p): Rt — R+ such that

(@1 1) — U@y, 1) | < e |02 — @] + |ty — 1,]1/7)
for every pair of points (@y,1,), (%, 1) € @X[e, T). If in particular
we) =ef, fe(0,1),
then (x,1) - u(x,t) is Holder continuous in £2X[e, T] Ye >0, and there

exist a constant y depending only upon the data and &, and a constant f € (0, 1)
depending upon the data and B, such that

[u(@y, ) — u(a,, tz)l<?'( |y — alf + [ty — tﬂlﬂ”)

for every pair of points (y,1,), (25, t) € 2X[e, T1.
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ReEMARrK 0.4. If the Dirichlet data f is only known to be continuous
in a open subset 8 of § (open in the relative topology of §;) then the
stated regularity can only be claimed up to §'.

COROLLARY 0.1. Consider the boundary value problem

(0.9) u,— diva(w, t, u, V,u) + b(w, t, u, Vu) = 0 in Qg
{0.10) u(w, ) = (2, 1), (w,1) € Sp
(0.11) w(x, 0) = uy(x), xe 2,

where x — uy(x) satisfies [Ag] and (x,t) — f(x, t) satisfies [Ag] and assume
that [A,] holds. Every bounded weak solution of (0.9)-(0.11) (in the sense of
identity (0.6)) is continuous in Q,: In particular if w, is Hélder continuous
in 2 and f is Hélder continuous on Sy, then u is Holder continuous in Or.
I1-(¢) Regularity at Sy (Variational data).

We assume here that

[As] of2 is a (' manifold in R¥-1,

and consider formally the problem

(0.12) u,— diva(z, t, u, Vi) + bz, t, u, V,u) = 0 in 24
{0.13) a(x,t, u, V,u) ng(z,1) = g(x, 1, u) , on Sy
{0.14) w(z, 0) = uy(x) , xve,

where ng, = (R, Nayy oeey Bay) denotes the outer unit normal to S;. On
the funetion g(x, ¢, 4) we assume

[Agl g is continuous over Sy xR and
(0.15) g, t, w)| < O

for a given non-negative constant C,.
By a weak solution of (0.12)-(0.14) we mean a function e V,,(2r)
satisfying

(0.16) pr dx

Q2

te b
—{—ff{— up, + a(@, t, u, Vou)  Vop + b, t, u, V,u) @} dedr
o 9
f
=Jfg(x, 7, w)pdodr,
t 082
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where do denotes the H¥'-measure on 00, for all p € W5%€2;) such that
@.€ L,(£27), and for all 3, ¢, satisfying 0<4,<t,<T.

THEOREM 4. Let u eV, (Qp) N L2(Qy) be a weak solution of (0.12)-(0.14)
in the sense of identity (0.16). Then (x,t) — u(x,t) is Holder continuous
in Qx[e, T] for all ¢ > 0, and there exist a constant y. depending only upon
the data and &, and a constant A € (0, 1) depending only wpon the data, such
that

[y, 1) — u(@y, t,)] <7€(|901— ol -t — tz[’”p)

for every pair of points (x1,t,), (a,,t,) € 2X[e, T1.

If in addition @ — wuy(x) is Holder continuous in Q, then u is Holder con-
tinuous in Qp and the constant y, can be taken independenti of &, whereas
the Holder exponent A will depend also upon the Holder exponent of u,.

REMARK 0.5. When p = 2 the integrability conditions in [A;] coincide
with the requirements imposed in [11], and these are known to be the best
possible [10].

REMARK 0.6. If the functions a(x,t, u, V,u) and b(w,t, u, V,u) are
differentiable and satisfy further restrictions then one can prove that
(2,t) - V,u is Holder continuous in £2;; in fact such a result holds also
for systems (see [6,7]). The point here is of course to prove the stated
regularity only under the hypothesis that @ and b are measurable. An
extension of our results to systems, due to the generality we consider, is
not expected. It isin fact false even in the elliptic case (see [8] for a survey).

REMARK 0.7. The proof presented here shows that the various Holder
constants and exponents in Theorems 1-4 are confinuous functions of p.
As p — oo these estimates deteriorate, but they are «stable» as p—2.

REMARK 0.8. One of the applications of the a priori knowledge of a
modulus of continuity of solutions of (0.1) is the derivation of Lg,, bounds
for |V,ul, (see [20]).

REMARK 0.9. Existence theory for boundary value problems associated
with (0.1) is bagsed on Galerkin approximations and it is developed in [11].

REMARK 0.10. It should be noted that we have been unable to deal
with the case 1 < p < 2.

Heuristically the results will follow from the following fact. The func-
tion (z, t) — u(x, t) can be modified in a set of measure zero to yield a con-
tinuous representative out of the equivalence class ue V,,(£y) if for every
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(@0, 1,) € Qr there exist a family of nested and shrinking cylinders @, (=,, #,)
around (z,, t,), such that the essential oscillation w, of # in @,(x,, ¢,) tends
to zero as n —» oo, in a way determined by the operator in (0.1) and the
data.

The key idea of the proof is to work with cylinders whose dimensions
are suitably rescaled to reflect the degeneracy exhibited by the equation.
This idea has been introduced in [5] and further developed in [7].

In the present situation the arguments are more complicated with respect
to the ones in [5]. This is due to the fact that, unlike the solutions of porous
media type equations (see [4, 7]) where the singularity occurs at only one
value of the solution (say for example for 4 = 0), in our case the equation
may be degenerate at any value of .

To render the paper as self contained as possible, certain known calcula-
tions have been reproduced.

In part I we prove the interior regularity. We introduce certain classes
B,(2r, M, y, r, 8, ), along the lines of a similar approach of [11], and prove
that local weak solutions of (0.1) belong to them.

Then we show that B,(Q2r, M,y, 7, 8, x) is embedded in OCpX?(Qy),
thereby proving Theorem 1.

We prove the boundary regularity by following a similar pattern in
part II. The methods of this part will rely heavily on those of part I and
in fact we will limit ourselves to describe the modifications of the proof
of interior regularity to achieve regularity up to the boundary.

Acknowledgement. This work was completed while I was visiting the
University of Florence, Italy and the Institut fiir Angewandte Mathematik
of the University of Bonn W, Germany. I am grateful to both institutions
for their support.

1. — The classes $B,(2y, M, y,r, d, %), p>2.

Let 2 be an open set in R¥ and for 0 < T < oo let Qr= Q2x (0, T].
If (@, t,) € 27 we let B(R)= {we Q: |z — | < R} and

Q(R, 0) = B(R) X {t,;— ¢, o} , 0>0.

We let R, p be so small that @(R, o) c 2. Denote by (a,1) — {(z, )
a piecewise smooth function defined in Q(R, g), such that 0<{<1 and
t(w, <) = 0 for x € 0B(R).

For a bounded measurable function u defined in Q(R, g) introduce the
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cut functions (¥ — k)%, k€ R and let H* be any number satisfying

(1.1) “(u — k)i”w’Q(R’Q)<Hi<6

where 4 is a given positive number.
Define also
H+
HE— (u— k)= + v} ’

(1.2)  plHY (u—k)% ») = ln+{ v < min {H*; 1} .

We say that a measurable funection u: 2,-—> R belongs to the class
By(Q2r, M, p, 7, 6, %) if
(1.3) we 0(0, T; L¥Q)) N L#(0, T; H»(Q))
(1.4) [[%]| 0,0, < M

and if for all Q(R, ¢) c 2, and all { as above, the functions (u — k)* satisfy
the integral inequalities

(1.5) sup f[(u — k)E12Le (2, t) doe + ff]Vx(u — k)Erlrdedr
o—e<t<t..B(R) oA
<f[(u — B (e, ty— @) dw
B(R)

+ y{ ”[(u — k)EP|V.CPdedr + ”[(u — k)imv—lc,dmdr}

Q(R,0) Q(R,0)
to

+y { f[measAtR(r)]T/q dr

to—e

}(p/r)(l +2)

(1.6) sup wa(Hi, (u — k)%, v) L2 (w, t) do

to— eSSt

B(R)
<f Y HE, (u — k)F, v) (2, ty— o) dw
B(R)
+ fow(ﬂi, (w — k)%, v) [pu(HE, (u — k)%, »)|22|V, C P dw dr
Q(R,e)

" HE N @Ir1+%)
+ F (1 +1In 7){ f[meas A,’,‘,E(r)]'/“dr} ,

to—e
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where we have denoted with Af,(t) the set
AEp(t) = {we B(R): (u(@,1) — k)> 0} .
The various parameters in (1.5)-(1.6) are as follows.
[A] 6 and y are arbitrary positive numbers;

[B] %k is an arbitrary real number subject only to the restriction

(1.7) (u — B)=| ., oer ey < 9

[C] # is an arbitrary number in (0, 1) and ¢, » are larger than one,
are linked by

1 N N

(1.8 =
) r g P
and their admissible range is
(1.8) (1) qge(p,o0], re[p?oo); it ¥=1
N
(1.8) (ii) qe[p,—L], refp,oo]; ifl<p<XN
N—p
p2

(1.8) (iii) q€p, o), re(—ﬁ,oo]; fl1< N<yp.

REMARK 1.1. These classes can be considered as an extension of the
classes By(2r, M, p, #, §, ) introduced in [11]. Besides the fact that p>2
the new requirement here is the integral inequality (1.6).

They may also be viewed as a parabolic version of De Giorgi classes,
fundamental in the regularity theory for quasi minima [9].

The following two facts establish the connection between local solu
tions of (0.1) and the classes B,(L2r, M, y, r, J, ).

ProOPOSITION 1.1. FEvery essentially bounded local solution of (0.1) belongs
to B, (20, M, y, 1, b, ).

EMBEDDING THEOREM. $B,(Q, M,y,r, 6, x) is embedded in C'"(2y),
for some o€ (0,1).

The proof of Theorem 1 will result by combining these two facts.
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Proor oF ProOPOSITION 1.1. Introducing the Steklov averagings of
weE Vz,n(QT)7

t4h

%fw(x,s)ds, te (0, T—h]
wy(2, 1) = h

0 , t>T—h

t

1

% fw(x, s)ds, te(h, T
'w,—,(w, t) = h

0 , t<h,

a standard argument (see for example [11]) implies that (0.6) can be equiva-
lently formulated as

123
an | {% g [a(0, 1 1, Vo) Vg 000, 1, 0y Vo)l do e = 0
1 2

for all p€ W;"’(.QT) and b <t,<ty<<T— h.
In (1.9) choose the test funetions

(1.10) @ = & (up— k)xL7, LeR.

Estimating the various parts of (1.9) with this choice of text function
we have

t
(1) f j:}: 58; Uy (up— kYELrdedr = % f[(uh——k)]i’@’(w,t)dx
B(R) t,—e HB(R)
—5 [ n—ear =L [[run— 0o fasar.
Q‘

B(R)
where

Q= B(R)X[t,— o, t], te (thb— o, t] .
Letting b0 we obtain for all { e [{,— g, t,]

(1.11) ffj: 58_—6 Uty — k)EL? de dv— ]; j‘[(u — k)E2Lo(a, t) do
QQ

B(R)

—% f[(u — k)£ L@, ty— o) do —f)—’ H[(u — E)EpRL 1, dadT .
Q&

R(R)
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We estimate the remaining terms by letting A — O first, and then using
[A,]-[Aq].

(1.12) ffa(% 7, Uy, Vou) 4= Vo(u — k)EE7 4 p(u — k)F {71V, [ ldadr
at
> C’off]Vx(u — kyE{2(x, T)dedr — f(po(w, ) % yl(w — k)E> 0]dedr
Qt Qt

— pOlfflV,(u — k)Ep(uw — k)= YV, Cdedr — pff (u— EyELV, Cdedr .
Qt

Qt

Here y(X) denotes the characteristic function of the set X. By Young’s
inequality

(a) pOlff[Vm(u — k)E Y u — k)x [V, Cldedr
Ql

<% f J' IValu—R)=p 2 dodr + 7<0°>ff [(u— )P |V,LP dwdr,
Q Qt
and

(b) pf fqa,(u — k)EV, ¢ |de dv

¢ <ff[(u — k)Ep|V, l|rdadr + yff Y xl(w — k)E> 0]dx dr .
a Q
Combining this in (1.12) we deduce
(1.13) ffa(x, 7, %, V,u) Vopda dt}%f[lvm(% — k)X lrdrdr
Q Qt
— ff[(u — k)FP|V, P dadr — yff((po -+ (p{") x[(u — k)E> 0)dxdr .
<@ @
Finally

(1.14) f |b{e, T, w, Vou)(u — k)ELP|da dv

<af [V — s pacd + [t —rpieravar.
Q qQt
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Now if we impose on the levels k the restriction

1y

(1.15) Kt {[(4 — K)o, ar,0) <O =61’

we deduce from (1.14)

(1.16) f bz, T, u, V,u)(w — k)*{?|dzdr

Qe

<%ffle(u —Ek)Epirdzdr +ff<p2 yl(uw — k)x > 0]dedr .
Qt Qt

Combining these estimates and observing that te[f,— o, %] is arbitrary
we obtain

te<esisi,

{1.17) sup f[(u — k)P i2(x, t)de
(R)

+ % Hivz(u — kP irdads <f[(u — k)EPLr(w, to— o) do

Q(R,e) B(R)
—%y{ﬁﬁw—wﬁPWJPMﬂr+£ﬁw—%#P?4Qwﬁ4
Q(R,p) Q(R,0)

+ ?_”[% + @' + @l xl(w — k)E: > 0]dwdr
alR.e)

By Holder’s inequality

f f Y F o} xl(w — kyE> 0ldedr < [@o+ 97 + @ulas o
.o to - A
_ { J‘[meas A;ﬁxm]«a—1)/6)«7(,—1)) dt}(f—l)lr.
to—e

Set

_ 4 . _f : _P
(118) g = =520 +0); r=g_Pl+0;  x=Fu,

From (0.2) we see that ¢, r satisfy (1.8), and from (0.2) (i)-(0.2) (iii) it follows
that their admissible range is (1.8) (i)-(1.8) (iii).
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Substituting this last estimate in (1.17) we sec that » satisfies (1.5) since

obviously without loss of generality we may assume that C,/4 =1,
We turn now to the proof of (1.6). For simplicity we set

W(Hia (u — k)%, 7’) = "/’((u - 7‘.):&) y
and in (1.9) select the test function
(1.19) ¢ = [y*((t—k)F)] L7,

where @ — f?(x) is a cutoff function in B(R) which vanishes on 0B(R).
It is apparent that g € WLO(£2,) and that

[p2((un— B)=)]" = 2(1 4 ) p'2€ L (2y) .

Therefore such a g is an admissible test function in (1.9). Estimating the
various terms we have

(1.20) I, zfj.% uh[wﬂ((uh—l')i)]’Zﬂ’dwdr = f w2lrde — f w2lrdx,
Q* B(R) x{t} B(RB) x {t,— 0}
and letting A-— 0 we have
I, — f wz(Hi, (w — k)=, v) P (x) dw — f 1/12(Hi, (u — k)%, v) Zo(x)de
B(R) % {t} B(E) x{te—e}
for all ? € [t,— o, to].

In order to estimate the remaining terms we let A — 0 first and then
use [A;]-[As]

(1.21) J _——:ffa(x, 7, %, V,u) V,pdadr
Ql

>2Coff(1 -+ ) p'2|V,ulrlrdedr — 2ff(1 + Yy iz, §)CPdrdr
Qt Qt

- pclfflku[p_l 1/”/)/ Cy_llvx Cldw dr — pff'/”/)’ (2} cp_llvx Cld%’d‘[‘ .
Q¢ Qt
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By repeated application of the Young inequality we deduce

(1.22) J> ff(l + p)p2|V,ulrlrdedr — 2f (14 ) v 2z, 7)?dedr —

p)ff 22|V, Lpdedr — p( p)ff ’;'Cf’dmdr .

For the lower order terms we have

(1.23) f blx, 7, u, Vou)py' 2ldrdr <
Q¢

<szflvxu|”(1 + )2y’ 1 irdedr —}—jf Ly’ CPdodr .
Qt Qt

Next observe that y'—'= H*— (u— k)*+ » < 20 by virtue of (1.1), and
, 1
n (H/v); Y <; ’

Therefore recalling (1.15) we have
(1.24) 2J][b(w, T, Uy Vo) ww'C”]dxd1<Cof [Voul?(1 4 p)yp'2irdadr
Q Qt

—[—2~1n( ) f lpalx[(w — k)x> 0]dw dT.

Q(R,0)

Collecting these estimates we deduce

(1.25) f plrde < J- wirde 4y fftpltp’[z"”ijC[Pdwdt

B(R) % {t} B(R) % {t,—1} Q(R,0)

y HE .
+ ,;(1 +1n —,,*) lgo+ @2 + @a] gl (w — k)E> 0]dwdr

Q(R,0)

where we have used the fact that »1, »2<y? gince p>2. Treating
the last integral as before the result follows.
The proof of the embedding theorem will be the object of sections 2-5.
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ParT I — INTERIOR REGULARITY

2. — Preliminaries.

Let the point (x,,%,) be fixed throughout, and consider the cylinder

(2.1) Q3*= B(R) x {to'—‘ Rn—(mc/o)(p-z)’ to}-
Set
pt = ess sup % ; p~=essinf u,
ok ofs

and let w be any number satisfying

CM>w>pt—p = ess 0sC % .

N2
QF

Let s* be a positive integer to be fixed later and set

(2.2) 0 = (3‘-:)7_2.

73}

Construet the cylinder @% given by
{2.3) Q% = B(R) X {t,— OR>, t,} .
I o> 2" R, then OR®< R>~W¥*»»=2) andq we have the inclusion
QrC Q%" -
Inside Q% we consider subcylinders of the type
(2.4) QL= B(R)x{{—nR" 1, n>0,

where I<t, and { — yR?>¢,— OR*. The length of these subeylinders is
determined by the choice of 7

9o\ p—2
{2.5) n = (E) ’ 8o 8%,



ON THE LOCAL BEHAVIOUR OF SOLUTIONS ETC. 503
where s, is the smallest positive integer satisfying

M
(2.6) -25;'—<6 .

The structure of the proof is based on studying separately two cases.
Either we can find a cylinder of the type Q} where % is « mostly » large,
or such a subcylinder cannot be found. In both cases the conclusion is
that the esgential oscillation of % in a smaller cylinder around (z,, t,) decreases
in a way that can be quantitatively measured.

We will need the following two embedding lemmas known from the
literature.

Lemma 2.1 (De Giorgi[3]). Let ue WH(B(R)) and let |, keR, I>F
Then

CORY+1
— +
(2.7) (t—%) meaSA"”<meas {B(R)\A;B} f |Vulde ,

AL \4lg
where C depends only upon the dimension N.

REMARK 2.1. A similar lemma holds more generally for convex domaing
(see [11]).
For notational convenience we set
Vy(Qr) = L=(0, T; I?(2)) N L*(0, T; H*(Q)),
Vo(@r) = I™(0, T; (@) N I#(0, T; H(Q)),
PR V43,00

[el7oiar) = ess sup [u(-, 1)

and define |u|} o= [%|7,c0n-

LeMMA 2.2. Let ue V,(2y), then

lulla,r, 2r < Clu)3, (00

where C does not depend on u nor on 2r, and where q, v are subject to the con-
ditions (1.8)-(1.8) (iii).

The proof results from a straightforward adaptation of the arguments
of [11] page 74, carried for p = 2,
From Lemma 2.2 we deduce two corollaries.
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COROLLARY 2.3. Let u e V,(Qy), then

”“”»((N+v)/p),or< Cllu)l70m -

COROLLARY 2.4. Let ue Iof,,(.QT), then
[u]2 0p < C(meas[u 5= 0] N Q)" P} g, -
REMARK 2.2. These Corollaries still hold if u e V,(£2;) and does not

necessarily vanish on 00.
In such a case C depends on 2, via

T'Nip \1/N+p
0:0{1+(ineas.9) }

With € we will denote a generic non negative constant depending only
upon the various parameters in the classes 3B,(Qr, M, y, r, §, w) and inde-
pendent of R, w, s*. For a measurable set 2 we write also meag X' = |2].

3. — The first alternative.

LEMMA 3.1. There exists a number oy€ (0,1) independent of w, R, s*
such that if for some subcylinder QY

a1 €@, < -+ 55 <l
then either
(3.1) RNn/r>(;:.)1+((1+")/’_1’1’)*(m—2)’
or
(3.2) W@, )0+ gy V(2,0 €Qh -

PROOF. We assume that (3.1) is violated so that @%c@%* and fix a
cylinder Q}’z for which the assumption of the lemma holds. Let

R - R, R, R 3R
5’;‘; Rn:m2—i——}:§'+§m, n=1,2,..

R
Rn:_2- +
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We will write (1.5) over the pair of culinders Q%' and Q}’h, by choosing the
function ¢ so that {(x,t) = 1 for (z,t) € Q% and vanishing for t = { — nR%.
In this case

2n+1 9nt1 Qutl
IVxC|<'—R_‘; 0<Ce<0nR,=0 v

(wlzt.)n—! .

As for levels k we take

«w )}
k,,=2,.+1+§'°—+”, n=1,2,.. .

In this setting (1.5) can be rewritten as

(3.3)  sup [(w—ka)|5 m@a®) + [ Vil —ka)" 3
i~ nEs <<
< C’%:{J.f[(u — ko) Pdadr + (wlzno)v—sf [(u— k,.)"]’dwdr}
ag, a7,
¢ (p/r)(1+%)
+ 0 ( f IAE..,R,.(T)I"“dr)
s—nRY

The choice of levels k, is justified since

_ w
[ — o) Neogg, <57, <0 -

We estimate the various terms in (3.3) as follows. First

f f [(% — k)P dedr + (w]2%)7 f f [(% — k)] dz dv
a3 2

n -
g, i

<(92) J' |45, r.(0)| d7

i—-nR%

Next for all te [ — nR?, i]

o= g ® > () 10— k)2 mciot®) = (4 — ko) 5,380
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Using these remarks in (3.3) and dividing by #

(3.4)  sup  |(w—k,)"
E—nREICE

1
ban(®) + L 1V(u —ka)

onp 217 :
<02 [ o]

t—nRY

1
+ 0(,—7 f AR, () |lede

i~nR2

(p/r)(1+ %)
) n(v/r)(1+n)~1_

The change of variable z = (¢t — )/, transforms @, and @y, respectively
into
QnEB(Rn)X{"‘R:7O}; Q,,EB(R,,)X{——RZ,O}.

Setting also o(x, 2) = u(w, T - 7j2), inequalities (3.4) can be written more
concisely as

3 5 ~llp - 02”” ()] k4 A
65 le—k)Tao<0 g (1l
(ir)(1+%)
+ 0( f]An(z)lr/adz) pEE=1

where we have set

0
An(2) = {x € B(R,): v(®, 2) < ka} ; |4, :len(z){dz .
—RP

Let & — p.(x) be a piecewise smooth cutoff function in B(R,) which
equals one on B(R,,;) and such that |V,p.|<2?/R. Then (v — k,)~g.€
€ V,(@,) and by Corollary 2.4.

(3:6) 10— Ea)[Bu0n = [0 — ko) g5, < O (0 — R g [ o

2 p(nt2)
< C]A,,["/‘N’L”’{H(U — k) |Po@n + o [(v— 7%)"”2,0,.} .
Since

[0 = k) [Z,a0,, 3 o — Euga? [ s ]3> (0]2%)2 277040 4, |
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we deduce from (3.6) by making use of (3.5)

: o (M2 e ( [Laseas) ™
(3.7)  |A.al<C4 o 4+ |4, |4.0(2) |2 dz

—R?
20\ ema+n-1
Py :
_ 44

0
1
— —_— rle p/r_
@ 2 1B<R,.>t(f"1”‘z)' dz)

—R?

We set

Y.

Then from (3.7) in dimensionless form we have
(3.8) Yn+1<04mz{y}l+v/(N+p)_‘_ Yﬁl(N+D)Z}‘+"} ,

mhere we have used the inequality

28\?
(_.) 77(1’/7)(1+")“1 R¥x 1
w

which follows from the definition (2.5) of 5 and the fact that we have assumed
that (3.1) is violated.
On the other hand, by the embedding lemma 2.2

Zn+1(kn - km—l)w < IB(Rn+1) [_1 “ (’D - kn)_“(’;, 7, Qrty < IB(RM+1)l_1” (’U - kn)—q)n“:, r,Qn

O r(nt2)
<or{jo = Thaot S 10—kl

Then using (3.5)
(3.9) Zy 1 <C4"{Y,+ 2,7} .

From lemma 5.7 of [11] page 96, Y,, Z,-—> 0 as » — oo, provided
Y, <o; 21 < 2

where 4, is a small eonstant depending upon O, p, » only and independent
of R, w.

Therefore the lemma is proved if we choose «, sufficiently small depending
only upon 4.

We suppose that the assumptions of lemma 3.1 are verified for some
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subeylinder Q% and construct the cylinder

o )efrlE o)

The length of such cylinder is at least #(R/2)? and at most 5(R/2)?
-+ (0 — n) R* <OR?, so that setting for simplicity ¢ = R/4 we may write

Q = Qf, = B(20) X {t,— 6(20)7, o}

where

~ Q8\p—2
(3.10) 0 — 27 (—) , $e <8 8*,
LEMMA 3.2. Assume that

-

Then for every o€ (0, 1), there ewists a positive integer s, = s,(o, y, #, 0, ¥)
independent of w and R such that either

H‘:

PIEED

0, @

w \1+(@+%)/r—1/p)*(p~2)
(311) RN”/”>(§-‘—)) s
or
(3.12) meas {w € B(o): u(x, ) < p~+ 03} < ay|B(o)]

for all te [to— 6(R[2)», 1,].

Proor. We will employ inequality (1.6) over the cylinder QQQ. As a
cutoff function (#,t) — {(x,t) we take a function independent of ¢, such
that {(x) =1 on B(g) and |V{|<p™'. We observe that for ¢ =t,—6(20)?=
= { — n(R/2)?, by lemma 3.1 % > u~+ w/2** and therefore Vn>1

'/’(H_, (u '_‘(,u_"}" %))—7 ’é‘:‘;—”) (to——- 6(2@)0) —0.

Next for v = /2%t from the definition (1.2) of y(-) we have, since

H—-<w/2u+1
?’(H", (u — (,u—'i_ -‘:),%—1))—’ 2""—(':_)+__”)<(”——]) In2.
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Moreover a quick calculation gives

Vu (H:E’ (“ - (/F + 2_:)_5)) ’ %,)

Using these remarks in (1.6) we have

I R o I I

Ble)x {1}

2—-p

w 2
<f{-—1 .
(&)

C ] o\ ; DsFn\p - N "
<E(” —1) (5;;)" 2@z, + On (T) Heme= R¥*|B(p)| .

Let n be a positive integer to be selected and set s, = $,+ ». Then recall-
ing (3.10) if (3.11) is violated the right hand side of (3.12) is bounded above
by

C(s*)n|B(o)] .

‘We bound the integral on the left hand side of (3.12) from below by extending
the integration to the smaller set

{zv € Blo): u(z, 1) < =+ E‘O'i‘"} .

On such set, since H->> w/2%+* we have

0w \\ o w/[257F2
y? (H’, (’u — (,IF—}— ﬁ)) ’ m);lnz (K/:/zsoﬂ—l) = (n—3)*1n%2 .

Therefore for all ¢ € [t,— G(R[2)?, 1,]

n

(3.12) IA;—+w/2sa+f‘,p(t)l<O(S*) m

|B(o)]| .

To prove the lemma we have only to choose 5 so large that
(Cls™)n)/(n — 3)2< .

REMARK 3.1. The number s, = §(«) claimed by lemma 3.2 depends
upon k, %, 4, r and s*. The number s* is not fixed as yet. 1t will be fixed
later independent of w, R and therefore we can say that s, is independent
of w and R.



510 E. DIBENEDETTO

Without loss of generality we may assume that s, > s*.

LemmA 3.3. Suppose the assumptions of lemma 3.1 hold and assume that
H-> w[29%2, Then there exist an integer s > s* independent of w, B such
that either

w\1+H{(1+0)/r—1/p)*(p—2)
(3.13) RN”/”>(‘;)
or
(B:14)  wa,)>p+5,  VeneB (g) x{t0~—n (g)", to} .
Proor. Let

and congsider the cylinders

DY = B(o,) x{t.,—é (g)p, to}
D? = B(g,) x{to— ] (g)p, to} .

We observe that these cylinders decrease in the space variables but
their length is unchanged with respect to #. This is due to the fact that
lemma 3.1 gives information on the level to—é(R/2)”:1—n(R/2)", and
such information we want to exploit.

We assume (3.13) is violated and write (1.5) over the pair of eylinders 52
and D;? as follows.

We choose a cutoff function ¢ independent of ¢ such that { =1 on
B(g,) and |V,.{]<2"*2/p. Then the term involving {, in (1.5) is eliminated.
As for level k we choose

« w
bn=p+ St o 2=1h2

‘where s, is the number claimed by lemma 3.2.
By lemma 3.1,

w ~

» »
w>p+ 5, for tzto—9(§)=t—’7(5)a
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and therefore we have

f[(u — k)2 (;x?, to— g (g)p) dz = 0.

B(ea)

From (1.5) with the indicated choices we deduee

(3.15) _sup (w — k) |2, () + || Valu — ka) 358
to— O(RI2)P <1<ty .
onp . (/M) (1+%)
< C-é; I (w — l.',,)_H;’,’Dg -+ C ( [AZn,o(T)|1e dr) .
to— 0(B/2)P

For all te [t,— B(R[2)?, t,]

(% — &) 713, 86,)(0) >(%)MN(% — ) ]88 (0) > 0] (6 — k)73, 360 () -

We carry this estimate below, divide by 6 and make the change of variables

t—1
=

0

% are transformed into

d
D, = B(p,) x{_ (g)p’ ()} H Dn = B(@,) ><{_ (25)’”’ ()} .

Setting also v(wx, 2) = u(x, t,+ 0z), inequalities (3.15) can be rewritten as

The cylinders D an

, L C2me .
(3.16) o — k)P <=5 10 — k) 7[5,
’ (oY1 +2) 98 \Pl(1+n)/r—Up}Hp-2)
+ C ( f ]An(z)[”qdz) (—5) ,

—(R/2)

with the obvious definition of A,(z).
Using (3.16) we may repeat an iteration process in all analogous to

lemma 3.1 and conclude that there exist 4,> 0 independent of R and w,

such that if

(3.17) meas{(m, 2)e Dy v(a, 2) < p=+ —f—t—}<}q]Dll )

.
“
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then either

28,+1

14+ {((1+%)/r—1/p)*(p—2
RNn/»>(w) (enirape=s

or
R\»
v(z, z)>‘u~—l—§f‘—i“ V(z, t)eDmEB(g-)x{—(—é),O}.

Scaling back to the cylinder Dfl and choosing o; = 4, in lemma 3.2
we see that we can choose s, = 8,(4,, s*) so that (3.17) holds. This proves
the lemma.

‘We summarize the results obtained so far.

ProrosITION 3.1. There exist a,€(0,1) and a positive integer s indepen-
dent of w, R, such that if for some cylinder of the form Q} with n given by (2.5)

(3.18) meas {(:t', 1) eQh: u(z, t) < u—+ _;_u‘_} < a|@%
then either
. + -1
(3.19) w <2 RW#Iv) £ = [1 + (1 ‘i- A_%) (p —2)]
or
1
(3.20) €88 08C U < (1 — E-.) .
Qs

Proor. If a cylinder satisfying (3.18) exists, then by lemma 3.1 and
lemma 3.2, the set where u<u~ -+ /2%, relatively to B(R/4) X {t,2—0(R[2), t},
can be made arbitrarily small provided

(v (e + i)

Then by lemma 3.3

> w
982"

00, B(R/4) X Yo— O(RI2)?, 15} °

(3.21) H—

w

R ~ (R\?
2514_1 ’ V(xy t) € B (’8—) X{to‘—" 0 (‘8—) ’ to} .

Since n<5 <0 from (3.22) we also have

(3.22) w(w,t) > p+

essinfu>y——{—g—i; s =811
s “
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and hence

. w 1
ess oscu = esssupw — essinfu<pt —p—— = w {1 — ).
s s e 2 2

On the other hand if (3.12) is violated, since obviously H- <wf2"+, we
have

. W w w
eSOSZIIlf’M>ILG—+ 2—83*1-——2—3——._}_2>/1,_—[——§ y
/8

from which the conclusion follows.

REMARK 3.2. The various constants in (3.18)-(3.20) are independent
of w and R. The number s, depends upon 8* as shown by lemma 3.2. The
number s* will be fixed later independent of w, R.

4. — The second alternative.

‘We assume in this section that the assumptions of lemma 3.1 are violated,
i.e. for every subcylinder Q%

(4.1) meas {(w, ) e Q%: u(z,t) < u~+ %} > o|@%| -

Bince if $>2 we obviously have

P @
# 2’o># + 2%
we will rewrite (4.1) as
(4.2) meas {(m, t) e Q%: u(z,t) > pr— éa_:;} < (1— ao)|Q$| .

valid for all cylinders Q3cQ%. The parameters 6 and 7 are those fixed
in (2.2) and (2.5). In this section we will detexmine the value of s*.

LEMMA 4.1. Let QLc Q% be fived and let (4.2) hold. Then theve exist

t*e [i — Ry, T — 3‘2-" nRv]
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such that

1 —a

[A e — oz, m(E*)] <(i—_—&;/f_)) [B(R)| .

Proor. If not, for a.c. te [l — nR?, T — (/2)nR?]

1— %o
1 — oy /2

[ A —wpaee, r()] >( ) |B(R)|

and
I (% [2)nRP
— ) =
meas {(m, t) e Q%: ulx, t) > ;ﬁ—;—o}> LA pon m(7) | dT > (1 — o) |QF]

{—nR?

(=5

LEMMA 4.2. Let QzC Qr be fired, and assume that H+> w2+, There
exist a positive integer m independent of o and R, such that cither

contradicting (4.2).
As before we let
)

Qg 2%

HY =

o]

.y w \1+H({+0r2-1)p-2)
(4'3) R‘ 'p>(2so+m)
or
. %) ?
(4.4) lA;+_wlzlu+m’R!\t)l << [] —_— (“;q) ] tB(R),

for all t et — (x/2)nR?, T].

Proor. We will employ inequality (1.6) over the cylinders
Qr=B(E)X[t*1];  Qh_.n= B — oR)X[t*,1].

Here t* is the number claimed in lemma 4.1 and o€ (0,1) is arbitrary.
We take also
L w R w

—:2-3:’ v“2%+"‘

where m has to be chosen. The cutoff function ¢ will be independent of ¢
and such that [ =1 on B(R — oR) and |V{|<(oR)".
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With these choices (1.6) can now be written for all ¢ € [t*, f] as

o)} o
(4.5) f p* (H““, (u—(u+—2—,;)), g—rm) o
B(R—oR)x {t}
. o\ o
< f e (H+, (u—(‘u;r_..z_%)) , 2‘.+m) dx

B(R) = {t*}
T
C o\ o
+ —(O'R)(ZJ\ f"/’z(ﬂ+7 (u - (.u+— i)_g..)) ’ 23°+m)
t* B(R)

X dzdr

wlY o o
i (“‘(‘”‘57.))’ pretn

1
Ds;tm\p I+ Qs tm (pIr)H(1+2)
+ C( . )In P (flA;»r._w/gao’B(T)lﬂda) .

1*

The various terms in (4.5) are estimated as follows. First we observe that

+
1Y (H+, (u —-(,IH—— 223)) ’ ;‘?;,;)<m 1n2
2-p
o\lY o o \r—2
Pu (H+7 (u - (!'l'+—" :E)) ’ 2a’+m) (5—’—")

H+2s:tm
n

N

<mln2.

Next from the definition (1.2) of ¥ we see that v = 0 on the set
[u < ut— @[2%]. Therefore by using lemma 4.1 the first integral on the
right hand side of (4.5) is estimated above by

2 | g+ Y P ¥ e ) 2 In2¢ l_—__i%_
p (H ,( (,u 23,)) , 2'.+m) de<m 1112(1__%/2 |B(R)|.

B(R)x {t*}

Sinece { — t* <nR? = (2%/w)?-*R?, the second integral is estimated by

¢
a—pm[B(R)l .
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Finally for the last term we have the estimate

2 stm\p[1+((1 +x)r—1/p)*(r—2)}
Cm[B(R)[( ) R¥

)
If (4.3) does not hold, this last term is majorized by

Cm|B(R)| .
Putting together these remarks, from (4.5) we have for all £ e [i%, ¢]

olY o
(4.6) f P2 (H+,(u -—~(M+—2—80)) y m) dx

B(R—oR)x {1}
< me 022 1*—ﬁ’) BB + L mBE®).
- 1 — og[2 o?

We estimate the left hand side of (4.6) below by integrating over the
smaller set

B(R—oR) N [u > pt— Oﬁm] (1) .

Then on such a sct, since Ht> w/2%+! we have

ol}' o w/[28+1
(o2 s e

Carrying this estimate in (4.6)
(m —2)2In22 | A} o0em - Ro(t)| <m21n22 el IB(R)| + ° m|B(R)|,
: u o 1 — o2 o?

and dividing by (m — 2)21In22

1—o
1 — o5f2

2 C
(A7) |Afo—arpim zonl)] <(m’ﬁ 2) ( ) IBE)| + = m|B(R)

On the other hand

IA;-*—w/z'u*m,R(t)l < !A:+—w/2‘o*"‘,R—o'R(t){ + IB(R)\B(R - GR)I
< IA;+—w/2'n+"‘,R—-6R(t)l + No|B(R)] .
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Combining this with (4.7)

2 — o C
48 Mimamen ) <|(rg) (Fo )+ oo + 0] 1BCRI

—2) \l — /2] " a*m

for all ¢ e [t%, 7].
Choose ¢ so small that oN <(3/8)« and m so large that

m \2 ¢ 3
(m~—-—_ 2) <(1—af2)(1 + o)y o3 b
Then for such a choice of m
+ %\*
(4.9) !Ap*—w/2'°“",R(t)l< 1— '2— ]B(R)] .

REMARK 4.1. Since «, is independent of w, R, the number m is inde-
pendent of w, B. The number s* which determines the length of % is still to
be chosen. We will choose it later subject to the condition s*> s, |+ m.

We will set

Sg= Sy -+ m.

The arguments of lemma 4.1 and 4.2 are carried under the assumptions
that (4.2) holds, and we know that (4.2) holds for every cylinder of the
form Q%c Q%.

Since s*> s, we have Yp>2

2:‘(»—2) .

%y
. 1] —— 8o(p—2) —
(4.10) ( 2)2 <TTan

COROLLARY 4.3. Assume that H*> w[2%+'. Then either

14+ {(1+#)/r—1/p)H(p—2)
(4.11) RN"’”>(—2(%) ,
or
+ o\?
(4.12) [ Ak apaegem, m(D)| < [1 — (—2—) ] |B(R)|

for all t € [ty— (ct/3) OR?, 1,].

PrROOF. Every cylinder of the type Q% satisfies (4.2) and lemma 4.2
holds for every such cylinder. Therefore the conclusion of the lemma holds
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te [to—-(a—(1 —9‘2—") n)Rr, to] )

Because of (4.10) and the definition of 6 and 5

0_(1"%9)">(0+2)6>“00

and the Corollary follows.
From now on we will focus on the cylinders

for all ¢ satisfying

Q%(%%) = B(R) x{t..—— ? OR>, t.,} .

LeMMA 4.4. Assume that (4.12) holds. Then for every f,€(0,1) there
exists a number 8* (which determines the length of Q%), independent of w and R
such that either

w \tH{@+x)r—1/p)*(p—2)
(4.13) RN*1 5 (2) ,
or
(4.14) meas {(w, t) € Q%(ao): u(z, ) > ut— 2,.} <Bo|Q%(0)] -

ProOF. We write inequalities (1.5) over the cylinders @%(c,) and Qf.(x,)
as follows. We choose a cutoff function ¢ such that £ =1 on Q%(oq,) and
E(@, to— (2/3)6(2R)?) = 0, 0< L < ClOR?), |V | <2B1.

As for the levels k¥ we take k = y*— /2" where s*>n>s, and s, is
the number claimed by Corollary 4.3.

Neglecting the first term on the right hand side of (1.5) and using the
indicated choices we have

(e (- 5))
ff [(u—(w——))]mw o J] (o= =3 oo

23 (o) 28 (%)

)(w/r)(l +2)

?

(4.15) drdr

+ U( f [ Aft —wi2n, m(2) | A
to—(,/8)8(2R)P
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We estimate the right hand side of (4.15) as follows

0 & J] [ 2 oot

@8 ploe)

(ii) Recalling the definition of 0

&0—00253 Jf [(u — (,u‘*—— %))+Jqdm dr < 1% (g,;)e (;;)pklefz(“o)l .
Q97 (2)

+ y einita ¢ N [o((1+ %) /r—1/p)*
(iii) |AFe_ ojon, g(t) |2 dt <7 |@r(o) | BN 0P T—1p)*,
to—(xof3)6(2R)?
Carrying these estimates in (4.15)
w +?
(4.16) f V. (u-—(/ﬁ—z—)) dxdr

Qp(x0)

C P 2 p—2
BT o)

Next we use lemma 2.1 over B(R) for all the levels f¢& [f,— (x/3)0R?, 1,].
As for levels I, k we take

l=p"— ,,,,, b= pr—

2.._ ‘

Notice that for all ¢ € [f,— (0/3)0R?, t,] by virtue of Corollary 4.3 we have
meas {B(R)\Am-w/zn,lz t)}>( ) [B(R)| .

Therefore (2.7) in this setting gives Vi€ [t (%/3)0R?, 1,]

(4.17) (2") [A,ﬁ-_a,/gn R(t)l <CR f IVzu]dw B
A RON4i 0
We majorize the right hand side of (4.17) by

i/p
[V ul <( f |Vo( — k)+|p) |4 z(t)\AiR(t) |-Vl

AF N4 R B(R)
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Integrating (4.17) over [f,— (/3)6R>,t,] and setting

Lo

A= f |47 - wpem, r(7)]dT
to—(ayf8)ORP

we have for all n>s,+1

-+
(4.18) (g’-) A,<CR ( off v. (u - (ﬂ+— 2?.1))
QB("‘o)

We take the p/(p — 1) power, estimate the integral on the right hand
side by using (4.16) and divide by (w/27)?'*-D to obtain

» Up
dx dr) [An_1— A, o-Dip,

_ (0—2)(n—s°) x 28"\ o[1+ {1+ x)/r—1/0)Hp—2)] ] U(p—1)
Ao 17<C{1 4 o@-e=e) | p n(;)

: IQ%(%) |-V [A, ;— A.].

Since s*>n>s,, if also (4.13) is violated, the quantity in brackets is
bounded independent of w, R, 8* and we deduce

(4.19), A2 < 0198 (a) [PV [y — Aa] -

Thege inequalities are valid for all n > s, and n<s*. We add (4.19),
for n =s,+1, s,-+ 2, ..., 8*.

The right hand side can be majorized with a convergent series and there-
fore we obtain

(4.20) (8% — 83—1) A2 < 0|Q% )P,
and
¢
An< [8* — (8, + 1)]o-v1» |Q%(e)] -

To prove the lemma we take s* so large that

c
[s* — 8 — 1] ir <o

(4.21)

Notice that if f, is independent of w and R, also s* is independent of w
and K.
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REMARK 4.2. The process described by lemma 4.4 has a double meaning.
On one hand, given f,, determines a level k = u*— w/2°" and on the other
hand (recalling the definition (2.2) of 0) determines the cylinder @%. That
is, given f,e(0,1), the measure of the set where u > u*— w/2*" can be
made smaller than Bo only on a particular cylinder Q%(c,) related to the
level ut+— w/27.

LeMMA 4.5. Suppose the conclusion of Corollary 4.3 holds. Then s* can
be chosen so that either

_— o \H{A+nr—10)Ho—2)
(4.22) R >(2—,¢,)
or
w
(4.23) w(z, ) <pt— St V(z,t) e Qgi/2(“o) .
Proor. Bet
R R =~ R.,+ R, R 3R
Rn='2—+'2—;; _R“=-—-—i—§—-——=-2- 2—5-’—" 9’&21,2,....

We will write inequalities (1.5) over the pair of cylinders Q% («,) and @2 («,)-
The cutoff function ¢ will be taken so that { =1 on Q% (a), (2, t,—
~ (0t/3)OR?) = 0 and

|V.ll<22R;  0<,<O2"/0R".

The levels k are taken to be

w w
k,,=p+—-2—':ﬁ—2—‘_—;;‘, n=],2,....

In this setting (1.5) can be written as

(4.24) sup [ — ) [ mEn(®) + | Vel — k)15 00 (o
to— (x/D)ORE <L <lo B

2?11 0 .
<O {10 — )5, 08 cen+ 072000 — Kal 12, 08 e}

3 (Ir1+%)
ol tmcoread

fe—(x4/8)0RE
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We estimate the various terms in (4.24), recalling the definition of 6
as follows. First for all t e [t,— (a/3)0R2, 1,]

[(w — E)H2, pen®) > 0] (0 — K7, 5aald) -

Next

{W-MWMMMWWW—Mﬁ%m#QGy flmmmw-

28
fo— (%/3)0R2

Then from (4.24) dividing by 8

(4.25) sup (% — kn)*|
to—(%o/3)0RE 1<ty

2, B(E(T) + 07 Valu — ky)*

P
ID’Q-Z-"("‘D)
to
272 fw\?1
<C T (2—;) 3 f [Af, ra(1)| At
to— (o/3)0R2

to
1

A . (oiratn) .
vofs [ rtampna) g

to—(,/3)0RZ

The change of variable 2z = 3(t — )/« 0, transforms Q%n(ao) and Q%n(a‘))
respectively into

QnEB(Rn)X{_R:’t0}7 QnEB(R-n)X{—Ez7 0}'

We also set v(w, 2) = u(x, to+ (2%/3) 02} and,

V]
A,(2) = {x € B(Rn): v(%, 2) > k} A, = f |4,(=)|dz .

—R‘,’.

Then (4.25) can be rewritten more concisely as

C w\?
(4.26) u(’U — k)t II%D(6R)<F 2me (23') An

OP((L+x)ip— 1)+

0
+0(ﬁmmwm

—R2

)(v/r)(l +%)

Let & — {,(x) be a cutoff function in B(R,) which equals one on B(R, +1)
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and |V,Z,|<2*?*/R. Then (v— k,)*Z,€ V,(@,) and by Corollary 2.4

(4.27) 10— Ea) [, @nes < (0 — ka)F Lo l5, 0. < CAT | (0 — o) Lalf

V,(E»)
p/(N4p} 1D 2”( ~He
<CA3 I — k) IPu@n + =55 1o —ka)* “;,a..)~

Using (4.26) we find

299 f on \P
(4.28) ll<v—kn)+l|:,om<0‘iz‘p('z7) Al
. (p/r)(1+ )
+ oty ([ ia@pnas)™ -y,

4
Since

1{fw)?
”(U - k")+”:, an+1>§ (5;:) -An+1 b

recalling the definition of 0, from (4.28) we obtain

. ¢ (2/1)(1+%)
(4_29) Aﬂ+1 <C _]_37’ A'l‘ﬂ/uv-w) + C4’"A:"/’) ( J- [A"(z)]f/qdz)

— Rz
0,80\ p[1-+((1 +2)/r— 1p)Hp—2)]
) »
Set

0
A 1 o

Y,=="; § = A (z)]!e .
0. 7 !B(R)nl(f (@)l d”)

—R2

Then proceding as in the proof of lemma 3.1, if (4.22) is violated we
have the recursion inequalities

Y“+1<C’4””{Y;+’/(N+”)—I— YpI(N-w)Z,llen} Zn+1<041m{yn+ Z:,'H‘} .

It follows from these, with the aid of lemma 5.7 of [11] page 96 that Y,
Z,—>0 a8 n—+>oo if

Y1<ﬁo; Zi+”<ﬂo
where

(4.30) [30= min {(40)—(N+1’)/?4—(N+W)/d; (40)—(1+’l)/’¢4—3/”d}

R P . %
d—mln{———N+p, 1+x}'




524 F. DIBENEDETITO

Therefore to prove the lemma we choose f§, according to (4.30) and then s*
so large that (4.21) is verified for this choice of f,.

Arguing as in Proposition 3.1 we can now summarize the results of this
section.

PROPOSITION 4.1. There exists a positive integer s* independent of w, B
such that if (4.2) holds for every ecylinder QLc @%, 6 = (2* [w)* 2, then either

- 1 . +
(4.31) W< 2 RVE e +( :L "—%) (p—2)

or

1
(4.32) €88 Oscugw(l —m) y
Q?z/z(“o) -

where o, is the number claimed by Proposition 3.1 and

Ohaton) = BRI xf— 20 (5] 0]

5. — Proof of the embedding theorem.

First we remark that the proof presented only uses the fact that the
essential oscillation of u in Q%, 6 = (2% /w)”? is less than w. Since this
is not a priori guaranteed we used the device of introducing the cylinder Q¥*
(see (3.1)) to claim that if Q% is not included in @}

e88 08¢ U < <2 RY¥?
o

Keeping this in mind we now iterate the process described, over a sequence
of nested and shrinking cylinders.

Let § = max {s; s*-} 1} where s is the number claimed by Proposition 3.1,
and set
1 3, N

o3 ===§; Cp= 28,

no=1—

All these numbers are independent of w, R. Setting

20'0(17—2) — min {233(7"2); _:_'0 23'(7—2)} ,
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both Proposition 3.1 and 4.1 can be combined by stating that in either
case we have the following alternative. Either

(5.1) o< C R

or

(5.2) €88 0SCU < Wy = Wy
Q%

where

R 20\r—2 [ P\»
o= (gl (5 G o}
Obviously (5.2) remains valid if we take the essential oscillation of u
over a cylinder contained in @%.
We set R,= 2R, and
R, 1
= ey = G, T
Then the cylinder
D3\ p—2
Q%,E (Rl)x{to_elRfyto}; 012( )

w

is contained in @°¢ and we have

€88 0SCU < Wy = Y, .
e
&y

Therefore the process can be continued starting from the cylinder Q‘};l.
By iteration we define sequences

Ds*\p-2
R,= 2R ; W = eS8 08CU ; 0= —

Q¥ @o
1 2:' 2
R,= — Ry; Wn = Mo Wn_1; 0, =
C]_ W,

and the cylinders Q% = B(R,) X {f{,— 0, R%, t,}.
For them the following iteration holds.

Either
(5.3) 0,<Cy Ry
or
(5.4) €88 ORCU < Wy == Mg Wp_1 -

3
ez

The theorem is now a straightforward consequence of lemma 5.8 of [11]
page 96.
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PArt IT — BOUNDARY REGULARITY

We say that a function u:£;— R belongs to the class B,(2, NI, M,
v, ry 8, %) if u satisfies all the requirements listed in section 1, with the only
difference that the cylinders Q(R, p) may intersect I, and the wvarious
integrals in (1.5)-(1.6) are extended over Q(R, g) N Qr and B(R) N 2. We
impose an extra requirement.

The cutoff function (x, t) — {(#, t) vanishes on ¢B(R), or on the parabolic
boundary of @Q(R, g), but it does not vanish on I. Because of this, a func-
tion « belongs to B,(LoN Iy M, y, v, §, ) if (1.5)-(1.6) hold for all the
levels k for which

(u—k)*={»=0 on I'.

Given such a requirement it is immediate to see, by following the same
arguments of scction 1, that a weak solution u of (0.1) defined in 2y, belongs
to B (2N T, M, y, v, 6, x).

The proof of regularity up to the boundary is based again on inequalities

(1.5)-(1.6). In faet it is much simpler since we may simplify such ine-
qualities by making use of the information coming from the boundary data.

6. — Proof of Theorem 2.

Let x e O be fixed and let B> 0 be so small that B(R)c 2. We con-
sider also the cylinder

Q(R) = B(R)Xx|[0, E*].

As before we set

M= esssupu; p~=-essinfu; @ = €88 ORCU .
a«R) a(R) ar)

If the initial datum wu, satisfies [Ag] we set

Ma == €88 Sup %, ; Mo = essinfu,; W == €55 08C Uy .
B(R) B(R) B(R)
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Let s, be the smallest positive integer satisfying

2M

s
2%

<9,

(6.1)

where ¢ is the number introduced in (1.15). We consider the following
two cases.

Case 1. The inequalities

. w w _
(6.2) Wr—go<mi o>

2%

both held, or

Case 2. At least one of (6.2) is violated.

In case 1, subtracting the second inequality from the first we obtain

(6.3) €88 08CU <2 eSS 0SC U, .
AR) B(R)

To examine Case 2, suppose for example that the second of (6.2) is
violated. Then

w
2%,

(6.4) (u—(lr—{— 5 ))_(m,()) =0, VreBR), Vs>s,.

Let x — {(x) be a smooth cutoff function in B(R) which equals one on
B(R—oR), 0€(0,1) and such that |V.l]<(cR)"!. Then, proceceding as in
section 1 and making us of (6.4) we deduce that the following two ine-
qualities hold.

=li2
(6.5) sup (u — (,u* + 5633))
0<t<RP 2 2, B(R— aR)
R —
(2 W T 4 (- 2V
—{—f V,;(u (,u +28)) dwdz<(6R)m ff (u (,u -+ 23)) drdr
0 B(R—oR) QAR

3 - (p/r}(1+ %)
Ty (J.[Au-w/z',n(f)['/q dT) '
0
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o\~
(6.6) sup f p? (H—, (u —(;r+ a")) , v) dr
O I<R? “
B{(R—oR) x {l}
o\~
L4 (Hka (’“ “(.““'{‘ 5’;)) ’ ”)
2—p
u( u““/““}‘“)‘))’v)
y H s (D)1 -+ 2)
L ([

These inequalities hold (in view of (6.4)) for all s>s,.

The proof can now be completed as follows. First, using (6.6) and the
procedure of lemma 3.2, given any o« € (0,1) we ean find a positive in-
teger s, such that either

X dr dt

<

(6.7) RIS oty =1 +(£ﬂ~l)+(p —2)
or

(6.8) (z,t) € B(R[2) x[0, B?]: u(x,l) < p~ +

<a|B(R[2) X [0, R7]|.

94

Seeond, using (6.5) and the procedure of lemma 3.3 we deduce that either
(6.7) holds or

(6.9) w(z, t) > pu=+ ;%1 . ¥(z,1) € B(R/4) %[0, R*].

These facts are much easier to establish than the corresponding ones
in the quoted lemmas. In particular in establishing (6.9) no shrinking
occurs in the t-direction. This is due to (6.4), and the relatively simple
form of (6.5)-(6.6).

Combining these remarks and recalling the definition of Q(R) we deduce
that

(6.10) ess oscu <max {7 ess oscu; CRE*ME; egg oscu.,}
a(B/4) a(r) B(R)

where

1 1 1\*
n=1—g5m; C=2a"; 1= 1+( + ?7) (p—2).
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Since this estimate ean be reproduced over a sequence of cylinders
Q(R/47), m=1, 2,..., with the same constants #, C, & standard arguments
imply Theorem 2.

7. — Proof of Theorem 3.
Let (x,, 1) € Sy be fixed and consider the cylinder

Qsr = B(2R) X {t,— (2R)*, t,}
where

Nx DAY =1 — }‘:}—_%
e=Trep—2; =14 (o

1+
- —2).
p)(p )

We let R be so small that {,— (2K)*¢> 0 and define

(7.1) u" = esssupwu; pu=essinfu; = put—pu = ess 0sCcu .
Q§ g0 0r QS pnr Q§pnfr

If the boundary datum f satisfies [As] we let

(7.2) Ui = esssupf; Hy = ess inff; w, = ess oscf .
QurNn ST Q:r0 8T Q:r N S

Deflne also the cylinders
Qo= Blo) X {te— 0%, t.}, 0<o<2R
QZ(% 03) = B(g — 0,0} X {to_ 6(1 — o03) 07, to}

where o,€(0,1), 2= 1,2 and

(7.3) - (?:)H

w

and s* is a large positive integer to be chosen.
If 0> (2R)~¢ we have

(7.4) o <2*(2R)0-2) = 25*(2R)FDE

If (7.4) does not hold, then 0 < (2R)~* and

0
QorC Yo -



530 E. DIBENEDETTO

We will assume that such inclusion holds, in what follows.
Defining s, as in (6.1), we may also assume that at least one of the two
inequalities

o w -
(7.5) e A e T

does not hold. In faet if both are satisfied we have

(7.6) €35 oscu <2 ess osef .
(9 QS gnSr

Let us assume that for example the first of (7.5) is violated. Then
Vs> s,

(7.7) (u—(m—g%\));o on  SpN 0y,

Proceedings as in section 1 and using (7.7) we see that the following
inequalities are valid Vs>s, and VO<p<2R.

o\\H)i?
(7.8) sup % — (/ﬁ— ;—) (t)
to— (1~ 0)Ber <t<ty 2¢/] ll2,Be—00 ne
o\YH[® 7
2 7, Qg(al,az)n.QT (010)? 2 v,anQr
{o
( N (w\))+ 2 4 e (pIr)(L+2)
— U — — -*}— )/( f o — )28, 7)™ T) .
T, 00‘7 lu Q¢ Z,QQnQT L% ! ¢
o — 00?

Since (u— (u+—w/2%))* vanishes on S;NQyy, we may extend (u— (ut—w/2°))*
with zero outside Qg, 0 < p<2R, and therefore the domains of integration
in (7.8) may be considered to be Qg(al, AR Qg, B(p— 0y0).

By virtue of assumption [A,], for all ¢ e [t,— 0%, 1,]

@ € Blo): ulr, ) > pt——

¢
23

< (1—%)Bl), Ve<2R.

Consequently the assumptions of lemma 4.4 are verified, and given
Bo€ (0,1) we may find s*e€ N such that either

w
Qe+l

(7.9)

= D
PR 2),

< RWxnE  g1=1 (1 4o 1)+(p B
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or

w

g
=

(7.10) (wy 1) € Qs w(@, 1) > pt— = < BolQR] -

REMARK. The choice of s* will determine also the size of the eylinder @5
(see (7.3)). As shown in lemma 4.4 such a choice can be made a priori,
independent of @ and K.

Finally by the method of lemma 4.5, and using inequalities (7.8), we
conclude that either (7.9) holds or

w
u(m, t) <,u+——m s V(.’I/', t) € Q%/z .

Combining the various alternatives presented, we have

7.11 ess 0sc u <max {n ess oscu; CRFE, egs ose
n ) )
@Yy @ Or Gr Q3p 0 ST
where
1 1+ 1\t
s —_— e 3 J == Qettl. —1_= _— — 2
n=1 getid C Qettiy & 1+( ; p) (p—2).

Interation of (7.11) yields Theorem 3.

REMARK, The proof of Corollary 0.1 follows from the previous arguments
except for proving regularity at points (z,, 0) € 02X {0}. The latter case
can be demonstrated by a straightforward adaptation of the previous
methods. ‘

8. — Proof of Theorem 4.

The proof is essentially the same as for the interior regularity and it
is based on the arguments of sections 2-5, except that rather than working
with eylinders of the type Q(R, o) = B(R)X{t;— o, t,} we will be working
with eylinders C(R, o) = B(R) N 2X {t,— o, 1}

First we indicate how to derive incqualities analogous to (1.5)-(1.6).

Let x,€ 02 be fixed and consider the portion of the boundary 90 given
by

B

So(R) =202 N {lr — m| < R} .

Since 002 is of class C* and our arguments are local in nature, we may assume,
without loss of generality that Sy(R) lies on the hyperplane xy= 0 and that
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for example
B(R) N Qc {zy> 0} .

If (x,, t,) € Sp, consider the eylinder
(8.1) O(R, o) = {B(R) N 2} X {ty— 0, t} ,

where ¢ > 0 is so small that t,— o> 0.

Let (x,t) —{(x,t) be a piecewise smooth funetion defined in Q(R, o)
such that 0 <{ <1 and &(», -} = 0 for x € 0B(R). We observe that { vanishes
on the lateral boundary of Q(I, o) and not on the lateral boundary of C(R, p).
We write (0.16) is terms of the Steklov averaging and take test functions
of the type

=4 (u,— k)= 7
where k € R satisfies the restriction

1 = 1)* oo, 0,00 < 0

and d is defined in (1.15). Performing exactly the same calculations and
limiting processes described in the proof of Proposition 1.1, we arrive at
inequality (1.3), with the domains of integrations being now B(E) N 2
and O(R, p), and with, on the right hand side the extra boundary integral

to
A= f J + g(x, 7, u)(u — k)T {*dodr .

to—e Su(R)

This last integral is estimated by making use of assumption [A,] and
the fact that w € L*(Q;) as follows.

A<l ﬂdiv[(u—— k)icf’]dxdt‘

C(R,e)
<Y ﬂ {(w — k(& + (p —1) 71V, L) + |Ve(u — k)E|i7} dwdr .
C(R,0)

By Young’s inequality, Ve > 0

A<e f |Volu — E)E2Lrdedr +
C(R,e)

ty
+y ff Hu — k)xP |V, Crdedr 4 y(e) f [measA,ifR(r)]dr .
—e

C(R,0) t
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where

Af R(t) = {we B(R) N 2: (u — k)*(a, 1) > 0} .

Combining these estimates, we see that the following inequalities are
valid

(8.2) sup f [(w — k)X L% (x, t)dx + ff]V,(u —k)yxplrdedr
(R)n Q2

lo—e i<ty
B C(R, 0)

< f [(w — k)22 2(@, to— @) doe + y ”[(u— k)P |V L [P do dv
B(R)n 2 C(R, @)

¢ )
-+ ff[(u — k)yERLrrg dedr + y( f[measAin('r)]’/qdr)
C(R, ¢) to—e

+ y| [meas A% z(7)]dr .

to—e

In order to derive an inequality similar to (1.6) we proceed as in the proof
of Proposition 1.1 and in addition we treat the boundary integral

t
f f g(z, v, w)ypy' {*dodr

to—o Su(R)

by transforming it into an interior integral over C(R, g) as indicated above.
As a result we obtain the inequalities

(8.3) sup f w}(HE, (0 — k)%, v) 2z, t) do
to— <<,
B(R)NK
< f ‘lP*(Hi, (4 — k)%, "’) {%(xy ty— o) dw
B(R)nQ

+7 | [, w— ks, il @—ns, )iVt avar
C(R, 0)

y { HE ¢ wina+n
+ " (ln T) {( f[meas A ()] d-r) + f[meas A g(7)] dr} .
lo—e

to—e



534 E. DIBENEDETTO

With these inequalities at hand, the proof can now be completed exactly,
step by step, as in the proof of interior regularity. The only significant
modification regards the proof of the recursion inequalities (3.8)-(3.9) in
lemma 3.1 (and similar inequalitics in lemmas 3.3 and 4.5). For these we
used the embedding of Corollary 2.4 valid for functions u e V,(C(R, g))-
In our case (¥ — k)*:{? does not vanish on the lateral boundary of C(R, o)
and therefore we must use (2.8) with the constant C given by (2.9). We
observe however that for domains of the type {B(R) N Q} x {— R?, 0}, the
constant in (2.9) is independent of R.

Finally the last modification occurs in the use of De Giorgi’s inequality
{2.7) (employed in lemma 4.4).

Now such inequality holds for convex domains (sec Remark 2.1) and
therefore (2.7) holds with B(R) replaced by B(R) N Q = B(R) N {xy> 0}.
The remainder of the proof stays unchanged.
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