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Abstract. We present a local convergence analysis of an eighth-
order method for approximating a locally unique solution of a non-
linear equation. Earlier studies such as have shown convergence of
these methods under hypotheses up to the seventh derivative of the
function although only the first derivative appears in the method.
In this study, we expand the applicability of these methods using
only hypotheses up to the first derivative of the function. This
way the applicability of these methods is extended under weaker
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error bounds on the distances involved are also given in this study.
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1 Introduction

In this study, we are concerned with the problem of approximating a locally
unique solution ξ of equation

f(x) = 0, (1.1)

where f : D ⊆ S → S is a differentiable nonlinear function and D is a convex
subset of S and S is R or C. Newton-like methods are famous for finding the
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solution of (1.1). The study about convergence matter of iterative procedures
is usually based on two types: semi-local and local convergence analysis.The
semi-local convergence matter is, based on the information around an initial
point, to give conditions ensuring the convergence of the iterative procedure;
while the local one is, based on the information around a solution, to find es-
timates of the radii of convergence balls. There exist many studies which deal
with the local and semi-local convergence analysis of Newton-like methods
such as [1-24].

Third-order methods such as Euler’s, Ostrowski’s square root, La-
guerre’s method [16] require the computation of second-derivative f ′′ at each
step, which in general is very expensive. That is why many authors have
developed and analyzed higher order multipoint methods [20]. In this paper,
we introduce the method defined for each n = 0, 1, 2, . . . by

yn = xn −
f(xn)

f ′(xn)
,

tn = yn −
f(yn) (f(xn) + βf(yn))

f ′(xn) (f(xn) + (β − 2)f(yn))

xn+1 = tn − δ
H3(tn)

f ′(tn)
,

(1.2)

where x0 is an initial point, β, δ ∈ S are parameters. Here, f [x, y] denotes
a divided difference of order one for f at the points x, y and

H3(tn) = f(xn) + f ′(xn)
(tn − yn)2(tn − xn)

(yn − xn)(xn + 2yn − 3tn)
+ f ′(tn)

(tn − yn)(xn − tn)

xn + 2yn − 3tn

− f [xn, yn]
(tn − yn)3

(yn − xn)(xn + 2yn − 3tn)
.

The first two steps of method (1.2) are same as that of King’s family. Notice
that King’s class of methods can be obtained from method (1.2), if δ = 0.
Moreover, if δ = 1, we obtain methods proposed in [18] and [19].

From a computational point of view, the method (1.2) attains eighth-
order of convergence using only four functional evaluations, viz. f(xn),
f ′(xn), f(yn) and f(tn), per iteration. Therefore, optimal efficiency in-
dex [24] of the proposed class is E = 4

√
8 ≈ 1.682. Earlier studies showed

the eighth-order of convergence of method (1.2) using Taylor expansions and
hypotheses reaching up to the seventh derivative of the function f . These
hypotheses limit the applicability of method (1.2).

As a motivational example, define function f on X = [−1
2
, 5
2
] by

f(x) =

{
x3 lnx2 + x5 − x4, x 6= 0,

0, x = 0.
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Let ξ = 1. We have that

f ′(x) = 3x2 lnx2 + 5x4 − 4x3 + 2x2,

f ′′(x) = 6x lnx2 + 20x3 − 12x2 + 10x,

f ′′′(x) = 6 lnx2 + 60x2 − 24x+ 22.

Then, obviously function f does not have bounded third derivative in X.
Notice that, in particular there is a plethora of iterative methods for approx-
imating solutions of nonlinear equations on X. These results show that if
initial point x0 is sufficiently close to the solution ξ, then the sequence {xn}
converges to ξ. But how close to the solution ξ, the initial guess x0 should
be? These local results give no information on the radius of convergence ball
for the corresponding method. We address this question for method (1.2) in
Section 2. The same technique can be used to other methods. In the present
study, we extend the applicability of these methods by using hypotheses up
to the first derivative of function f and contractions. Moreover, we avoid
Taylor expansions and use instead Lipschitz parameters. This way we do
not have to use higher order derivatives to show the convergence of these
methods.

The rest of the paper is organized as follows: In Section 2, we present
the local convergence of method (1.2). The numerical examples are presented
in the concluding Section 3.

2 Local convergence analysis

We present the local convergence analysis of method (1.2) in this section.
Let U(v, ρ) and Ū(v, ρ) denote the open and closed balls in S, respec-

tively, with center v ∈ S and radius ρ > 0. Let L0 > 0, L > 0, M0 > 0, γ >
0, β, δ ∈ S and α ∈ (0, 1

3
) be parameters. It is convenient for the local con-

vergence analysis of method (1.2) to define some functions and parameters.
Define functions on the interval [0, 1

L0
) by

g1(t) =
Lt

2(1− L0t)
,

q(t) =
L0

2
t+M |β − 2|g1(t),

q1(t) = q(t)− 1,

and parameter r1 by

r1 =
2

2L0 + L
<

1

L0

.
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Then, we have that g1(r1) = 1 and 0 ≤ g1(t) < 1 for each t ∈ [0, r1). We
also get that q1(0) = −1 < 0 and q1(t) → ∞ as t → 1−

L0
. It follows from

the intermediate value theorem that function q1(t) has zeros in the interval
(0, 1

L0
). Denote by rq the smallest such zero. Then, we have that q1(rq) = 1

and 0 ≤ q(t) < 1 for each t ∈ [0, rq).

Case 1: r1 ≤ rq.

Then, define functions on the interval [0, r1) by

g2(t) =

[
1 +

M2(1 + |β|g1(t))
(1− L0t)(1− qt)

]
and h2(t) = g2(t)− 1.

Then, we get that h2(0) = −1 < 0 and h2(t) → ∞ as t → r−1 . Hence,
function h2 has a smallest zero r2 ∈ (0, r1).
Case 2: rq < r1.
Similarly, h2(0) = −1 < 0 and h2(t)→∞ as t→ r−q . Hence, function h2 has
a smallest zero r2 ∈ (0, rq). Finally, in either case define functions

g3(t) = g2(t) +M |δ|
[ 1

1− L0t
+
αγM3g1(t)

2(1 + |β|g1(t))
(1− L0t

2 )(1− q(t))2

+
αγM2g1(t)(1 + |β|g1(t))

(1− L0t)(1− q(t))
+
αM0M

3(1 + |β − 1|g1(t) + |β|g1(t)2)2

(1− L0t)(1− L0t
2 )(1− q(t))2

]
and h3(t) = g3(t)− 1.

Suppose that

M |δ|(1 +M0M
3) < 1.

Then, h3(0) = M |δ|(1 +M0M
3)− 1 < 0 and h3(t)→ +∞ as t→ r−1 (under

case 1) or as t → r−q (under case 2) . Denote by r3 the smallest such zero.
Set

r = min{r1, r2, r3, rq}, (2.1)

Then, we have that

0 ≤ g1(t) < 1, (2.2)

0 ≤ q(t) < 1, (2.3)

0 ≤ g2(t) < 1, (2.4)

and

0 ≤ g3(t), for each t ∈ [0, r). (2.5)
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It is convenient to rewrite method (1.2) as

yn = xn −
f(xn)

f ′(xn)
,

tn = yn −
f(yn) (f(xn) + βf(yn))

f ′(xn) (f(xn) + (β − 2)f(yn))
,

xn+1 = tn − δ (An +Bn + Cn +Dn) ,

(2.6)

where 

An = − f(xn)

f ′(xn)
,

Bn = − (tn − xn)2(tn − xn)

(yn − xn)(xn + 2yn − 3tn)
,

Cn = −f(tn)(tn − yn)(xn − tn)

f ′(xn)(xn + 2yn − 3tn)
,

Dn =
f [xn, yn](tn − yn)3

f ′(xn)(yn − xn)(xn + 2yn − 3tn)
.

In view of the definitions of xn, yn, tn, Bn, Cn, Dn and by simple algebraic
manipulations, we can also write that

Bn =
f(yn)2(f(xn) + βf(yn))2

(
f(xn)2 + (β − 1)f(xn)f(yn) + βf(yn)2

)
f(xn)(f(xn) + (β − 2)f(yn))2 (f(xn)2 + (β + 1)f(xn)f(yn) + 3βf(yn)2)

,

(2.7)

Cn =
f ′(tn)f(yn)(f(xn) + βf(yn))

(
f(xn)2 + (β − 1)f(xn)f(yn) + βf(yn)2

)
f ′(xn)(f(xn) + (β − 2)f(yn))2 (f(xn)2 + (β + 1)f(xn)f(yn) + 3βf(yn)2)

(2.8)

and

Dn =
f [xn; yn]

(
f(xn)2 + (β − 1)f(xn)f(yn) + βf(yn)2

)3
f(xn)f ′(xn)2(f(xn) + (β − 2)f(yn))2 (f(xn)2 + (β + 1)f(xn)f(yn) + 3βf(yn)2)

.

(2.9)

Next, we shall present the local convergence analysis of method (1.2)
using previous notations.

Theorem 2.1. Let f : D ⊆ S → S be a differentiable function. Suppose that
there exists a divided difference of order one f [·; ·] : D ×D → L(D), ξ ∈ D,
L0 > 0, L > 0,M0 > 0,M > 0, γ > 0, β, δ ∈ S and α ∈ (0, 1

3
) such that

M |δ|(1 + αM0M
3) < 1, (2.10)

max{β0, 5− 2
√

6} ≤ |β| ≤ 3 + 2
√

2, (2.11)

f(ξ) = 0, f ′(ξ) 6= 0, |f ′(ξ)−1| ≤ γ, (2.12)
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|f ′(ξ)−1(f ′(x)− f ′(ξ))| ≤ L0|x− ξ|, for each x ∈ D, (2.13)

|f ′(ξ)−1(f ′(x)− f ′(y))| ≤ L|x− y|, for each x, y ∈ D0 := D ∩ U(ξ,
1

L0

),

(2.14)

|f ′(ξ)−1f ′(x)| ≤M, for each x ∈ D0, (2.15)

|f ′(ξ)−1f [x; y]| ≤M0 for each x, y ∈ D0 (2.16)

and

Ū(ξ, r) ⊆ D, (2.17)

where the convergence radius r is defined in (2.1) and

β0 =
(1 + α)2√

((1− α)(1− 6α))2 − α(α− 2)(1 + α)2 − (1− α)(1− 6α)
. (2.18)

Then, the sequence {xn} generated by method (1.2) for x0 ∈ U(ξ, r)− {ξ} is
well defined, remains in U(ξ, r) for each n = 0, 1, 2, . . . and converges to ξ.
Moreover, the following estimates hold

|yn − ξ| ≤ g1(|xn − ξ|)|xn − ξ| ≤ |xn − ξ| < r, (2.19)

|tn − ξ| ≤ g2(|xn − ξ|)|xn − ξ| ≤ |xn − ξ|, (2.20)

and

|xn+1 − ξ| ≤ g3(|xn − ξ|)|xn − ξ| ≤ |xn − ξ|, (2.21)

where the “g” functions are defined previously. Furthermore, for T ∈ [r, 2
L0

),

ξ is the only solution of equation f(x) = 0 in D1 := Ū(ξ, T ) ∩D.

Proof. We shall show estimates (2.19)–(2.21) using mathematical induction.
By hypothesis x0 ∈ U(ξ, r)− {ξ}, the definition of r and (2.13), we get that

|f ′(ξ)−1(f ′(x0)− f ′(ξ))| ≤ L0|x0 − ξ| < L0r < 1. (2.22)

It follows from (2.22) and the Banach lemma on invertible functions [7],[10],
[21], [22], [24] that f ′(x0) 6= 0 and

|f ′(x0)−1f ′(ξ)| ≤
1

1− L0|x0 − ξ|
. (2.23)

Hence, y0 is well defined by the first sub-step of method (1.2) for n = 0. We
can write

y0 − ξ = x0 − ξ − f ′(x0)−1f(x0), (2.24)
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Using (2.2),(2.14),(2.23) and (2.24), we get that

|y0 − ξ| ≤ |x0 − ξ − f ′(x0)−1f ′(ξ)|,

≤ |f ′(x0)−1f ′(ξ)| |
∫ 1

0

f ′(ξ)−1[f ′(ξ + θ(x0 − ξ))− f ′(x0))](x0 − ξ)dθ|,

≤ L|x0 − ξ|2

2(1− L0|x0 − ξ|)
= g1(|x0 − ξ|)|x0 − ξ| < |x0 − ξ| < r,

(2.25)
which shows (2.19) for n = 0 and y0 ∈ U(ξ, r). Using (2.12), we can write
that

f(x0) = f(x0)− f(ξ) =

∫ 1

0

f ′(ξ + θ(x0 − ξ))(x0 − ξ)dθ. (2.26)

In view of (2.15) and (2.26), we get that

|f ′(ξ)−1f(x0)| ≤ |
∫ 1

0

f ′(ξ)−1f(ξ + θ(x0 − ξ))(x0 − ξ)dθ|,

≤M |x0 − ξ|.
(2.27)

and similarly

|f ′(ξ)−1f(y0)| ≤M |y0 − ξ|. (2.28)

Then, by (2.16), we have that

|f ′(ξ)−1f [x0, y0]| ≤M0|y0 − ξ|. (2.29)

Next, we shall show that f(x0) + (β − 2)f(y0) is invertible. Using (2.3),
(2.12), (2.13), (2.25) and (2.28), we get that

|(f ′(ξ)(x0 − ξ))−1[f(x0)− f(ξ)− f ′(ξ)(x0 − ξ) + (β − 2)f(y0)]|

≤ |x0 − ξ|−1
(L0

2
|x0 − ξ|2 + |β − 2|M |y0 − ξ|

)
≤ |x0 − ξ|−1

(L0

2
|x0 − ξ|2 + |β − 2|Mg1(|x0 − ξ|)|x0 − ξ|

)
= q(|x0 − ξ|) < 1.

(2.30)

It follows from (2.30) that f(x0) + (β − 2)f(y0) is invertible and

| (f(x0) + (β − 2)f(y0))
−1 f ′(ξ)| ≤ 1

|x0 − ξ| (1− q(|x0 − ξ|))
. (2.31)
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It follows that t0 is well defined from the second substep of method (1.2) for
n = 0. Then, using (2.4),(2.23),(2.27), (2.28) and (2.31), we have that

|t0 − ξ| ≤ |y0 − ξ|+ |
f ′(ξ)−1f(y0)f

′(ξ)−1(f(x0) + βf(y0))

f ′(ξ)−1f(x0)f ′(ξ)−1(f(x0) + (β − 2)f(y0))
|,

≤ |y0 − ξ|+
M2|y0 − ξ|(|x0 − ξ|+ |β||y0 − ξ|)

(1− L0|x0 − ξ|)|x0 − ξ|(1− q(|x0 − ξ|))[
1 +

M2
(
|x0 − ξ|+ |β|g1(|x0 − ξ|))|x0 − ξ|

(1− L0|x0 − ξ|)|x0 − ξ|(1− q(|x0 − ξ|))

]
|y0 − ξ|

= g2(|x0 − ξ|)|x0 − ξ| < |x0 − ξ| < r,

(2.32)

which shows (2.20) for n = 0 and t0 ∈ U(ξ, r).
Next we need estimates on |A0|, |B0|, |C0| and |D0|. Suppose f(x0) 6=

0. Consider the expressions f 2(x0)+(β+1)f(x0)f(y0)+3βf 2(y0) and f 2(x0)+
(β − 1)f(x0)f(y0) + βf 2(y0) as quadratic polynomials in f(y0) (or f(x0)).
Then, their discriminants are given, respectively by (β2−10β+1)f 2(x0) and
(β2 − 6β + 1)f 2(x0), which are negative by (2.11). Hence,

f 2(x0) + (β + 1)f(x0)f(y0) + 3βf 2(y0) > 0 (2.33)

and
f 2(x0) + (β − 1)f(x0)f(y0) + βf 2(y0) > 0 (2.34)

That is x1 is well-defined. We also have by (2.33) and (2.34) that

| f
2(x0) + (β − 1)f(x0)f(y0) + βf 2(y0)

f 2(x0) + (β + 1)f(x0)f(y0) + 3βf 2(y0)
|

=
f 2(x0) + (β − 1)f(x0)f(y0) + βf 2(y0)

f 2(x0) + (β + 1)f(x0)f(y0) + 3βf 2(y0)
≤ α,

(2.35)

since (2.35) reduces to showing that

α(α− 2)β2 + 2(1− α)(1− 6α)β + (1 + α)2 ≤ 0, (2.36)

which is true for β ≥ β0 ((2.11) and (2.18)). Hence, x1 is well-defined by the
third substep of method (1.2) for n = 0. Then, using (2.6), (2.23) and (2.27),
we have that

|A0| ≤
M |x0 − ξ|

1− L0|x0 − ξ|
. (2.37)

By (2.7), (2.12), (2.23), (2.25), (2.28), (2.31) and (2.35), we have that



Vol. LIV (2016) On the local convergence ... 11

|B0| ≤
αγM4|y0 − ξ|

(
|x0 − ξ|+ β|y0 − ξ|

)2
|x0 − ξ|

(
1− L0|x0−ξ|

2
)|x0 − ξ|2(1− q(|x0 − ξ|))2

≤
αγM4g21(|x0 − ξ|)

(
1 + |β|g1(|x0 − ξ|)

)
|x0 − ξ|(

1− L0|x0−ξ|
2

)
(1− q(|x0 − ξ|))

.

(2.38)

In view of (2.8), (2.12), (2.23), (2.25), (2.28), (2.31) and (2.35), we obtain
that

|C0| ≤
αγM3|y0 − ξ|

(
|x0 − ξ|+ β|y0 − ξ|

)(
1− L0|x0 − ξ|)|x0 − ξ|(1− q(|x0 − ξ|))

≤
αγM3g1(|x0 − ξ|)

(
1 + |β|g1(|x0 − ξ|)

)
|x0 − ξ|(

1− L0|x0 − ξ|)|x0 − ξ|(1− q(|x0 − ξ|))
.

(2.39)

Then, by (2.9), (2.12), (2.16), (2.23), (2.25), (2.28) (2.31) and (2.35), we
obtain that

|C0| ≤
αM0M

4
(
|x0 − ξ|2 + |β − 1||x0 − ξ||y0 − ξ|+ |β||y0 − ξ|2

)2(
1− L0|x0 − ξ|)2|x0 − ξ|3(1− q(|x0 − ξ|))2

≤
αγM3g1(|x0 − ξ|)

(
1 + |β|g1(|x0 − ξ|)

)
|x0 − ξ|(

1− L0|x0 − ξ|
)2(

1− L0|x0−ξ|
2

)
|x0 − ξ|(1− q(|x0 − ξ|))2

.

(2.40)

Then, using the last substep of method (1.2) for n = 0, (2.5), (2.32) and
(2.37)–(2.40), we get in turn that

|x1 − ξ| ≤ |t0 − ξ|+ |δ| (|A0|+ |B0|+ |C0|+ |D0|)
≤ g3(|x0 − ξ|)|x0 − ξ| < |x0 − ξ|r,

(2.41)

which shows (2.21) and x1 ∈ U(ξ, r). By simply replacing x0, y0, t0, x1 by
xn, yn, tn, xn+1 in the preceding estimates, we arrive at estimate (2.19)–(2.21).
Using the estimate |xn+1 − ξ| ≤ c|xn − ξ| < r, c ∈ g3(|x0 − ξ|) ∈ [0, 1),
we deduce that xn+1 ∈ U(ξ, r) and limn→∞ xn = ξ. Finally, to show the

uniqueness part, let Q =
∫ 1

0
f ′(ξ1 + θ(ξ − ξ1)dθ for some ξ1 ∈ D1 with

f(ξ1) = 0. Using (2.8), we get in turn that

|f ′(ξ)−1(Q− f ′(ξ))| ≤ L0

2
|ξ1 − ξ| ≤

L0

2
r < 1. (2.42)

Hence, Q 6= 0. Then, from identity 0 = F (ξ)−F (ξ1) = Q(ξ−ξ1), we conclude
that ξ = ξ1.
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Remark 2.1. 1. It follows from (2.13) that condition (2.15) can be dropped,
if we set

M(t) = 1 + L0t

or

M(t) = M = 2, since t ∈
[
0,

1

L0

)
.

2. The results obtained here can also be used for operators f satisfying
autonomous differential equations [7, 10] of the form:

f ′(x) = P (f(x)),

where P is a continuous operator. Then, since f ′(x∗) = P (f(x∗)) =
P (0), we can apply the results without actually knowing x∗. For ex-
ample, let f(x) = ex − 1. Then, we can choose P (x) = x+ 1.

3. The radius r̄1 = 2
2L0+L1

was shown by us to be the convergence radius
of Newton’s method [7]

xn+1 = xn − f ′(xn)−1f(xn), for each n = 0, 1, 2, . . . (2.43)

under the conditions (2.12)–(2.14) on D, where L1 is the Lipschitz
constant on D. We have that L ≤ L1 and L0 ≤ L1, so r̄1 ≤ r1. It
follows that the convergence radius r of the method (1.2) cannot be
larger than the convergence radius r1 of the second order Newton’s
method (2.43). As already noted in [7], r̄1 is at least as large as the
convergence ball given by Rheinboldt [22]

rR =
2

3L1

.

In particular, for L0 < L1, we have that

rR < r̄1

and
rR
r̄1
→ 1

3
as

L0

L1

→ 0.

That is our convergence ball r̄1 is at most three times larger than Rhein-
boldt’s. The same value of rR was given by Traub [24].
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4. It is worth noticing that method (1.2) is not changing when we use
the conditions of Theorem 2.1 instead of stronger conditions used in
[18]. Moreover, we can compute the computational order of convergence
(COC) defined by

ξ∗ = ln
( |xn+1 − ξ|
|xn − ξ|

)
/ ln

( |xn − ξ|
|xn−1 − ξ|

)
,

or the approximate computational order of convergence (ACOC) de-
fined by

ξ∗∗ = ln
( |xn+1 − xn|
|xn − xn−1|

)
/ ln

( |xn − xn−1|
|xn−1 − xn−2|

)
.

This way we obtain in practice the order of convergence in a way that
avoids the bounds involving estimates using estimates higher than the
first Fréchet derivative of operator F. Notice also that the computation
of ξ∗∗ does not require knowledge of ξ.

3 Numerical examples

We present numerical examples in this section.

Example 3.1. Let X = Y = R, D = Ū(0, 1). Define f on D by

f(x) = ex − 1.

Then, f ′(x) = ex and ξ = 0. We get that L0 = e − 1 < L = e
1
L0 , L1 = e,

M0 = M = e and γ = 1. Then, for method (1.2) the parameters are:

r̄1 = 0.324947, r1 = 0.382692, r2 = 0.07720896, r3 = 0.0411985456, rq = 0.29821099,

r = 0.0411985456.

Example 3.2. Let D = (−∞,+∞). Define function f on D by

f(x) = sin x.

Then, we have for ξ = 0 that L0 = L = L1 = M0 = M = 1 and γ = 1. Then,
for method (1.2) the parameters are:

r̄1 = r1 = 0.666667, r2 = 0.336248, r3 = 0.331336, rq = 0.719224, r = 0.331336.
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Example 3.3. Returning back to the motivational example at the intro-
duction of this paper, we have that L = L0 = L1 = 146.6629073 and
M0 = M = 2 and γ = 1

3
. Then, for method (1.2) the parameters are:

r̄1 = r1 = 0.00454557, r2 = 0.00130815, r3 = 0.00112564, rq = 0.0039941,

r = 0.00112564.

Example 3.4. Let X = Y = R and define function f on D = R by

f(x) = β̄x− γ̄ sin (x)− δ̄, (3.1)

where β̄, γ̄, δ̄ are given real numbers. Suppose that there exists a solution
ξ of f(x) = 0 with f ′(ξ) 6= 0. Then, we have

L1 = L0 = L =
|γ̄|

|β̄ − γ̄ cos ξ|
, M0 = M =

|γ̄|+ |β̄|
|β̄ − γ̄ cos ξ|

.

Then one can find the convergence radii for different values of β̄, γ̄ and δ̄.
As a specific example, let us consider Kepler’s equation (3.1) with β̄ = 1,
0 ≤ γ̄ < 1 and 0 ≤ δ̄ ≤ π. A numerical study was presented in [13] for
different values of γ̄ and δ̄.

Let us take γ̄ = 0.9 and δ̄ = 0.1. Then the solution is given by ξ =
0.6308435. Hence, for method (1.2) the parameters are:

r̄1 = r1 = 0.202387, r2 = 0.0103345, r3 = 0.00588456, rq = 0.0986948,

r = 0.00588456.
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