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On the local convergence of the Modified

Newton method
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Abstract. The aim of this paper is to investigate the local conver-
gence of the Modified Newton method, i.e. the classical Newton
method in which the first derivative is re-evaluated periodically af-
ter m steps. The convergence order is shown to be m + 1. A new
algorithm is proposed for the estimation the convergence radius of
the method. We propose also a threshold for the number of steps
after which is recommended to re-evaluate the first derivative in
the Modified Newton method.
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1 Introduction

We investigate the local convergence of the Modified Newton method, i.e.
the classical Newton method in which the first derivative is re-evaluated pe-
riodically after m steps. If x denotes the current iteration, then the iteration
function T for the Modified Newton is defined by

yk+1 = yk − F ′(x)−1F (yk), k = 1, ...,m− 1, y1 = x,
T (x) = x− F ′(x)−1

∑m
k=1 F (yk).

(1.1)
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The iteration (1.1) can be interpreted also as a Picard iteration with the
iteration function T .

The particular case m = 2 was considered by Potra and Ptak [6]. Us-
ing non-discrete induction, they proved the order three of convergence and
gave sharp a priori and a posteriori error for this particular case. Often it
is called ”Potra-Ptak” method [7,8]. In the case of a single equation, Potra-
Ptak method was considered by Traub [9] (1982). Ortega and Rheinboldt [5]
proved order three of convergence for Potra-Ptak method in n-dimensional
spaces (Theorem 10.2.4, [5]). Note that Potra-Ptak method is a particular
case of a multipoint iterative process with order three of convergence consid-
ered by Ezquerro and Hernandez [2].

Recently, Hernandes and Romero [3] gave the following algorithm (for-
mula) to estimate the local convergence radius for the Ezquerro-Hernandez
method. Suppose that x∗ is a solution of the equation F (x) = 0, there
exists F ′(x∗)−1, ‖F ′(x∗)−1‖ ≤ β, and F ′ is k-Lipschitz continuous on some
B(x∗, r0) = {x : ‖x−x∗‖ ≤ r0}. Let r̃ = min{r0, r}, where r = ζ0/[(1+ζ0)βk]
and ζ0 is the positive real root of a polynomial equation of degree three (in
the particular case of Potra-Ptak this equation is t3 + 4t2 − 8 = 0). Then r̃
estimates the local radius of convergence.

In [1] Catinas proposes a simple and elegant formula to estimate the
radius of convergence for the general Picard iteration and the algorithm pre-
sumptively gives a sharp value. More precisely, let T : D ⊂ Rm → D be a
nonlinear mapping and x∗ a fixed point of T . Suppose that T is differentiable
on some ball centred in x∗, B(x∗, r1), and the derivative of T satisfies

‖T ′(x∗)‖ ≤ q < 1,
‖T ′(x)− T ′(y)‖ ≤ k‖x− y‖p, ∀x ∈ B(x∗, r1).

Define

r2 =

(
(1 + p)(1− q)

k

) 1
p

,

then r = min{r1, r2} is an estimation of local convergence radius.

In [4] a new algorithm (formula) of the radius of convergence of Modi-
fied Newton method was recently proposed. The algorithm was motivated
in [4] by heuristic arguments and numerous examples for different iterative
methods show that the proposed algorithm provides satisfactory estimations
of the convergence radius.

Suppose that the mapping F : C → H, where C is an open convex subset
of the Hilbert space H, is Fréchet differentiable and satisfies

1. There exists F ′(x)−1 and ‖F ′(x)−1(x)‖ ≤ β for all x ∈ C;
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2. F ′ is L-Lipschitz continuous on C;
then the formula for the radius of convergence proposed in [4] is r ≤ αm/(βL).
The number αm is the smallest positive solution of the polynomial equation
gm(x)− η = 0, where 0 < η < 1 and gm is defined by

f1(y) = y,

fk(y) = y
(

1 + 1
2

∏k−1
j=1 fj(y)

)
, k = 2, 3, ...,

gm(y) =
∏m

k=1 fk(y).

(1.2)

The convergence of the Modified Newton method is obtained with the help
of the inequality

‖T (x)− p‖ ≤ η‖x− p‖, ∀x ∈ B(p, r),

where p is a solution of the equation F (x) = 0 (or, equivalent, a fixed point
of T ).

In this paper we complete the result of [4] by providing a complete proof
of the local convergence of the method (1.1) and by developing the investi-
gation of the corresponding radius of convergence. The formula giving the
estimation of convergence radius of (1.1) is proved to be

r ≤ α

βL
,

where α is the unique solution in (0, 1) of the equation t3 + 2t2 − 2 = 0
(α =

√
3− 1).

2 Preliminaries

The sequence of polynomials {fk} and the polynomial gm defined by (1.2)
can also be defined by the following recurrence formula

f1(y) = y, f2(y) = y(1 + 1
2
y),

fk(y) = f 2
k−1(y)− yfk−1(y) + y, k = 3, 4, ...,

(2.1)

and

gm(y) = 2

(
fm(y)

y
− 1

)
fm(y).

It is easy to show that the two sequences (defined by (1.2) and (2.1)) and
the polynomial gm are identical.
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Lemma 2.1. Suppose 0 < y < α =
√

3− 1. Then
(a) fk(y) < 1 and fk(α) = 1, k = 2, 3, ...;
(b) gm(y) < α and gm(α) = α.

Proof. Both statements can be obtained very easily by induction on k and
m, respectively.

(a) For k = 2, f2(y) = 1
2
y2+y and y < α implies f2(y) < 1 and f2(α) = 1.

Suppose that fk(y) < 1. We must prove that fk+1(y) = fk(y)2− yfk(y) +
y < 1. The quadratic polynomial in fk(y), P (fk(y)) = fk(y)2−yfk(y)+y−1
has the zeros y − 1 and 1. Thus P (fk(y)) < 0. If fk(α) = 1, then fk+1(α) =
fk(α)2 − αfk(α) + α = 1.

(b) For m = 2,

g2(y) = 2

(
f2(y)

y
− 1

)
f2(y) =

1

2
y3 + y2,

and y < α implies g2(y) < α.
Suppose that for y < α, gm(y) = 2[fm(y)2 − yfm(y)]/y < α. We must

prove that gm+1(y) = 2(fm+1(y)/y − 1)fm+1(y) < α. We have

gm+1(y) = 2

(
fm(y)2 − yfm(y) + y

y
− 1

)
fm+1(y)

=
2

y
[fm(y)2 − yfm(y)]fm+1(y) < αfm+1(y) < α.

Using the first definition of fk, formulas (1.2) and (a), we have

gm(α) =
m∏
k=1

fk(α) = f1(α) = α.

Am important consequence of this Lemma is that the equation gm(y)−η =
0 has αm as the smallest zero in (0, 1) for any η with 0 < η < α.

Lemma 2.2. Let d and dk, k = 1, ...,m be linear mappings and suppose that
d is invertible. Then

d−1

(
d1 +

m∑
k=2

dk

k−1∏
j=1

d−1(d− dk−j)

)
= I −

m−1∏
j=0

d−1(d− dm−j).

The proof can be obtained easily by induction on m.
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3 Local convergence and radius of convergence

Let H be a real Hilbert space with scalar product 〈·, ·〉 and norm ‖ · ‖ and
C an open subset of H. Let F : C → H be a Fréchet differentiable mapping
and suppose that the set of solutions of the equation F (x) = 0 (or the set of
fixed points of T defined by (1.1)) is nonempty.

Let {rk}, k = 1, 2, ...,m be a numerical sequence defined recursively by

rk+1 = α̃rk

(
1 +

rk
2r̃

)
, r1 = r̃, (3.1)

where α̃ > 2/3 and r̃ > 0. Then {rk} is strictly increasing (this can be easily
shown by induction on k).

Theorem 3.1. Suppose that there exists F ′(x)−1, ‖F ′(x)−1‖ ≤ β, ∀x ∈ C
and that F ′ is L-Lipschitz continuous on C. Let r be such that 0 < r ≤
α/(βL), α =

√
3 − 1. Let p be a solution of F (x) = 0 and suppose that

B(p, rm) ⊂ C, where rm is defined by (3.1) for α̃ = α and r̃ = r. Then
the sequence {xn} given by the Modified Newton method with starting point
x0 ∈ B(p, r), remains in B(p, r) and converges to the unique solution p in
B(p, r). The rate of convergence is at least m+ 1.

Proof. For any x ∈ B(p, r), we have ‖yk − p‖ ≤ rk, k = 1, 2, ..,m. Indeed,
for k = 1, ‖y1 − p‖ = ‖x− p‖ ≤ r = r1. Using the definition of yk+1 and the
Mean Value Theorem, we get

‖yk+1 − p‖ ≤ βLr‖yk − p‖
(

1 +
‖yk − p‖

2r

)
.

Supposing that ‖yk − p‖ ≤ rk, we have

‖yk+1 − p‖ ≤ αrk(1 +
rk
2r

) = rk+1.

We can conclude that yk ∈ C, k = 1, ...,m and the sequence {xn} is well
defined.

From the definition of yk and Mean Value Theorem we can obtain

yk − p =

(
k−1∏
j=1

F ′(x)−1(F ′(x)−∆k−j)

)
(x− p), k = 2, ...,m, (3.2)

where

∆j =

∫ 1

0

F ′(p+ t(yj − p))dt, j = 1, ....,m.
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Using again the Mean Value Theorem, (3.2) and Lemma 2.2, we get

β‖F ′(x)−∆k‖ ≤ βL
(

1 + 1
2

∏k−1
j=1 β‖F ′(x)−∆k−j‖

)
‖x− p‖

≤ βLr
(

1 + 1
2

∏k−1
j=1 β‖F ′(x)−∆j‖

) (3.3)

and
x− T (x) = (I −∆(x))(x− p),

where

∆(x) =
m−1∏
k=0

F ′(x)−1(F (x)−∆m−k).

Using the notation δk(x) = β‖F ′(x) − ∆k‖ and taking into account that
‖F ′(x)−∆1‖ ≤ βLr, we can write

δ1(x) ≤ βLr;

δk(x) ≤ βLr
(

1 + 1
2

∏k−1
j=1 δj(x)

)
, k = 2, 3, ...,

and ‖∆(x)‖ =
∏m

k=1 δk(x). Let {fk} be the numerical sequence obtained from
(1.2) for y = βLr. It can be easily proved that δk(x) ≤ fk, k = 1, 3, ...,m.
Therefore

‖∆(x)‖ =
m∏
k=1

δk(x) ≤
m∏
k=1

fk = gm(βLr).

As βLr < α, from Lemma 2.1 (b) we have that gm(βLr) < α and

‖∆(x)‖ < α, ∀x ∈ B(p, r).

Now, from ‖∆(x)‖ ≤ α, using the Banach lemma, we have that I − ∆(x)
is invertible and ‖(I − ∆(x))−1‖ ≤ 1/(1 − α). Thus, since x − T (x) =
(I −∆(x)(x− p), we obtain

‖x− p‖ ≤ ‖(I −∆(x))−1‖‖x− T (x)‖ ≤ 1

1− α
‖x− T (x)‖, ∀x ∈ B(p, r).

Therefore p is the unique fixed point of T in B(p, r).
The convergence of the sequence generated by xn+1 = T (xn) results from

‖T (x)− p‖ = ‖∆(x)(x− p)‖ ≤ α‖x− p‖.

In order to obtain the rate of convergence, from (3.3) and Lemma 2.1 (a),
we have

β‖F ′(x)−∆k‖ ≤ βL

(
1 +

1

2

k−1∏
j=1

fj(α)

)
< βL

(
1 +

1

2
f1

)
=
βL

α
.



Vol. LVII (2019) Local convergence 19

Thus ∆(x)‖ ≤ (βL/α)m‖x− p‖m and

‖T (x)− p‖ ≤
(
βL

α

)m
‖x− p‖m+1, ∀x ∈ B(p, r).

The condition ‖F ′(x)−1‖ ≤ β, ∀x ∈ B(p, r), and the use of β in the
formula of the radius estimation seems to be unusual. More frequently used
is the condition ‖F ′(p)−1‖ ≤ β0 (for instance, the two formulas presented in
the Introduction use this condition). This shortcoming can be avoided by
replacing the formula r ≤ α/(βL) with

r0 ≤
α

(1 + α)β0L
(3.4)

where α is the unique positive solution of the equation x3 + 2x2 − 2 = 0
(α =

√
3 − 1). Indeed, take β = α/[(1 + α)β0L] and then, as β0Lr0 < 1,

using the Banach lemma, we have ‖F ′(x)−1‖ ≤ β. It is worth noticing that
this formula is identical with the formula of Hernandez-Romero for Potra-
Ptak method, except the equation giving ζ.

We have in turn

Corollary 3.2. Let p be a solution of F (x) = 0 and suppose that B(p, rm) ⊂
C, where rm is defined by (3.1) for α̃ = α and r̃ = r. Suppose that there exists
F ′(p)−1, ‖F ′(p)−1‖ ≤ β0 and that F ′ is L-Lipschitz continuous on C. Let
r0 be given by (3.4). Then the sequence {xn} given by the Modified Newton
method with starting point x0 ∈ B(p, r0), remains in B(p, r0) and converges
to the unique solution p in B(p, r0). The rate of convergence is at least m+1.

In the particular case of Potra-Ptak method the formula (3.4) is similar
with the formula proposed by Hernandez-Romero r ≤ ζ0

(1+ζ0)β0L
, where ζ0 is

the unique positive solution of the equation x3 + 4x2 − 8 = 0.
It is worth noticing that the estimations proposed by Hernandez-Romero,

Catinas and ours (Theorem 3.1), appear to be not comparable. Several
numerical experiments show that the values given by these formulas can not
be correlated to each other. Table 1 provides the results obtained by applying
the Potra-Ptak method for the functions: f1(x) = 0.2x5 − 2x2 + x, f2(x) =
0.2x3 − 0.3x2 + x, f3(x) = x− cos(x).

The sign ? means that the derivative of T (the iteration function in Cati-
nas formula) is not Lipschitz continuous around p = 0. It can be seen the
absence of any order in size between the estimation given by the three for-
mulas.
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Hernandez-Romero Catinas Our proposal The best radius
f1 0.139634 ? 0.109787 0.144933
f2 0.473295 1.791662 0.512257 ∞
f3 0.925150 0.594361 0.735024 ≈1.4806

Table 1: Local radii of cconvergence

Remark 3.1. The radius of convergence proposed in [4] (r ≤ αm/(βL),
where αm is the smallest positive solution of the polynomial gm(y) − η),
depends to some extent on the parameter η. The numerical experiments
show that this dependence is not very strong. More precisely, the solution
of the equation gm(y) − η = 0 is not very sensitive to η for large values of
the parameter m. The sequence {αm} is increasing for η <

√
3 − 1 and

decreasing for η >
√

3 − 1 and tends to
√

3 − 1. For example, for η =
0.5, α10 = 0.73381207..., α20 = 0.73219954..., α30 = 0.73206452..., α40 =
0.73205208... ≈

√
3− 1.

In what follows we estimate the efficiency of the Modified Newton method
and compare it with the efficiency of the Newton method. We will use the
classical Ostrowski’s index of efficiency, defined by Index = %1/d, where % is
the convergence order and d is the number of functional evaluations. The
computation of F (x) for a given x means n functional evaluations, therefore
the computation of the Jacobian of F means n2 evaluations. Let g and f be
the efficiency indexes of Modified Newton method and of Newton method,
respectively. We have

g(n) = (m+ 1)
1

n2+mn , f(n) = 2
1

n2+n .

For m = 4 the graphs of the functions g and f are given in Figure 1.
It can be seen that the efficiency index of Modified Newton method is

greater than that of Newton method if n is grater than the abscissa xP of
the point P (in this case, xP = 1.269...). The formula for xP is

xP (m) =
ln 2m

m+1

lnm+1
2

.

When m increases, the point P moves to the right, but not very fast. For
example, if m = 2 then xP = 0.709..., if m = 5 then xP = 1.523..., if m = 10
then xP = 2.659..., etc.

Remark 3.2. The present investigation gives a satisfactory answer to the
following problem:
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Figure 1: The graphs of efficiency indexes for Modified Newton
method (m=4) and for Newton method.

For a given nonlinear equation, if the number of steps m, after which the
derivative is re-evaluated, is very large, then the efficiency index of Modified
Newton method is decreased. The problem is: Does there exist a threshold for
this number? The answer is affirmative. If n denotes the unknowns number,
such a threshold is the solution ms of the equation

xP (m)− n = 0.

For example, if n = 3 the threshold is ms = 11. This means that for equations
with n ≥ 3 the number of steps after which the Jacobian is re-evaluated
should be smaller than 11 to obtain an improved efficiency index.
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Ştefan Măruşter

Department of Computer Science
West University of Timisoara
B-l V. Parvan nr. 4
Timisoara
Romania

E-mail: stefan.maruster@e-uvt.ro


