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Abstract

We reanaiyze the recently proposed proof by Jensen and Stein-Schabes [1] of the

No Hair Theorem for inhomogeneous spacetimes, putting a special emphasis on the

asymptotic behaviour of the shear and curvature. We conclude that the theorem

only holds locally and estimate the minimum size a region should be in order for it to

inflate. We discuss in some detail the assumptions used in the theorem. In the last

section we speculate about the possible measure of the set of spacetimes that would

undergo inflation.
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I. Introduction

In a recent publication Jensen and Stein-Schabes [JSS] [1] gave a proof of a some-

what modified version of the cosmological no hair conjecture valid for a large class

of inhomogeneous spacetimes with negative or zero three-curvature. This was an at-

tempt to generalize earlier work by Wald [2] on homogeneous models. Some other

studies on the isotropization of homogeneous models and on the stability of de Sit-

ter can be found in [3,4]. Despite claims that Wald's proof is not applicable to all

homogeneous models [5,6], it is widely believed that if there is a non-zero cosmolog-

ical constant present all anisotropic models will undergo inflation [7]. For the case

of inhomogeneous models the theorem's predictions have been explicitly checked in

at least two cases. One is the solution found by Barrow and Stein-Schabes [8] for a

quasispherical Szekeres-type model and by Stein-Schabes for the case of a spherically

symmetric model [9] (see also [10] for some other examples). In all these cases the

universe starts in a highly inhomogeneous phase and evolves through an inflationary

stage into a de Sitter like universe (at least locally).

The importance of such a conjecture is evident if we want to avoid or at least soften

somehow the difficult task of determining the initial conditions for the Universe (these

might only come when we have a complete theory of Quantum Gravity, or maybe

Superstrings ?).

The theorem proved in [1] has several assumptions and restrictions of applicability

that have led people [11] to speculate that even though the result is applicable to a

large class of models this class may not be large enough, i.e. it might still be of zero

measure in the set of all possible models. In this paper we would like to argue to the

contrary and take the opportunity to discuss in more detail some of the assumptions

used. In JSS it was briefly argued that the theorem might only hold locally, in this

paper we will show that this is indeed the case by carefully analyzing the different

assumptions used. We shall give an estimate of how large must a region be for the

theorem to be applicable. In particular we will derive in a rigorous manner all the

asymptotic limits on the metric and the energy momentum tensor, and point out

some of the highs and lows in the result. For the notation and conventions we refer

the reader to JSS.

Furthermore, we will give a heuristic argument to support our belief that the set of

models that undergo inflation is not of zero measure (see [12] for some more discussion
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on this point). We shall also comment on several recent attempts at establishing this

result and how our point of view differs from those in the literature [13].

II. The No Hair Theorem

We will start by giving the conjecture used in JSS and give the principal steps for

proving it. We will then discuss the assumptions and results.

Theorem : Any ezpanding universe whose spatial sections are not positively

curved (3R - P _< 0), with a metric that can be written in a synchronous form, with

a positive cosmological constant and an energy-momentum tensor satisfying the Strong

energy condition and the Dominant energy condition, will approach asymptotically

the de Si_ter solution.

(i) The dominant energy condition states that Tv,_V't '_ > 0 and Tv_ _ is non-spacelike

for all non-spacelike t_;

(ii) The strong energy condition states that (Tv_,- {gu_T)V't"

spacelike t t' (see [14]). 1

> 0 for all non-

In a synchronous reference system goo = 1,9o,, = 0 and one can define hab = --gab

and gab = _t.b, where the dot denotes the time derivative. Then with h = det h.b the

volume expansion can be defined as K = _(_t/h) = _Sol° = _,tlL*b-_b. (Note that

can be interpreted as the three-volume V and so K = (_'/V).)

If Pab denotes the Ricci-tensor constructed from hab and we define P as its trace,

1 c
introduce a traceless tensor o',s as 2_r.b = S.b -- _sch,b, then we can recast the trace

of the space-space and the time-time Einstein equations as:

R=A_I_K 2 _3 -o_°b_°b (T:- T) (3a)

__ 1 ab o

- -_o',,bo" - T o` + _- (4)

- -,-); Greek indices run from 0 to 3, Latin ones from I to 3

k + K 2+ P = -Z: + 3T
2 + 3A (3b)

Note that here T_ = -h"cT_, but P_ = h""P,b! Eliminating f_ from this equations

one gets:
"I P

A - 1-K2
3

tThe signature ofg_,v will be (+, ,

and T = Tin, gin'. )
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From (i) we get that Too = Too > 0, o-=bo-ab is non-negative and using the assumption

that the three curvature is not positive i.e. the models are spatially open or flat

models, we get the following inequality

K 2 > 3A (5)

From the strong energy condition with t v _ it follows that To° - 1= _T > 0 and hence

from eqs. (3) and (4):

k < A- 1-K < 0 (6)
-- 3 --

From these two inequalities we can conclude that if K > 0 for some arbitrary time, it

will be so for all time, and will approach x/_A. Quantitatively, after integrating the

first inequality we get

K < _ coth (t + i(z")) (7)

and so for large times K is forced to take values in the range

< K _< v/3-A(1 + f(z°)e -2V_[A-t) (8)

where f(z a) is some positive function, related to t(z _) in eq.(7).

From eqs. (4) and (8) we get:

0 < -P <_ 4f(x")Ae-2V_ t (9)

2T:

In JSS it was then concluded that _r_s = 0 and K = _ asymptotically. Using the

definition of aab we can get in this limit that the three metric satisfies

which has the general solution

tt_ - 2v_h=b = 0

= °)

However, we also know that _rab = h°chba_ca, so

(Tab Crab = O'abO'cdhaCh bd Oc e_2V/_ t

from (11)

from (9)

(10)

(11)
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From these two conditions we can only conclude that tr=b < ezp(_/_t). In fact, if

we now use a result proven by Ellis [15] stating that or=be°b = 0 ¢==_ tr=b = 0 it is

clear that we cannot have the equality. The reason for this technical point is the fact

that the above result only applies to the case where the shear tensor or its magnitude

vanishes exactly and in our case this is only an asymptotic limit. What we sham show

is that the result also holds, at least in first approximation. The locality of the result

will become obvious when we complete the argument. Since we are looking for the

asymptotic behaviour, this immediately suggests some sort of expansion for _s of the

form

a=b(x_,t) = _ _r(_;)(x=)e-=V/_ t. (12)
_0

rig2

This reminds us of the technique used by Starobinsky [4]. If we do this, it is straight-

forward to conclude from the definition of oob that the metric has to have a similar

expansion,
OO

hob(_=,t) =/'o_(x°)e=v_'-'+ Z _;)(xa) e-"_' (13)
n----0

i.e. the leading term in the metric is really given by eq.(11).

It is convenient to introduce an orthonormal tetrad at this point. We shall denote

with bars quantities expressed in this frame. The locality comes into play at this

point as the existence of such a frame can only be guaranteed at one spacetime point,

we shall denote it by _. In this frame the dominant energy condition becomes

T_ _> { Tab [ [14]. This implies, for example, that if T_ = 7 °° oc exp (-2V/_-aA-t ) then

oc exp (-2_/-_ t). In this frame the metric is diagonal and becomes de Sitter when

the proper coordinate system is chosen, i.e

(1 0 )g- (i,=-a) = o -e-=v_('°-_)_o,

At this spacetime point the components of the stress tensor become

(14)

T '° _ e-_vff_ (15)
_b

and if we now go back to the unbarred synchronous system we get that Too ¢x exp

T.. ^t ),(x exp T.b_-2,5t), _-,_ w_le the faith of is unclear.
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Looking back at the rest of Einstein's equations we can now study what happens

to the curvature of the manifold. From these we get that the trace of the energy-

momentum tensor has to vanishes at least as exp (-2V/_t). Then to zeroth order

the curvature is given by
1

Pob = Tab + 2Thab (16)

Since there is no information about the vanishing of the right hand side we can-

not conclude that the universe becomes globally flat. However, we can analyse this

quantity in the barred reference frame at time to and get

Pab = Tob + _obT _ e -2_° (17)

This implies that to first order the first and second derivatives of the spatial metric

vanish. Therefore, there must exist a neighbourhood of the space-time point _o",

(where the diagonalization was made) that will remain de Sitter like. The size of this

region can be, in principle, estimated from eq.(16). It is given by t = ezP(v_(t-

to))to, with lo = _°.

Now it is quite natural to ask whether to and so t do have any physical meaning,

the choice of to being apparently arbitrary. The answer to this question is twofold.

Firstly, if A were a genuine cosmological constant, we do not need any interpretation.

In this case the theorem just states in mathematical form our expectation that after

a period long enough (see eqs.(8) and (9) for the timescale _3_) the cosmological

constant will dominate in every region. The physical reason is quite simple: every

quantity except of A will die out due to the expansion.

The situation is quite different if we think in the spirit of inflation. In this case A

lives only a finite time r, say from tl to t I. Then to should be in the interval [ti, if].

Moreover, to - tl should be large compared to V/3-/A, the timescale for the asymp-

totic time evolution. Now choosing a to which satisfies the above requirements, it is

conceivable that our presently observable Universe is within this region and assum-

ing a graceful exit of the inflationary phase, the Universe would enter the standard

radiation dominated phase. We can also see that the high degree of symmetry of our

cosmic neighbourhood does not require the accurate specification of initial conditions

(see the following section), but rather the general requirements (i) and (ii) for the

energy-momentum tensor and P < 0 in a synchronous reference system. This last

condition will also be discussed in Sect.III. We note also that lo is not independent of

the choice of to, see eqs.(16) and (17). Qualitatively, the larger is to, the larger is lo.
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The physical quantity t does not depend on the choice of to (restricted to the interval

given above): it has for every allowed choice the same order of magnitude.

Some comments are in order. The theorem does not imply that the very large

structure of the Universe is highly symmetric. In fact there are probably large regions

which are "differently smooth enough" joined smoothly to form a patchwork universe

(See Wald, ref. 2). This structure is in general governed by eq. (16).

It is quite clear that the reason such a result can be obtained is the fact that the

metric has some sort of isotropic scaling, i.e. the space- and time-dependent parts

decoupled, basically leaving a universe whose features are frozen in. In some sense one

has compatibility between an isotropic scaling and the dominant energy condition.

III.Initial Conditions and The Measure of Space

The problem of initial conditions can be thought of as that of specifying initial

values for all matter and geometrical fields at one arbitrary initial (Cauchy) hyper-

surface and then using the dynamical equations to follow the evolution of such a

configuration. As we have just mentioned all the fields present can be put into two

distinct classes. On one hand we have the gravitational field and on the other the

matter fields (like the standard scalar field).

We would like to make a remark about the distinction between our line of question-

ing and that of several papers that have appeared on the same subject, in particular

those of Gibbons et al and Belinski et al [13]. In these papers questions related to

the generality and/or measure of the inflationary models have been addressed. How-

ever, their emphasis has been on the initial conditions for the matter fields given a

fixed gravitational background. Then the general strategy goes as follows: Take a

Robertson-Walker spacetime, a real scalar field ¢ with potential V(¢), and ask: What

is the measure of the set of initial conditions on the matter fields (¢(to),Oo¢(to)) and

on the scale factor R(to) that would lead to inflation. These papers have argued

that almost all the RW models with a massive scalar field undergo inflation. We in

contrast, take the matter fields as given, i.e. an inflaton field (some scalar field with

a flat potential and the right initial values) and investigate the possible spacetimes or

better said the possible gravitational degrees of freedom that would allow for inflation.

Things like Bianchi models or some particular inhomogeneous models.

i!l!!l!!r



Of course, the most general investigation should enclose initial conditions for the

matter fields and the gravitational degrees of freedom as well. This type of questioning

was discussed in a quMitative way by Linde [16].

It has been shown in the previous section and in [1,7-10,12] that given a scalar field

¢ with the right potential, inflation is very common. 2 Furthermore, we shM1 argue

that the set of models that undergo inflation is not of zero measure. To calculate

the measure is not easy, the reason being that from the mathematical point of view

there is no way of choosing the right measure, while the physical principles to guide

us in the choice are somewhat obscure. There are many possible measures that

satisfy all technical requirements, like being continuous, monotonically increasing,

etc [18]. The one that sounds more natural to use is the invariant area of phase

space, in particular we will use a normalized measure. In terms of this we can ask

how probable are the initial conditions that lead to inflation. We will argue that even

though we cannot fully answer this question, first because its answer probably lies

outside of the classical regime that we are considering and second because we don't

fully understand how to choose a measure, we can at least construct one where the

set in question has non-zero probability. We also argue that although it might be

possible to construct a very contrived measure where the solution is zero, this does

not sound very reasonable. It has been argued by Penrose and others that using

the time translational invariance of Einstein's equations we could in principle select

the present time as the initial hypersurface on which to define a measure. Doing so,

our universe would clearly be part of a set of zero measure, the set formed by the

RW metric and some neighbourhood around it, and then by extrapolation take this

measure back into the early epoch to get the "zero solution". This point of view has

been criticized most eloquently by Turner [19]. His argument basically states that

since the universe had an "initial epoch" then there would seem to be a more natural

"initial hypersurface" than the one chosen by Penrose. We would like to say, that

although the choice of a proper measure still escapes us, reasonable arguments can

and have been constructed to at least conclude that the measure of the set of models

that inflate is not zero.

We will consider two different settings. Let us think of the set of all possible

spacetimes. It is clear that if the models are highly inhomogeneous the concept of a

2One should keep in mind that the inflaton field is also evolving, so one should ask if the vacuum

dominated phase can last long enough. It has been shown in [17] that this does not present any

major problem.
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scalar curvature being of a given sign on the initial hypersurface all through space

might not be the correct one. This quantity will, in general, be a function of the

spatial coordinates and time.

It is clear that if the models have a scalar curvature of a given sign, even if it

changes from point to point, the NHT can be used and so predict its inflation. If we

restrict ourselves for a minute on these models it is not unreasonable to assume that

there are as many positively as negatively curved models, and a set of zero measure

(with respect to this subclass) which are flat. Then in a trivial way we can construct

a function say .T that assigns to every model the value of its mean curvature P. This

could be defined as the integral of P(z") over the invariant three-volume divided by

the invariant three-volume (in the case of a RW model it is just k). This is a well

defined function since P has a well defined sign. One way of picturing this manifold

would be_to construct a surface with the average curvature and superimpose little hills

and valleys according to the curvature distribution. It is clear then that the question

of the measure has been reduced to asking, for example: What is the probability of

choosing at random a real positive (negative or zero) number ? The most sensible and

__ 1
intuitive answer (but by no means the only one) is that there is a probability p -

of this being positive or negative and zero of being zero. In this case, we have shown

that there is a hypersurface where the measure of the set that has T of the right sign

is not zero. Then, since we expect Einstein's equation to map nonzero measure sets

into nonzero measure sets we can justify our earlier claim.

However, it is conceivable that this types of manifolds form themselves a set of

zero measure in the space of all possible models. This constitutes our second scenario.

If we now think of an arbitrary space where the sign of the curvature scalar is varying

from point to point, then we can play a similar game as before. Let us subdivide

this manifold into regions of order to (as defined in the previous section), and then

define a mean curvature of that small region in the same way as before. (This can

be done since there is always a small neighbourhood of the diagonalizing point and

we are choosing a nonsingular initial hypersurface). Then the conclusion is the same

as before: unless the space is pathological (non-continuous, non-differentiable, not a

simple topology, etc), the small region of space that satisfies the NHT is as probable

as one that does not.

However, this does not necessarily mean that this region will inflate. The problem

is that in order to make use of the NHT, we need the conditions - in particular the

nonpositivity of P - to be fulfilled for all time of interest, not only at the initial
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moment to. This may not be the case for all possible models. The sign of P can

change from time to time in a given region, depending on the motion of the matter.

Mathematically, we could write down the time evolution equation for P using eqs.(3)

and (4) together with the conservation of the energy-momentum tensor T_ = 0 (see

also [5]). But without additional input on the matter content it is little that we can

say about the time evolution of P, or the average curvature P. In principle every

kind of behaviour is possible: if P is negative in a region at to, it can remain negative,

can change the sign or even can oscillate between negative and positive values. No

definitive prediction seems to be available. The only possibility is to have lo to be

large enough in order to avoid the effects of the outer regions to become important

(changing the sign of P). A crude estimate can be lo > r, which ensures that

during the dominance of the vacuum energy (the effective cosmological constant) the

properties of the region we are looking at do not change qualitatively. In this general

case we cannot give any definitive claim about the measure of the inflating models.

Qualitative claims could be made if we knew some details of the model, e.g. the

lifetime of the effective cosmological constant.

We would like to express our belief again that in spite of all the above said the

probability that a model with arbitrary initial conditions for the gravitational degrees

of freedom inflates is not negligibly small but a reasonable number, say O(10-1).

We are aware of the subjective and almost esotherical nature of our arguments,

unfortunately a full solution to this problem can only come from a Quantum Theory

of Gravity. Nevertheless, it is interesting to note that, the classical description, when

sensible processes are included, does not preclude inflation, but on the contrary seems

to favor it.

Finally we note that the same conclusion, namely that we cannot reach any defini-

tive answer whether inflation occurs or not in a general model, have recently been

achieved by Raychaudhuri and Modak [5], although they have used a somewhat dif-

ferent approach to the question. We agree with them in saying that "a discussion of

the probability of inflation starting from very general initial conditions ... cannot give

any unequivocal conclusion - perhaps that is obvious." We can add to this statement

only that many of the obvious results are far from obvious before stated explicitly.
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IV. Conclusion

We have investigated in detailed some of the assumptions used by JSS [1] in

proving the NHT. In particular we have done a more thorough asymptotic expansion

of the shear tensor and concluded that indeed the metric approaches the de Sitter

solution. However, this only happens locally. That is, what we have established is

that the result can be applied to a small neighborhood of an inhomogeneous universe

of a certain small size that can undergo inflation and eventually give rise to our

Universe.

We have also discussed briefly the generality of inflation as a probabilistic process

and argued that we can construct at least one measure where the probability of having

the right initial conditions for the universe to undergo inflation is not zero or a very

small number.

Of course, we do not claim this to be a solution of the problem of initial conditions

as its applicability is restricted to classical universes described by Einstein's Theory,

and we have made some questionable assumptions about the content of the Universe.

However we feel it is encouraging the fact that classically, inflation is not the most

improbable phenomenon in the early universe. We have also briefly discussed the

difference in our approach where the basic degrees of freedom we are investigating are

the gravitational ones while the matter content is arbitrarily fixed, and the work cited

in [13] where the approach is the complement to ours. There the geometry of the

spacetime is given and the initial conditions on the matter content are investigated.

Clearly, we would need to study both simultaneously to give a more definite answer

to this question [16].
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