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Résumé. 2014 La vitesse de propagation d’une onde en eau peu profonde varie avec sa profondeur
h(x). On s’attend à ce qu’une onde plane de vecteur d’onde k parallèle à x soit partiellement réfléchie
par les modulations du fond. Nous prédisons que ceci doit conduire, dans le cas d’une modulation
aléatoire du fond sur une distance assez longue, à une localisation exponentielle de tous les modes
propres et à une réflexion totale d’une onde incidente, phénomène analogue à celui de la localisation,
découvert et largement étudié en physique des solides. Une première étape de l’étude expérimentale
de la localisation considère l’effet d’une modulation spatialement périodique du fond (réflexion
de Bragg) et l’effet supplémentaire d’une variation aléatoire de l’amplitude de cette modulation.

Abstract. 2014 Linear shallow water waves have a velocity which varies with the water depth h(x). We

expect that a plane wave (wave vector k parallel to x) will be partially reflected by modulations of
the bottom. We argue that this should lead, in the presence of a random modulation of the depth
extending over a long enough distance, to exponential localization of all proper modes and to the
total reflection of an incident wave, a phenomenon analogous to the one of localization discovered
and widely studied in solid state physics. As a first step in the experimental study of localization of
water waves, we show the effect of a periodic modulation of the bottom (Bragg scattering) and the
additional effect created by using a random amplitude.
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The study of surface waves over a rough bottom is a subject of importance to coastal engineers
and sedimentologists. In the simple approximation where the bottom pattern is independent of
the wave formation (which excludes more complex cases, due to redistribution of thin sediments
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by the flow), the.velocity of linear surface waves is a function of the depth h(r) in the limit of a
wavelength ~, large with respect to h. Obstacles as well as undulations of the bed cause partial
reflection of incident waves. The subject is a well documented one from both the theoretical
and experimental sides. The recent work of Davies [1] is an example of the first type. Making use
of a Fourier analysis of a rough surface and using the principle of superposition of linear equa-
tions, Davies reduces the problem to that of a single sinusoidal period of a structure with wave
vector, k, parallel to that of the modulation, K. One of the conclusions of this study is the existence
of a strong reflection coefficient when 2 k/K = 1. This result is the equivalent of the Bragg con-
dition in one-dimensional models of solid state physics which causes the existence of a gap for
similar Brillouin zone conditions in the case of small periodic potentials. The energy splitting
would be, in the present case, the difference in energy between waves having their nodes centred at
the crests of the modulation or on the valleys. Recent experiments by Heathershaw [2] with plane
waves in a long narrow channel and a sinusoidal bottom tend to confirm this analysis.

Using a perturbation expansion, Davies [1] was able to treat the more general case of a non-
sinusoidal periodic modulation of small amplitude which he analysed by Fourier series. There is,
however, a crucial step in the extension of such results from periodic or nearly periodic bottoms
to truly random ones. It is well known in solid state physics that the propagation of Bloch waves
in a random potential is dramatically different from that in a periodic one : localization of the
stationary waves can result from disorder. In the particular case of one-dimensional systems,
such as a metallic wire with very small cross section, a surprising prediction of the theory was that
the system should be an insulator at T = 0 whatever the nature and the strength of the disor-
der [3, 4].

It is interesting to see whether, despite the difference in the nature, scale and equations for the
two problems, localization concepts can predict new phenomena in the physics of rough bottom
surface waves. On the other hand, if such phenomena are observable, hydrodynamics would
provide a beautiful macroscopic model, in one and two dimensions, of a phenomenon theoreti-
cally understood but whose manifestations are only indirect because of its microscopic character.

In the one-dimensional case, the linear equation of shallow water waves [5] is

where g is the acceleration due to gravity, p the density of the liquid, u(x, t) is the (small) amplitude
of the wave at time t at point x [5]. The corresponding stationary equation at frequency co reads :

In the case of a horizontally flat bottom, equation 1 reduces to

whose stationary solutions are plane waves with velocity

In the case of a periodic bottom, of period A, there appear forbidden bands, and for frequencies
in these bands, there are no stationary states, and initial states built up with such frequencies
would be completely reflected, whereas for frequencies in the pass bands, the stationary states are
of the kind uq&#x3E;(x) e~~x where M~(jc) is a periodic function of period A. Initial states with frequencies
in a pass band would propagate to infinity as t z oo.
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ln contrast, if we apply the concepts of localization theory to (1) with a random bottom potential,
we predict that all stationary physical solutions of (1 ) should be exponentially decaying; a weaker
consequence is that if one sends in the system some wave it will be completely reflected; in other

words, the transmitted wave should decay exponentially with distance x over a disordered bottom.
We can make these conclusions safely using what is known from localization theory [3, 4]. Howe-

ver, in contrast to the Schrodinger equation or finite difference tight-binding models which are

usually studied, the rate of exponential decay y(D) at frequency w will tend to 0 with the frequency;
in other words, the localization length ç(w) defined as y(w)-1, diverges for c~ -~ 0. In fact equa-
tions 1 and l’ are the continuum analogs of the equations describing phonons in condensed matter

physics, and the previous remark is a consequence of the difference from an electron propagation
equation.
The basic mechanism responsible for localization is the destructive phase interference between

the incident wave and the various reflected waves from various obstacles. This is a large scale
effect which should not depend on a short-range cut-off, so that we can use the qualitative predic-
tions obtained from the discrete analog of (1’).
We have started an experimental program to test these predictions and to evaluate localization

effects in parallel with numerical simulations. As a first step in the experiment, we considered the
effect of a sinusoidal bed of limited length

in an otherwise flat bottom Yb(X) = 0 [6]. Subsequently, we consider the effect of using random
values of b for the different periods of the modulations (Fig. 1).
We use a channel having the following geometry : length : 1.5 m; width : 0.35 m. The average

water depth h is varied between 1 and 3 cm. A vertical wave generator creates a plane wave of

amplitude a(x) :

at one end of the water tank, with an absorbing beach with a 120 slope at the opposite one. In the

range of wavelengths used (2 n/k = 5 to 20 cm) and using waves of small amplitude a ( ~ h/10),
we found equation 3 to apply in the case of flat bottom as expected from the shallow water wave
conditions [5].
For a given wavelength and amplitude of the wave, we define the transmission coefficient

T(w) as the ratio of the amplitude a of the wave for a given depth (or average depth) measured
next to the beach for a flat and a modulated bottom. T is simply measured from the ratio, in the
two cases, of the amplitude of the deflection of a strobe beam obliquely incident across the water
depth. Figure 2a is obtained for a sinusoidal bottom with m (= K(L2 - LJ/2) = 16 periods
and amplitude b = 5 mm. It has a sharp transmission minimum at a frequency co = 5.5 Hz such
that the Bragg condition A = 2 A = 10 cm is fulfilled (A = 2 nl K is the period of the bottom [7]. )
Due to the finite number of bumps we expect secondary minima in wave vector separated by
I 6k IlK = 1/2 m as predicted by Davies ([6], Fig. 2). Only the first two secondary minima have
been observed.

Fig. 1. - Schematic of the experiment. The observation of the amplitude of the wave uses the deflection of an

oblique light beam across the water depth. P : vertical plunger; B : absorbing beach with 12° slope.
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Fig. 2. - a) The transmission coefficient T is defined as the ratio of the transmitted amplitude for a perio-
dically modulated bottom over that for a flat one having the same average depth (h = 3 cm). The dotted
curves are interpolations between the experimental points which are given with a 10 % absolute accuracy.
The period of the modulation of the bottom is A = 5 cm, the amplitude b = 5 mm. b) Same figure as figure 2a

except for the random variation of amplitude b of the crests of the bottom between + 5 and - 5 mm.

Figure 2b was obtained with the same wavelength A = 5 cm but with the amplitudes b(x) of
the m periods drawn at random from + 5 to - 5 mm. The transmission coefficient curve has the
same dip around the Bragg condition but it is smeared out, thus indicating the effect of ran-
domness on the curve of the transmitted amplitude.
We are developing the experiments on completely random beds, in parallel with a numerical

study using equation l’to check if localization might be observed in such experiments.
This amounts to asking the order of magnitude of the localization length ç(OJ) (with respect

to the ordinary attenuation length of the wave and to the length of the experimental tank). There
are systematic methods to estimate it and practical computations are being carried out. As a
matter of principle, it can be said that one can get arbitrarily small localization length ~(c~) for (1’)
by choosing large disorder, i.e., wilder random fluctuations of the bottom. Clearly if one wants a

very short localization length, one will step out the range of validity of (1 ) : non-linear phenomena
are no longer negligible. However, we think that, here again, the localization phenomenon in the
linear regime should have some influence on the nonlinear one. This will be developed in future
work.

Another question concerns two-dimensional systems. Adapting the usual localization theory,
we predict that, in some range of disorder and frequency, the proper modes of the linear equation
will again be exponentially localized.

Besides the random case, another case of interest would be the one of an almost periodic bottom,
e.g., cos Kx + cos aKx, a being irrational. The theory suggests there again many interesting
phenomena : in particular forbidden bands could be dense and, in some regimes, stationary
modes could be localized.
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In conclusion, we have tried to throw new light on a classical problem in hydrodynamics which,
possibly, can provide new practical solutions to oceanographers. In this respect our motivation
is very similar to that stressed by Hodges [8] in classical acoustics with random scatterers.
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