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1. Introduction. In this paper we study boundary-value problems for the stationary
Ginzburg-Landau equation in two space dimensions in the limit of fast reaction and
slow diffusion:

Am + -yw(l - \uf) = 0 in Q. (1.1)
e

2 2Here Q is a bounded domain in R~ with smooth boundary u e R and e a
positive constant such that e < 1 . We are interested in solutions u with singulare
behavior as e —► 0 near a zero of ue in fi. Such a zero represents a regularized
topological singularity, also referred to as a defect or a vortex.

Equation (1.1) describes the stationary states of evolution equations such as the
Ginzburg-Landau equation [GL]

iut = Am + u(l - \u\")
or its dissipative version

2
ut=Au + u{ 1 - \u\ ).

These equations arise in many areas of physics. We mention amplitude equations for
general classes of pattern-forming systems of partial differential equations [CNR,K]
and the theory of superconductivity [D, KT], In these and other contexts, the most
important and best studied phenomena are associated with the dynamics and inter-
action of defects [N, PRo, PRul, PRu2].

For definiteness we impose at the boundary of Q the Dirichlet condition

u(x) = g{x) forxeSQ; (1.2)

analogous results for the Neumann problem will be given later. Here g: c)Q —> R2
is a given smooth function about which we assume

Hgl: |g-(x)| = 1 forallxedQ;
Hg2: argg(x) increases by 2n when x traverses d£l once in the positive direc-

tion (see extension below).
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86 P. C. FIFE AND L. A. PELETIER

It is known that this problem has a variational solution uf which for e sufficiently
small has precisely one zero ae,

i*M = 0, (1.3)
when Q is star shaped [BBH1,2], Our objective will be to find the possible locations
a0 of this zero ar in the limit as e —> 0 and to give an asymptotic description of
u,-

The criterion that we develop for the location a0 has an immediate analog, valid
when (1.2) is replaced by the zero Neumann condition on dQ.. In this case the
existence of singular solutions comparable to we is not guaranteed.

Returning to the Dirichlet problem, we see by compactness that ae tends to a
limit aQ as e —> 0 along a subsequence, and it was shown in [BBH1,2] that a0 e Q.
We shall see by a formal analysis that

ue(x) —> e'e°(A) ase-+0,

uniformly on compact subsets that do not include aQ . The phase 60 is a real-valued
function that is harmonic in Q\{a0} and satisfies the boundary condition

e'e°(x) = g(x) for all x e dQ. (1.4)

Here we have identified R with C and expressed u in complex notation. This
practice will be continued throughout most of this paper. By assumption Hgl we can
write

g(x) = eix{x), (1.5)

where x(x) is a real-valued function. Thus

90(x) = %{x) for all x £ dQ.. (1-6)

Let <pa{x) = arg(x - a). Then we can define for any a G Q the function

y/0(x\a) = d0(x)-<pa(x), (1.7)

which for a — a0 will be shown to satisfy

Ai//0 — 0 in fl\{a} ,
V/o = X~(Pa on dQ

and to have a removable singularity at x — aQ.
Our main observation can now be formulated as follows.
Suppose (a,.) is a sequence of zeros of solutions ur of Problem (1.1), (1.2), which

converges to a point a0 e Q as e —> 0. Then

V>0(x; a0)l.v=a0 = °- (L8)

From a physical perspective the condition (1.8) can be elucidated by viewing i//Q
as a field generated by the defect, in combination with the vector field prescribed
on the boundary of the domain. Condition (1.8) then states that the limit point a0

(P)
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must have the property that

if a defect is located at a0, then its own field y/0(-; a0) has a stationary
point at a0.

After this result was obtained, Bethuel, Brezis, and Helein in a remarkable paper
[BBH2,3] proved the validity of this vanishing gradient condition for the location of
a0 , as well as its extension to the case when there is more than one defect by means
of variational methods. Our analysis is formal, but provides additional insight into
the nature of uf .

As a simple example, we consider Problem (1.1), (1.2) on the unit disc, i.e., Q = B{
and choose for x = argg, in polar coordinates (r, cp),

X(l, (p\ 0) = (p + Asm(2<p), <p = argx, ^eR.

By symmetry we anticipate that the defect will be located at the origin. Thus, setting
a0 — 0, the boundary condition in Problem (P) becomes

y/Q(l, cp; 0) = A sin(2p) on dBr

For the solution of Problem (P) we now find

V0(r, <P\ 0) = Ar2 sin(2<p),

so that V y/0 does indeed vanish at the origin, as expected.
The analysis given in this p;

lutions with N zeros of degre<
Then, as before, we find that

"o
The analysis given in this paper for a single zero of ue can easily be extended to so-

lutions with N zeros of degree 1. Suppose they are located at the points a1 , , a* .

ue(x) —► e'e°(x) as s -+ 0

uniformly on compact sets in Q\a0 , where a0 denotes the set of limit points a'0 of
a'c. The phase function 6() can now be written as

N

0O(x) = Pa'M + ; ao) '
;= 1

in which <pa,(x) = arg(x - a'Q), so that <j/0 is single valued on d£2. We now find
that i//Q is the solution of the problem

Ai//0 = 0 in Q,
N

V/0 = X-YIk- ondn-
1=1

For the possible locations of the zeros we obtain the set of conditions

V^0(x;a0)+ ^(■x)| =0 for; = 1, 2, ... , TV. (1.8a)
,=1' ° J x=a'0

In the inner expansion near a zero a'0 , the first term is unaffected by the other zeros
and is still the ground state defined by Problem (II). The second term, however, is

(P)
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affected, because it depends on the second derivatives of y/Q and the angle functions
(p, of the other zeros.

0
For the Neumann problem, when the boundary condition

= 0 on dQ
dv

is imposed, the vanishing gradient condition (1.8) can also be shown to hold for a
suitably modified function i//Q. The boundary condition in Problem (P) then needs
to be replaced by

on <9Q.
dv dv

Since f0Qd<pa /dv = 0, the existence of y/Q is ensured and it is unique, except for
an additional constant. Our analysis below can easily be modified to apply to this
case. For example, there is now no need to introduce the phase shift aQ and the
boundary condition on y/[ becomes dy/Jdv - 0, so that y/{ will be constant.

It should be pointed out, however, that there is no guarantee that a point a0 for
which (1.8) holds indeed exists in this case.

The plan of the paper is the following. In Sec. 2 we give an outline of the method
leading to condition (1.8). Since it is a formal one, based on matched asymptotic
expansions, we shall discuss here the underlying assumptions and limitations. In
Sec. 3 we derive the outer expansion and in Sec. 4 we derive the inner expansion and
show how the matching conditions lead to condition (1.8). This requires a technical
result, which we leave to Sec. 5.

2. Outline. In this section we introduce some notation, formulate our basic as-
sumptions and sketch the ideas that lead to condition (1.8).

It is well known that Problem (1.1), (1.2) has a variational solution which has
a zero a£. We shall assume that for e small enough, a£ is unique, and that there
exists an infinite sequence (en) tending to zero such that

uc —> uQ and at —► aQ e Q. as n —> oo, (2.1)

the convergence being uniform in C on compact subsets of Q\{a0}. It has recently
been shown that this is indeed the case when f2 is star shaped [BBH1,2], Throughout,
when we write e —> 0, it is understood that the limit is taken along this subsequence.

For the analysis it is convenient to shift the origin to the zero a£ of wE and
introduce a phase factor e'"c, to be chosen later. We write

y = x - aE and uE(y) = ue(x)e'"£, (2.2)

although we shall drop the tilde again. We can then write

ui:(y) = Pc(y)e"Kiy), (2.3)
which yields upon substitution into (1.1) the following system for p£ and :

s2Ap + p(l-e2\Vd\2-p2) — 0, (2.4a)

AO + ^Vp-Vd = 0, (2.4b)
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defined in the translated domain Q. - aE = {y: y + ae € Q.} . From (2.1) we conclude
that outside any arbitrary small ball around the origin,

Pe(y)^ 1 and 0e(y) ^ 00(y) as e —> 0, (2.5)

uniformly in compact subsets of (Q - tf£)\{0}, and that

W = <p0(y) + v0 (y)'
where y/0(x - a) is a solution of Problem (P).

Our basic assumptions about the family ue are the following. Here we use polar
coordinates y = re19 and suppress the dependence on <p for the time being.

1. There exist smooth functions ut(r), i — 0,1,2,... defined in £2\{a0} such
that for any fixed rQ > 0,

ue(r) = u0(r) 4- eut(r) + e2u2{r) + o(e2) as e -» 0 (2.6)

uniformly for r > rQ .
2. There exist smooth functions U^s), i = 0,1,2,... defined in all of R2 and

real-valued positive gauge functions yt(e) with 7J+I(e) = o(y((e)) as e —> 0, such
that for any fixed s() > 0,

ue(s) =f = VoW0(s) + y,(e)t/,(s) + y2(e)U2{s) + o{y2(e)) as e -> 0 (2.7)

uniformly for s < s0.
3. These order relations may be differentiated twice with respect to (r, g>) and

(s, (p).
4. There exist functions v{e), <7,(e), and <r2(e) with the properties

v(s)—> 0, <Tj(e)-+0, cr-,(e)—> oo as e -> 0 (2.8)

and ecr2(e) > 2at (e), such that for some constants C > 0, r, > 0, and Sj > 0,

e-|w2(r)| < Cv(e) uniformly for ct, (e) < r < , (2.9a)
y2(e)|Lr2(s)| < Cu(e) uniformly for 5, <s < ff2(e), (2.9b)

and (2.6) and (2.7) both hold with remainder term o(v(e)) uniformly for r > <7,(e)
and 5 < er,(e), respectively.

As a consequence of these assumptions, we have the following matching condi-
tions:

y0(£)t/0(s) + y1 (e)t/,(s) + y2(e)U2(s) - u0(es) + sul(es) + s2u-,(es) + o(v(e)) as s -> 0
(2.10)

uniformly for ^CT2(e) < s < a,(e). For a suitable choice of v, , and a2 it is
typically true that (2.10) suffices to relate the large s behavior of Ui to the small r
behavior of ui in such a way that both are determined uniquely.

We shall operate on the basis of these assumptions in the following way.
A. We substitute the assumed representation (2.6) into (1.1) and (1.2) to obtain

the outer functions w(.
B. We rewrite (2.6) in terms of the stretched variable s = r/e and substitute into

(2.10) to obtain the gauge functions yt.
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C. We substitute (2.7) into (1.1), rewritten in terms of 5 and <p , and apply (2.10)
again to obtain the inner functions Uj.

Observe that if we set 5 = za7(e), where j < t < 1 , then (2.10) holds uniformly in
e and uniformly with respect to t in that interval. Letting e —> 0, we obtain various
necessary relations connecting the asymptotic behavior of the functions w(.(r) for
small r with that of the functions t/ (s) for large 5 . In this way we find a necessary
condition on the location a0 of the defect.

In our case it will turn out that if (1.8) is not satisfied, then

70(e) = 1 > y,(e) = eloge, y2(e) = e,

and we find that for any r] >0,5, >0 there exists a constant C > 0 such that

C
\u2{r)\ < -j for r < r{ and |{/2(s)| < Cs for 5 >5,.

This allows us to choose

u(e) — e"/3, cr, (e) = e2/3, a2(e) = 2e~l/3. (2.11)

Once we have shown that (1.8) must be satisfied, we obtain

y0(e) - 1 and ri(e) = e2

and proceed as above.
The basic inner approximation U0{s, tp) will be found to satisfy (1.1) in all of

R~ with e = 1, to vanish at the origin, and to represent a mapping of degree 1 from
each circle centered at the origin into R~. It is well known that there exists a solution
with this property of the form U(s, <p) = p{s)e"p, in which p is real. In this paper
we assume that UQ is of this form. A similar assumption (see (4.13)) is made about
the possible form of solutions of the linearization (4.12) of (1.1) (with e = 1) about
U0 with certain prescribed behavior of infinity.

3. The outer expansion. For convenience we restate the problem

(I)
e2Au + u(\ - \u\2) = 0 in £2 , (3.1a)

= ge'a< = e'(x+a'] on , (3.1b)

where = Q - aE, and we seek to express u£, a£, and a£ in the form

ue = uo + eu\ + r2u2 H ' (3.2a)

aE = a0 + ea] + s2a2 + ■■■ , (3.2b)
2a£ = aQ + ea{ + e~a, + • • • . (3.2c)

It will often be convenient to write ue in polar coordinates

Ue(y) = pe{y)e'0Sy), y e Qe (3.3)
and to expand pE and 6c as

Pe = Po + £P\ +e2/>2 + --- , (3.4a)

0£ = 60 + e i/jl + e2y/2 H , (3.4b)
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where
6o = <p + Vq- (3-5)

Then uQ, u, , and u2 can be written as

"o = Poe'e°> (3-6a)

U\ = p/6° + poy/lie'0°, (3.6b)

u2 = (Pi ~ lPoV\)e'6° + (P0V2 + P\V\)ie'e°- (3-6c)

We now substitute (3.2) into (3.1a) and equate the coefficients of equal powers of
e . The terms of 0( 1) yield

Kl =1
so that by (3.6a), p0 — 1 and we obtain

uQ = e'e°. (3.7)

The terms of 0(e) yield
m0 • m, =0

and hence, by (3.6b), p{ = 0 and thus

w, = y/\ie'°°. (3.8)

The terms of 0(e ) yield the equation
2Aw0 - «0(2«0 • u2 + |m,| ) = 0 (3.9)

because u0 • u, = 0. Since

Au0 = e'e°(iAd0 - |V0O|2),'o i v

we can write (3.9) as

el6°(iAd0 - |V0O|2) = e'e°{2u0 ■ u2 + y/\),

or, in components,
idthe e 0-component:

«0 • U-2 — — 2 IV0OI — 2^1 '
if)the ie °-component:

AG0 = 0. (3.10)
From (3.6c) we conclude that

Pi = -3lv0o|2- (3-11)
Thus, we find for u2,

u2 = — ̂(| V0O|2 + y\)e,e° + if/2ie'e°. (3.12)

In (3.7), (3.8), and (3.12) we have expressed w0, w,, and u2 in terms of i//Q, y/] ,
and y2. In what follows we derive some properties of these functions.

From (3.10) we conclude after shifting back over a0 that

Aif/^x) = 0 for all a: = y + fl0 G Q\{a0} (3.13a)
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and that
H/o = X + (Xq-(P on d£L. (3.13b)

Because % + a0 - (p is single valued on dQ, (3.13) may be uniquely solved by
a smooth function i//0 . The constant aQ will now be chosen so that this smooth
harmonic function satisfies

Voiy) = 0 when y = 0. (3.14)
However, since (3.13a) is only required to hold for x ^ a0, the regular function i//0
may be supplemented by a function p0 that is harmonic, except for a singularity
at aQ , and that vanishes on <9f2. The singularity of p0 must be of the form of a
linear combination of log |x-a0| and its derivatives. We therefore effect a notational
change, replacing i//0 in (3.5) by y/0 + p0 . In due course we shall show that p0 = 0.

We determine i//{ and y/-, from the equation (2.4b) for de,

A6C + — Vpc ■ V6 = 0 in Q\{0}. (3.15)£ PE

Because we have found that

we conclude that

21 H~ £ pj + ' * *

= 0 in^e\{0}, (3.16)

A^2 = V(|V0o|2)-V0o in Qe\{0}. (3.17)
As to the boundary condition for ^ , we write

ue(y) = u0{x - aE) + em,(x — ae) H 
= u0{x - fl0) + e{ux(x - aQ) - ax ■ Vu0(x - a0)} + • ■ • ,

where a, was introduced in (3.2b). This yields the condition

m, = • V«0 + ioi\gela° on d(S2-a0).

Thus, shifting back to the original domain Q, and remembering (3.7), (3.8), and
(3.13b), we find that i//t satisfies

| A(y, = 0 inf2\{a0}, (3.18a)
1 y/x = a{ • V60 + a{ on dQ. (3.18b)

As before we use the symbol i//] to denote the solution of (3.18) that is regular in
Q so that the general solution of (3.18) is i//l + p{ , where p] is harmonic except
at x = a0, where it will have a singularity in the form of a linear combination of
log|x - a01 and its derivatives. We therefore replace y/x in (3.4b) by y/] + p, . As
with y/Q we select the constant a, so that

^,(>0 = 0 when y = 0. (3.19)
Finally, we need to compute the behavior of l//^ near the origin in £2£ when

p0 = 0 . We write r = \y\ and

er = (cos (p, sin cp) = el,p and = (-sin^, coscp) = ie"p.

We first compute the asymptotic behavior of the right-hand side of (3.17) as r —> 0.
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Lemma 3.1. Suppose p0 = 0. Then

V(|V0o| 2).Vd0 = ^ + ^ + O^ asr-0,

in which

A= - 4(y/0x cos (p + y/0y sin <p) = -4(V, er),

B = - {4^oxVoy + (Voxx - Vovv)} cos29> + 2 {(vlx - vly) - V0xy} sin2(p,
and the partial derivatives of i//0 are evaluated at the origin.

Proof. Recall that
eo = V +

and therefore
1
r

Hence
'2 -J+ e..) + IVi//„'2

Thus

V(|V0o|2) = ~y,er- , ev)er + ^V(V^0, ef) + V(|V^0|2) (3.21)

and so

V(|V0O|2). V0O = - ^(V^0, er) - ±(Vy,0, <g(V^0, er)

+ ~ (V (V y/Q, ef), V^0) + V(|V^0|2) • V^0 (3.22)

+ A(v(vn,^),^) + iv(|v^|2).^.
But

V(V^,^) = -7(V^0, <?>f + (-V^0x sin<p + Vy/Qy cosip),
so that we can write (3.22) as

V(|V0o|2) • V0O = - 4(V^0 - er) ~ 4(vn.

V0O = V<p + V^0 = -e9 + V^0.

lV0or = ^ + 7(V^'^) + |V^or- (3.20)

+ ^ ((-vrte sin cp + Vy0y cos p), + 0 Q) .
(3.23)

Since we can write

(VVo ' ^)(V V0 ' *r) = Vxv ̂Ov COS - i( Vox - vly) sin 2(P
and because i//(J is harmonic, we have

(-V^sinp + V^0vcos(p)-ev = -\{y/0xx ~ %y)cos2<p - y/0xysm2<p,
and the desired expression readily follows in the case p0 = 0.

It is interesting to note that the 0(r~i) term involves functions with period 2n
 2

in <p and the 0(r ) term involves functions with period n in (p . In the following
lemma we analyze the consequences of this behavior for solutions of (3.17) in a
reduced neighborhood of the origin.
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Lemma 3.2. Let the functions u and v satisfy the equations

sin® j . sin 2®
Au = —r— and Av = —=—

r r
in a reduced neighborhood X of the origin. Then

u(r, <p) — -)~^s\r\<p + h\{r,(p),

v(r, (p) = - ^sin2<p + h2(r, <p),

where /z, and h1 are harmonic functions in Z.
The proof is given by direct computation.
From Lemmas 3.1 and 3.2 we deduce that y/2 has the following asymptotic be-

havior near the origin.

Lemma 3.3. Suppose p0 = 0. Then

y/2(r, <p) = 2^^(Vy/0, er)+p2(r, <p) + 0(1) as r -> 0,

where V y/0 is evaluated at the origin and p2 is harmonic in a reduced neighborhood
of the origin.

Proof. Since the equation for i//2 is linear we can think of y2 as composed of
three terms, each one corresponding to one term on the right-hand side of (3.17) and
a harmonic function p2 in a reduced neighborhood of the origin. The contribution
of the first two terms is given in Lemma 3.2. The third term on the right lies in Lp
for any p <2 and so by Sobolev's imbedding, its contribution is continuous in a
neighborhood of the origin.

Thus, having determined w0 in (3.7), u, in (3.8) and (3.18), and u-, in (3.12),
(3.18), and Lemma 3.3, we arrive at the following expansion when pQ = 0, p{ =0,
and p7 = 0:

Outer expansion. We have

uE(r, <p) = £-'0° 11 - ~s2 ^ + ^(^7Wq » ev) + |V^0|2 + +0(e3)j

+ ie,e°^\i/y + 2e2^j^(Di//0, er) + 0(e2)| ,
(3.24)

where Dij/0 denotes the value of V^0 at the origin, and 0(ek), k = 2, 3, is under-
stood to be uniform in a neighborhood of the origin.

When p{ ■£ 0 or p^ / 0, the coefficients of e and e2 in (3.24) also contain terms
that are more singular as r —► 0 than those indicated.

4. The inner expansion. To obtain an expansion for the solution u£ in a neighbor-
hood of its zero, which we have shifted to the origin, we scale the spatial variable so
that the factor 1 /e disappears from Eq. (1.1). We thus introduce the new variables

r
s = - and Ue(s, <p) = ue(r, <p). (4.1)
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AU + U{l-\U\2) = 0 forx/eeQ/e (4.2)

Then Ue will be a solution of the equation

AU + l
which has a zero at the origin

17(0) = 0 (4.3)
with index 1.

As indicated in Sec. 2, we shall look for a solution in the form of the expansion
OO

ue(s> 9) = ?)' >o=1> (4-4)
i"=0

in which the real-valued coefficients y{,y2, ... have the property that

y[(£) = °(1) and 7;+1(e) = o(y;(e)) as e -» 0.

They will be determined when we match this inner expansion to the outer expansion
obtained in the previous section.

When we substitute (4.4) into Eq. (4.2) and expand the domain to all of R2
according to (4.2), we find at once that U0 must be a solution of the problem

( AU+ U(l-\U\2) = 0 inR2, (4.5a)
\t/(0) = 0, (4.5b)

which has index 1. We assume that U0 is of the form

U0(s, ip) = p0(s)e'*. (4.6)

In that case, p0 must solve the problem

>0 for 0 < s < oo,
(II)

| p" + j// + p (i - - /?2) = o, p

1 p{ 0) = 0> p{ 00) = 1-
Problem (II) is known from the theory of spiral waves. We refer to [G, H], where
the following results have been formulated.

Lemma 4.1. Problem (II) has a unique solution pQ . The solution has the following
properties:

(a) p'0(s) > 0 and p0(s) <1 for all s > 0;

(b) pQ(s) = As ^1 - ^52 + 0(s4)j as s -* 0

for some positive constant A ;

(c) pQ(s) = 1 ^2+0(5 4) as s —> CXD.
2s

Since neither [G] nor [H] contains a proof of this Lemma we sketch one in the
Appendix.

To obtain the coefficients y2, ... we go back to the outer expansion, set r = es,
and regroup the terms in ascending order of growth in e .
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Lemma 4.2. We have

UE(s, <p) = U0(s, <p) + eloge£/,(s, <p) + eU2(s, <p) + 0{e2 loge), (4.7)

in which

U0(s,(p) = (l — ̂ j)er, (4.8a)

Ux{s,q>)=*(Dy/0,er)e9,. (4.8b)

U2(s,cp)= (2^ - ^ + s^)(Dv0,er)e(p-^(Dys0,e<p)er, (4.8c)

where Dy/0 is the gradient of t//Q evaluated at the origin.
Thus, from Lemma 4.2 we conclude that

y0=l, y,=elog£, y2 = e, y3 = e2 loge. (4.9)

Proof. To begin with we assume that p0 = 0, p] = 0, and p2 = 0. When we then
set r = es in (3.24) we obtain

Ue(s, (p) = e'e° |l - ~ -e(V^0(es, v),e,)^

~y (lvV0(£S' ^)|2 + <P)) + C(e3)|

id ( 1
+ ie 0 <2e\oge{Di//0, er)~ + ei//^es, (/>)

+2e(Zty0,er)^ + O(e2)J.

Next we expand y/Q , y/x , and V(^0 near the origin. Since by assumption y/0(0) = 0
and i//l (0) = 0 we have

y/j(x) = (Dy/j, x) + j(x, D1y/ix) + 0{xi) as x —► 0 for / = 0, 1,

where D~ y/j is the Hessian of i//j evaluated at the origin. Thus, with x = eser we
obtain

Wj{x) = es(Dy/j,er) + ^e2s2(er, D2^,) + 0(eV), i = 0, 1.

Similarly we obtain

(Viy0(x),er) = (Di//0,er) + es{er,D2y/0er) + 0{e2s2).

We now substitute the expansions for i//Q, y/x , and Vyo into (4.10) and collect terms
with the same growth in e to obtain the desired expansion (4.7) with terms given by
(4.8).

(4.10)
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Lemma 4.2 yields the following matching conditions for U0, £/, , and U2 when
p0 = 0, px = 0, and p2 = 0:

U0(s, <p) ~ ^1 - er as 5->oo, (4.11a)

2
U\{s, <p) ~-(Dy0,er)ef ass-+oc, (4.11b)

U2(s, <p) ~ -j(Dy/0, ei/>)er+ + 2^ - ^ (Dy/0, er)ev as 5 -► oo. (4.11c)

By Lemma 4.1b the condition (4.1 la) is indeed satisfied by the function U0 defined
in (4.6).

We now turn to a discussion of the functions pQ, p{ , and p2.

Lemma 4.3. We have

P0 = 0, |/>,(r)| < O(logr) and \p2{r)\ < 0{r~l) as r — 0.

Proof. We first show that p0 = 0. Suppose, for example, that p0 = logr (a similar
argument holds for the other cases). Then in (3.24) the exponent id0 would have an
extra term ilogr = /(loge + logs). This would introduce a factor e']o&e in the 0(1)
term of (2.7), that is, in the y0 term, which would now no longer be real valued.
This contradicts our assumption that the coefficients yl be real.

Next we turn to p{ and suppose for definiteness that p] = r~x sin^. Then in
 J :q

(3.24) we obtain an extra term er sin (p in the coefficient of ie 0 and so in (4.8a)
and in (4.1 la) we obtain an extra term sin <p . This term cannot be matched with
UQ. The case that pl = 0(r~k), k >2 can be handled similarly, although in this
case the basic hypothesis that the coefficients yj be real is also violated.

When p{ = A \ogr, where yl is a constant, we obtain two extra terms, ^eloge
idand ,4clogs, in the coefficient of e 0 in (4.10). They yield the following terms in

(4.8):
Aeff in (4.8b) and ^logs^ in (4.8c),

leading to corresponding terms in the matching conditions (4.1 lb) and (4.1 lc).
The assertion about p2 is established by similar arguments.
To obtain [/, and U2 we substitute (4.4) into Eq. (4.2) and equate the coefficient

of y,(e) and y,(e) to zero. We then find that both of them satisfy the equation

AU-2U0(U0-U) + U(1-p20) = 0. (4.12)

From (4.1 lb) and (4.1 lc) it is clear that as s -> oo, U{ and U2 have the asymp-
totic form

U(s, <p) = f{s)(Dy/0, ey + g(s)(Diy0, er)iel<p. (4.13)

We conjecture that every solution of (4.12), which solves (4.13) in that asymptotic
sense, in fact solves it exactly for some real functions / and g. We show that
solutions of this form exist.
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Lemma 4.4. Suppose U is given by (4.13) and Dy/Q^ 0. Then f(s) and g(s) are
solutions of the system

f /" + 7/'-4/-4s + (1-3/,oV = 0, (4.14a)s' s

g" + 7#' - \g ~ ~ P20)g = 0, (4.14b)s s" s
and vanish at the origin:

/(0) = 0 and £(0) = 0. (4.15)

Proof. Since U0 = p0e"p, we have

U0-U = p0{s)f(s){Dy/0, e9)

so that the equation for U becomes

AU - 2p20{s)f{s){Diif0,e9)ei9 + U(l-p20) = 0. (4.16)

We next compute AU which we write as

AU = U +-U+ \u .« s s j2 9<P

Since
(DV0, e9)9 = -iDV0> er) and (DVo>er), = (DVo>et)>

we obtain
= iU - f(s)(Dy/0, er)el(p + g{s)(Diy0, ejie" ,

and, when we differentiate once more,

U99 = -2 V - 2 {f(s)(D<is0,er)ie,v + g(s)(Dy0, ef)e*}.

Thus, we obtain

(4.17)

If we substitute (4.17) into (4.16) we obtain for the components, after dividing the
first one by (Dt//0, e ) and the second one by (Dy/0, er), the required two differential
equations for / and g.

The initial conditions for / and g follow at once from the fact that U, (0) = 0
and U2(0) = 0.

In Sec. 5 we shall show that the initial conditions (4.15) determine the solution
pair (/, g) of (4.14) uniquely up to a multiplicative constant:

Lemma 4.5. For every k 6 R there exists a unique solution {fK , gK) of (4.14) and
(4.15) such that

2 2fK(s) ~ ks and gK(s) ~ ks as i -» 0.

A U= (f" + jf'-'pf--pg)(Dy0,ef)e,f

+ (g" + 7/--2g~-2f) (£>Vo ' er)ie'*
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It follows from Lemma 4.5 that the asymptotic behaviour of the functions Ux(s, (p)
and U2(s, <p) we have constructed must be similar. This is incompatible with the
matching requirements set forth in (4.1 lb) and (4.1 lc), unless we have

Dys0 = 0, (4.18)

and p{ = 0 as well.
Having found that the zero ac of ui; converges to a point where the limiting

function y/Q has a vanishing gradient, it follows from Lemma 4.2 that the terms
involving eloge and e disappear. We thus need to start the process of finding an
appropriate inner expansion anew.

As before we set y0 = 1 , but we leave y, = y(e) still to be chosen so that we write

U(s, <p-,e) = U0(s, <p) + y(e)Ui(s, <p) + ■ ■ ■

and again we take
U0(s, q>) = P0(s)e"p.

Then
AU{ - 2p20(eif ■ Uy)e"p + Ux{\ - p\) = 0. (4.19)

We may write
Ux{s, (p) = F(s, (p)e"p + iG{s, (p)e"p, (4.20)

in which F and G are real-valued functions. Then
111 2

A Ut = {F..+ —F ~F + "tF - -rrG.
1 I SI j s s2 s2 s2 v

1 „ 1 „ 1
+ + ~Gs - ^2G + ^2 Gn + < ie?F«}

(4.21)
up

and we can write the e """-component of (4.19) as

Fss + k ~ V + -~2Gv + (l- 3pl)F = 0 (4.22a)s S S S

and the /e'^-components as

G„ + - -IG + -2G„ + hF, + (1 - pIw = <4-22b>
5 S S

The system (4.22) can be reduced to a pair of ordinary differential equations by
taking a Fourier series expansion in <p . The various modes decouple; so it suffices
to consider F and G of the form

F(s, <p) = f{s)e'n,p, G(s, <p) = ig(s)e""p, (4.23)

or rather the real parts of these expressions. We get

f" + V - ~~Y~ f + ̂ g + ( 1 " 3 p\)f = 0, (4.24a)s s s
2

" 1 ' 1 + A2 In r 2s ~
s +ZS t~8 + + (1 ~ = °- (4.24b)s s s
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We can find the possible algebraic behavior of the solutions of (4.24) for large 5
by setting

f(s) = s"[l + o(l)] and g(s) — /cs"+2[l + o(l)] as s —> oo. (4.25)

When we substitute these expressions into (4.24) and use the asymptotic behavior of
p0(s), we find that a and k must satisfy

2(kn-\) = 0 and /t[(a + 2)2 - «2] = 0,

so that
a — ±n - 2 and k = (4.26)

n
For example, when n — 2 we must have a — 0 or a = -4, and k — \ .

There are other exponential-type solutions as well.
The behavior of all solutions as s —► 0 can be found in a similar way by setting

f(s) = s"[l + o(l)] and g(s) = £s"[l + o(l)] as s —» 0.

We then find
a2 = 1 + n" — Ink and k = ± 1 (4.27)

so that

a = ±(l + w) and k = — 1 or q = ±(1-«) and k - 1. (4.28)

The only solutions f(s) and g(s) that vanish at least like s" at the origin are
therefore

/ = As"+l H  and g = -As"+> H .

We are now ready to match the inner solution to the outer solution given by (3.24),
in which we have put Di//q = 0. Setting r = es in (3.24) we find that we must take

y,(e) = e2

and that the matching conditions become

U0(s, <p) ~ ^ ^ j er as 5 oo, (4.29)

U\{s,(p) {er,D2y/Qeip)er + \s2{er,D2y/{)er)eill as 5oo. (4.30)

This is consistent with our assumption that

U0(s> 9) = P^)e,ip.

As regards {7, we note that

(er, D2y/Qef) = Xe2"f and (er, D2y/0er) = -kie2",

where k = (v0x.,,(0), -^0vv(0)). Thus we must set n — 2 in (4.23) and require that

f(s) —> -k and g(s) —♦ -\ks2 as s —» oo.

This means that we must choose a = 0 and k — \ , which is entirely consistent with
the relations between a, n, and k given in (4.26).
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5. Proof of Lemma 4.5. In this section we shall establish some properties of the
solution (/, g) of the system

f"+l-f'--2f-^g + (l-lp2o)f = 0, (4.14a)
s s s

8"+ \g -\g~\f+{\~ pl)g = ®- (4.14b)s s s
Specifically, we shall show that apart from an arbitrary constant factor, there exists
precisely one solution (/, g) of (4.14) such that

/(0) = 0 and g(0) = 0. (4.15)
We begin with a few preliminary estimates.

Lemma 5.1. Suppose (/, g) is a solution of (4.14) that satisfies (4.15). Then

f(s), g(s) = 0(s2) and f(s) - g(s) = 0(s6) as 5 -> 0.

Proof. We write

u = f + g, v = f-g, and t = - logs. (5.1)
Then (4.14) becomes

u"-4u = -hl(t) and v" = -h2(t), (5.2)

where

A,(0 = e~2'{u-pl{3f+g)} and h2{t) = e~2'{v - pfof - g)}. (5.3)
In view of condition (4.15), we have h^t) = 0(e~2') (i = 1,2) as t —> oo. This

implies by an elementary argument that

u(t) = 0(te~2') and v(t) = 0(e~2t) as t oo.

Using these bounds to sharpen the asymptotic estimates of /z,(?) and h^(t), we
eventually find that

u{t) = 0(e~2') and v{t) = 0{e~6') as/^-oo,

which yields the desired behavior of f(s) and g(s) as s —»■ 0.
The estimates derived in Lemma 5.1 allow us to use the variation of constants

formula to write (4.14) as an integral equation.
To simplify the notation we write w = col(/, g). Then (4.14) becomes

w" + \w - \aw = -B(s)w, (5.4)

where

A = (l I) and S(S)=(1-3;»W (5.5)
One readily finds for the eigenfunctions <pi{s)rji {i = 1,2,3,4) of the left-hand side
of (5.4):

^,00 =s2, <p2(s) = s~2, (93(s) = logs, ?)4(s) = l (5.6a)
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and
tll = r\2 = col(l, 1), rj} = ^4 = col(l, -1). (5.6b)

The variation of constant formula now becomes

w(s) = jls2 +i7,(i) + p-/2(5)| r]i + {logs/,(.y) + J4(s)}ri3, (5.7)

where

Ji(s)= ~\Jo hB(<7)w(a) y > (5-8a)

J2(s) = + i [ rj{B(a)w{a)a3 da, (5.8b)
8 J o
1 fs

JJs) = ~ ~ I ri3B(a)w(a)a da, (5.8c)
2- Jo
1 fs

J4(s) = +- / tjiB(a)w(a)a log a da. (5.8d)2 J0

This integral equation allows us to obtain the following asymptotic estimate.

Lemma 5.2. We have

w(s) = + 0(s4)} tj{ + 0(sb)r]} as 5-> 0. (5.9)

Regarding existence and uniqueness we obtain

Theorem 5.3. For every k e R there exists a unique solution (fK, gK) of (4.14)
such that

Us) ~ ks2 and gK(s) ~ ks~ as s —» 0. (5.10)

Proof. The origin is a regular singular point for (4.14) and the proof follows by
standard construction of a convergent power series.

Appendix. In this Appendix we establish the existence and uniqueness of symmet-
ric solutions of Problem (4.5) in R~ of the form

U{s, <p) = p{s)e'N,p,

in which A' is a positive integer and represents the index of the solution, which
vanishes at the origin only. In Sec. 4, we introduced such a solution U0 with N = 1.
Substitution yields for p the two-point boundary-value problem

p"-\--p' + p{ 1 -—t—P~ \ = 0, p> 0 for0<s<oo, (A. la)
1 , / , N 2

(II){ r *P i r

p{0) = 0, p{oo) = 1. (A.lb)

The existence and uniqueness of this solution p0 is well known and can be established
by methods used in [G] for a closely related, but different equation. For completeness,
we give here the proof for Eq. (A.la).
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Theorem A.l. Problem (II) has a unique solution p0 . This solution has the follow-
ing properties:

(a) p'0(s) > 0 and p0(s) <1 for all 5 > 0;

(b) p0{s) = As ^1 - + j +0{s )\ as 5 —► 0

for some positive constant A;

N2 -4
(c) p0(s) - 1 2 + 0(s ) as s —> oo.

25
If p0 is a solution of Problem (II), then the properties (a)-(c) are easily established.

To prove the existence and uniqueness of a solution of Problem (II), it is convenient
to introduce the new dependent variable v(s) = s~A p(s). We then look for a solution
of

, f v" + —~~v' + W(1 ~s2Nv2) = 0, v>0 for0<5<oo, (A.2a)

\u(0) = ^, v'(0) = 0, (A.2b)
which has the property that

sNv(s) -• 1 as 5 —> oo (A.2c)

for some appropriate value A0 of A. It is readily established that for each A > 0
there exists a unique solution v(s, A) in a neighborhood of 5 = 0.

We begin with a monotonicity property.

Lemma A.2. We have
A{ < A2=> v(s, A{) < v(s, A2)

as long as these solutions exist and are positive.
Proof. For convenience we write v(s, Aj) = vf(s) (i = 1,2). Suppose that there

exists a first > 0 where = v2. Then if we multiply the equation for vx by
s2N+lv'2 and the equation for v2 by 52/V+1vJ , subtract and integrate over (0, s0),
we obtain

wl(J0)^JV+1{w2(s0)-t,i(s0)}= I" sAN+lvyv2{v22-v])ds. (A.3)
J o

Since v2 > vx > 0 on [0, s0), the right-hand side is positive and the left-hand side
is negative, so that we have a contradiction.

Existence can now be proved by means of a shooting technique. One defines the
sets

= {A > 0: v{s0, A) > SqN for some 50 > 0},

= {A > 0: u(j,, A) = 0 for some s, > 0};

note that if A e , then v(s, A) < s~N on (0,5,). One shows that A € if
A is sufficiently small and that A e if A is sufficiently large. This can be done
by means of some elementary estimates. These sets are clearly disjoint and open, so
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that there must exist an A0 that does not belong to either or . Thus we
have

0 < v(s, A0) < s~N for all 5 >0, (A.4)
and it remains to show that v(s, A0) satisfies (A.2c), i.e.,

p(s, A0) = sNv(s, A0) —> 1 as s —> oo.

Since 0 < p(s, A0) < 1 by (A.4) it follows that p > 0 and so p(s, A0) must tend
to a limit, which can only be 1.

This completes the proof of existence.
From the monotonicity with respect to A we deduce that = (0, A") and

= (A+, oo) for some 0 < A~ < A+ and it remains to prove that A~ = A+ to
establish the uniqueness. This is done by means of an argument similar to that used
in the proof of Lemma A. 1.
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