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ON THE LOG–CONVEXITY OF

TWO–PARAMETER HOMOGENEOUS FUNCTIONS

ZHEN-HANG YANG

Abstract. Suppose f (x, y) is a positive homogeneous function defined on U( �R+ × R+) ,

then call
(

f (ap ,bp)
f (aq ,bq)

) 1
p−q

two-parameter homogeneous function and denote by Hf (a, b; p, q) .

If f (x, y) is third differentiable, then the log-convexity with respect to parameters p and q of
Hf (p, q) depend on the sign of J = (x− y)(xI)x , where I = (ln f )xy . As applications a group
of chains of inequalities for homogeneous means are established, which generalize, strengthen
and unify Tong-po Ling ’s and Stolarsky’s inequalities, and a reversed chain of inequalities for
exponential mean (identic mean) is derived, which contains a reversed Stolarsky’s inequality.
Several estimations of lower and upper bounds of extended mean are presented.
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