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Abstract

We show how to eliminate an undesirable long-time linear growth [11] of the electromag-
netic field in a class of unsplit Perfectly Matched Layers (PML) typically used as Absorbing
Boundary Conditions in Computational Electromagnetics codes. For the new PML equations
we give energy arguments that show the fields in the layer are bounded by a time-independent
constant hence they are long-time stable. Numerical experiments confirm the elimination of
the linear growth, and the long-time boundedness of the fields.

1 Introduction

The introduction by Bérenger [1] of the concept of the (split) Perfectly Matched Layer as an
Absorbing Boundary Condition (ABC) has resulted in much work towards eliminating as an
issue the presence of an artificial outer boundary in numerical simulations of wave problems
embedded in an infinite background. There are now two related versions of the PML, split [1]
and unsplit [2]-[3]. In addition to the application it finds in Computational Electromagnetics,
the PML idea has also been applied to wave problems in acoustics [4, 5], elasticity [6], and
shallow water waves [7].

Initially it was thought that perturbations of the weakly well-posed split PML [8] give rise to
exponentially growing solutions (genuine instability); this has encouraged efforts to develop the
unsplit PML [2]-[3], where the layer equations arise from a zero-order perturbation of the Maxwell
operator so that strong well-posedness is maintained, as was shown in [9]-[10]. Subsequently,
Abarbanel et. al. [11] have provided an analysis that explains an observed late-time linear growth
of the amplitude of the axial field in the standard unsplit two-dimensional PML in rectangular
coordinates. Late time in the context of [11] means ”long after the pulse has passed through
the PML, i.e., the solution is essentially constant in space.” The equations they label as those
representing a ”physical PML” will be referred to herein as the standard unsplit PML (also see
the Appendix and Equation (2.4) of [10]). Further, [11] offers a remedy which, while removing the
observed linear growth as verified with numerical experiments employing the ”physical PML,”
nevertheless results in the loss of the perfectly matched property of the air/PML interface.
Recently, Bécache & Joly [12] showed that the split PML has at worst a linearly growing solution
in the late-time, i.e., not a genuine instability, and related these equations to those of the unsplit
version as presented in [2].The possibility of existence of such a linear growth was shown in [12]
via Fourier analysis and energy estimates for both the split and the unsplit PML (their unsplit
equations are related to those of the ”physical” PML considered in [11]). We briefly review in
Section 2 these theoretical results, and add a new one regarding the energy in the corner unsplit
PML (where two layers meet to enclose a rectangular domain). In [13], an analysis, based on a
technical mistake regarding the Kramers-Kronig relations in a conducting medium, erroneously
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showed that the standard split/unsplit PML is not causal and an alternative scaling function
was proposed as necessary in order to restore causality. Later, [14]-[15] described time-domain
implementations of the unsplit PML employing this alternative scaling function, labeled it the
”Complex Frequency Shifted” scaling function (hereafter referred to as ”the CFS”), and showed
that its use is beneficial for simulations in elongated domains. One of the present authors has
also briefly considered in [10] the possible benefit of employing the CFS in the unsplit PML for
the three common coordinate systems. Briefly, it was found that the CFS results in the correct
zero-frequency limit for the unsplit PML, i.e., it reduces the relevant equations to Laplace’s
equation with the coordinate into the PML appropriately stretched. Thus, using the CFS, the
resulting PML equations correctly account for any DC component in the simulation space that
reaches the layer where they are imposed. In [10] it was shown that the standard time-domain
unsplit PML is governed by a causal (and symmetric) hyperbolic system independently of the
choice of the scaling function as long as the high-frequency limit (ω →∞) of the scaling function
is a real constant.

In the present paper we determine that the CFS removes the late-time linear growth of the
axial fields discussed in [11] for the standard two-dimensional unsplit PML and, at the same
time, preserves both the perfectly matched property of the layer and the symmetric hyperbolic
character (which results in strong well-posedness) of the resulting PML equations in the time-
domain. This is accomplished in Section 3 by simply changing the fundamental scaling function
(Equation (2.4), [10]) used to derive unsplit PML’s in rectangular, cylindrical and spherical
coordinates to the CFS scaling function (Equation (9) below). Consequently, the CFS remedy
can also be applied to the three-dimensional unsplit PML in all separable coordinate systems of
interest to Computational Electromagnetics. In Section 4 we derive the equivalent of (2)-(3) and
(5), given below, for the resulting new unsplit PML and show that now all fields are controlled
by a constant, i.e., the linear growth of the standard unsplit PML is not allowed. Section 5
presents numerical experiments that validate our analysis. The paper concludes in Section 6
with a short summary.

Notations. We denote by (., .) the L2 scalar product in IR2 and by ‖.‖ the associated norm.

2 Long-time behavior of the standard unsplit PML: A review

We first review some theoretical results applicable to the standard unsplit PML. Also, we present
a new result regarding the decay of the zero-order field energy in a corner unsplit PML (i.e.,
the region where two layers meet in order to completely surround a rectangular computational
domain).

Bécache & Joly [12] analyzed the 2D unsplit PML oriented in the direction parallel to the
ŷ−direction in the TE polarization for the fields E = (Ex, Ey, 0)T and H = (0, 0,Hz)T . We
review those results after translating them to the polarization and layer orientation considered
in our Section 3, i.e., by considering an absorbing layer in the ẑ−direction (lying parallel to the
x̂−direction). The relevant PML equations are:

∂tEy + σEy = ∂zHx − ∂xHz

∂tHx + σHx = ∂zEy

∂tH
?
z = −∂xEx

∂tH
?
z + σH?

z = ∂tHz,

(1)

where σ is a positive function of z. The following identity (equivalent to Lemma 2.2, [12]) is
satisfied by a first-order energy of (1):

d

dt
E1(t) = −2σ||∂tHx||2L2 ≤ 0, (2)
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where
E1(t) =

1
2
(||∂tHz||2L2 + ||∂tHx||2L2 + ||σHx||2L2 + ||∂tEy + σEy||2L2), (3)

with σ being a positive constant. Equations (2)-(3) indicate that the quantities ∂tEy +σEy, Hx,
and ∂tHz are bounded by a time-independent constant; therefore, Hz can grow as ∼ t, while Hx

and Ey (see Lemma 2 in Section 4.1 below) are bounded by time-independent constants.
For the corner PML (where the x̂−directed layer overlaps the ẑ−directed layer), and for

σx(x) = σz(z) = σ constant, the governing equations are (see [9]-[10]):

∂tEy + 2σEy + σ2
∫ t

0
Ey(t

′
)dt

′
= ∂zHx − ∂xHz (a)

∂tHx = ∂zEy (b) (4)

∂tHz = −∂xEy (c).

Theorem 1 The solution of (4) satisfies the following estimate, ∃ C > 0 independent of t such
that

E0(t) =
1
2
(||Ey||2 + ||Hx||2 + ||Hz||2) ≤ C. (5)

Proof: Multiply (4)-(a) with Ey, (4)-(b) with Hx and (4)-(c) with Hz, integrate over all of IR2,
and add to obtain, using integration by parts,

d

dt
E0(t) + σ2(Ey(t),

∫ t

0
Ey(t

′
)dt

′
) = −2σ||Ey||2. (6)

Let F (t) =
∫ t

0
Ey(t

′
)dt

′
, so (Ey(t),

∫ t

0
Ey(t

′
)dt

′
) = (

dF (t)
dt

, F (t)) =
1
2

d

dt
||F (t)||2. Then (6)

becomes
d

dt
(E0(t) +

σ2

2
||F (t)||2) = −2σ||Ey||2. (7)

The proof concludes by noting that (7) implies E0(t) + σ2

2 ||F (t)||2 ≤ constant ∀t.

It should be emphasized that [12] rigorously shows that the electromagnetic PML derived
from Maxwell’s equations does not possess exponentially growing solutions, i.e., no genuine
instabilities, hence the source of exponential instabilities of the type described in [16] must be
sought elsewhere.

Before proceeding it is instructive to consider the Helmholtz equation satisfied by the electric
field, Ey(x, z, ω), in the standard unsplit PML. Following [10] we have:

∂2
xEy +

1
αz(z, ω)

∂z(
1

αz(z, ω)
∂zEy) + ω2εµEy = 0, (8)

where αz(z, ω) = ξz(1 + σz(z)
−iω ). The ω → 0 limit of (8), which corresponds to t → ∞ in

the time-domain, does not result in Laplace’s equation for Ey; one obtains ∂2
xEy = 0 instead.

Consequently, the standard unsplit PML cannot be expected to absorb evanescent waves, or to
behave properly in long-time simulations.

Even though the standard unsplit PML layer suffers in the long time as described above,
this suffering cannot affect the solution in the interior computational domain due to the way
electromagnetic waves transport energy. Since, as shown above for the polarization considered
herein, the fields Ey and Hx remain bounded (they actually decay to zero in computations) no
energy can exit normally from the PML towards the interior computational domain. Also, the
energy (which goes like t2) transported along the layer due to Ey and Hz cannot manifest itself
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inside the computational domain since during actual computations in rectangular coordinates
this energy will enter the corner layer and will be absorbed. Of course this requires the numerical
scheme to satisfy a discrete analog of the Poynting theorem. This is the case for the Yee scheme
[19] employed in our Section 5; the contamination of the interior computational domain shown in
[11] may possibly be traced to the numerical scheme employed therein not possessing a discrete
Poynting theorem. Also, for other wave propagation problems, e.g., elasticity, it may be possible
that the linear growth of some field components inside the PML will eventually contaminate the
interior computational domain irrespective of the numerical scheme employed.

3 CFS unsplit PML model equations

In our analysis we will consider a Transverse Magnetic polarization electromagnetic problem on
the plane (x, z) ∈ (−∞,∞) × [−∞, d] for the fields E = (0, Ey, 0)T and H = (Hx, 0,Hz)T , and
a PML that occupies the region (x, z) ∈ (−∞,∞)× [0, d] where d is the width of the PML. The
medium permittivity is ε, and the permeability is µ. We proceed according to [10] choosing,
instead of Equation (2.4) in that paper,

αz(z, ω) = ξz(1 +
σz(z)
γ − iω

), (9)

where the role of ξz is explained in [10], σz(z) is a positive function (not necessarily zero at z = 0)
typically defined as σz(z) = σmax( z

d)m where m is an integer, and γ ≥ 0 is a new parameter.
Particularizing Equation (A.3) of [10] to the geometry given above, the following frequency-

domain Maxwell system in the PML region is obtained (employing an e−iωt time convention):

−iωDy = ∂zHx − ∂xHz

Dy = ξzε(1 +
σz(z)
γ − iω

)Ey

−iωBx = ∂zEy
(10)

Bx = ξzµ(1 +
σz(z)
γ − iω

)Hx

−iωBz = −∂xEy

Bz =
µ

ξz
(

γ − iω

σz(z) + γ − iω
)Hz.

System (10), in contrast to the standard unsplit PML, gives the correct ω → 0 limit as we now
show. Using (9) in (8), one finds that, for ω → 0, the electric field Ey satisfies

∂2
xEy +

1

ξz(1 + σz(z)
γ )

∂z(
1

ξz(1 + σz(z)
γ )

∂zEy) = 0, (11)

i.e., it satisfies Laplace’s equation with the coordinate into the PML stretched as z
′

= z0 +∫ z
z0

ξz(1+ σz(s)
γ )ds. This is the source of the superior performance over the standard unsplit PML

illustrated in [15] for elongated domains and in [17] for evanescent waves in waveguides. Also,
the presence of γ results in the loss of the property of frequency-independent damping evident in
the standard unsplit PML. The magnitude of the reflection coefficient for a plane wave incident
on the layer modeled by (10), and terminated with a Dirichlet boundary condition, now is

|R| = e
−2
√

εµκzξz
ω2

γ2+ω2

∫ z

0
σ(s)ds

, (12)
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where κz is the ẑ−component of the incident wave vector. In practice, the frequency variation in
(12) is not detrimental as we now explain ; picking γ to be the lowest frequency contributing to
the signal, the ratio ω2

γ2+ω2 varies from 1/2 to 1, thus achieving a good damping of propagating
waves.

To simplify the presentation we set ξz = 1 and ε = µ = 1 for the remainder of the paper.
Using the Fourier transform in time and algebraic manipulation in (10) we write the following
time-dependent system of equations in the PML:

∂tEy + σz(z)(Ey − Py) = ∂zHx − ∂xHz (a)

∂tPy + γ(Py − Ey) = 0 (b)

∂tHx + σz(z)(Hx −Mx) = ∂zEy (c)
(13)

∂tMx + γ(Mx −Hx) = 0 (d)

∂tHz − σz(z)Hz − (γ + σz(z))Mz = −∂xEy (e)

∂tMz + (γ + σz(z))Mz + σz(z)Hz = 0. (f)

When σz(z) = γ = 0, (13) reduces to a symmetric (i.e., strongly well-posed) hyperbolic system
for ξz ≥ 1 (see Section 3 of [10], where the role of ξz is further elucidated), while when γ = 0 with
σz(z) 6= 0, (13) reduces to the standard unsplit PML whose principal part is also a symmetric
(i.e., strongly well-posed) hyperbolic system. System (13) will be used to derive the first-order
energy estimate which generalizes (2)-(3) to the case γ 6= 0. It will be fruitful to rewrite
it as a first-order symmetric hyperbolic system with a lower-order term for the field vector
U = (Ey, Py,Hx,Mx,Hz,Mz)T as

Ut + AUz + BUx + CU = 0. (14)

Using (13) the 6× 6 matrix C is identified as:

C =




σz(z) −σz(z) 0 0 0 0
−γ γ 0 0 0 0
0 0 σz(z) −σz(z) 0 0
0 0 −γ γ 0 0
0 0 0 0 −σz(z) −(σz(z) + γ)
0 0 0 0 σz(z) (σz(z) + γ)




. (15)

To be completely defined, system (14) needs some initial conditions:

U(t = 0) = U0 ≡ (E0
y , P 0

y , H0
x, M0

x ,H0
z ,M0

z )T (16)

For convenience, we introduce the space

X = (L2(IR2))6

equipped with the norm:

‖|U|‖ =
(
‖Ey‖2 + ‖Py‖2 + ‖Hx‖2 + ‖Mx‖2 + ‖Hz‖2 + ‖Mz‖2

)1/2

and with the associated scalar product denoted by (., .)X . We then have:
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Theorem 2 System (14)-(16) is well posed for any initial condition U0 ∈ X. Furthermore, the
solution satisfies the following estimate:

‖|U(t)|‖ ≤ eαt ‖|U0|‖ (17)

where α = ‖σ‖∞ + γ.

Proof: This is a consequence of the fact that system (14) is a zero-order perturbation of a
symmetric hyperbolic system (thus strongly well posed) (see [18]). Then, multiplying (14) with
UT , and using the symmetry of A and B, one obtains:

d

dt
E0(t) +

1
2

∫

IR2
[∂z(UTAU) + ∂x(UTBU)]dx +

∫

IR2
(UTCU)dx = 0 (18)

where E0 denotes the standard zero-order field energy:

E0(t) =
1
2
‖|U(t)|‖2

The middle integral in (18) vanishes by the Divergence Theorem leaving

d

dt
E0(t) = −(CU,U)X (19)

The estimate follows easily from the Gronwall’s lemma.

Remark 1 One can notice that, even though the problem is well-posed, estimate (17) does
not prevent the solution to blow up exponentially when the time goes to infinity; in numerical
calculations such a phenomenon is often described as an instability and is difficult to distinguish
from a real ill-posedness of the equations. This is why in [12], a distinction is made between these
two notions, and a system is characterized as stable if no exponential blow up of the solution is
possible.

4 Energy considerations for the new unsplit PML

Throughout this Section we will consider σz(z) = σ to be a constant and, similarly, σx(x) = σ
when it arises. The generalization of this Section’s results to the case of variable σx and σz will
be given elsewhere.

First, we address the issue of long-time linear growth of the fields in the new PML from the
point of view of [11]. When ∂x = 0 and ∂z = 0 are substituted in (14), the resulting system
Ut = −CU decouples into three 2 × 2 systems. The first two such sub-systems, for (Ey, Py)
and (Hx,Mx), both exhibit the eigenvalues (0,−(σ + γ)), while the third, for the pair (Hz,Mz),
exhibits the eigenvalues (0,−γ). Hence, the linear growth in time, discussed in [11] for the
unsplit PML with γ = 0, is absent from (13) when γ 6= 0, and the fields tend to a constant
whose value depends on the initial conditions. At the same time the perfectly matched property
is preserved by construction.

Next we consider the electromagnetic energy identity (19). If the right hand side of (19)
is negative then we would have an estimate for the zero-order energy, i.e., E0(t) ≤ C where C
is a time-independent constant. Unfortunately, the quadratic form under the integral, UTCU,
is not strictly positive semi-definite since the symmetric part of C is indefinite. Therefore we
have decided to attempt to determine whether the fields in the new PML are bounded in the
long-time through the first- and second-order energy arguments given below.
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4.1 A first-order energy decay result for the PML layer

We consider in this section problem (13) with σ > 0 and γ > 0. We introduce the first order
energy:

2E1(t) = ‖(∂t + γ)Hz‖2 + ‖(∂t + γ + σ)Ey‖2 + ‖(∂t + γ)Hx‖2

+σ
(
2γ ‖Hx‖2 + σ ‖Hx −Mx‖2 + σ ‖Mx‖2

) (20)

Lemma 1 The energy E1 of the solution of (13) satisfies the identity:

d

dt
E1(t) = −2σ

(
‖∂tHx‖2 + σγ ‖Hx −Mx‖2

)
≤ 0 (21)

which shows that it is decreasing in time.

Proof: the technique is very similar to the one used in [12]:

• we apply the operator ∂t + γ to equation (13)-(a) and multiply it by (∂t + γ + σ)Ey

• we apply the operator ∂t + γ + σ to equation (13)-(c) and multiply it by (∂t + γ)Hx

• we apply the operator ∂t + γ + σ to equation (13)-(e) and multiply it by (∂t + γ)Hz

and we add the three identities. Using that σ (resp. γ) is constant, one can commute ∂z and σ
(resp. ∂z and γ) so that the terms containing the space derivatives vanish. It remains

A1 + A2 + A3 = 0

with

A1 = ((∂t + (γ + σ))(∂t − σ)Hz, (∂t + γ)Hz)− ((γ + σ)(∂t + (γ + σ))Mz, (∂t + γ)Hz)

A2 = (∂t(∂t + γ)Ey, (∂t + (γ + σ))Ey) + (σ(∂t + γ)(Ey − Py), (∂t + (γ + σ))Ey)

A3 = ((∂t + (γ + σ))∂tHx + σ(∂t + γ + σ)(Hx −Mx), (∂t + γ)Hx)

It is easy to rewrite the first term, using (13)-(f) as

A1 = ((∂t + (γ + σ))(∂t − σ)Hz, (∂t + γ)Hz) + ((γ + σ)σHz, (∂t + γ)Hz) =
1
2

d

dt
‖(∂t + γ)Hz‖2

The second term can be rewritten using (13)-(b) as

A2 = (∂t(∂t + γ)Ey + σ(∂t + γ)− σγEy, (∂t + (γ + σ))Ey) =
1
2

d

dt
‖(∂t + γ + σ)Ey‖2

For the third term, we have to work a little more and we first decompose it in the following way:

A3 = (∂t + γ)∂tHx + σ∂tHx + σ(∂t + γ + σ)Hx − σ(∂t + γ)Mx − σMx, (∂t + γ)Hx)

Using (13)-(d), this can be rewritten as

A3 = ((∂t + γ)∂tHx, (∂t + γ)Hx) + σ(2∂tHx + σ(Hx −Mx), (∂t + γ)Hx)

=
1
2

d

dt
‖(∂t + γ)Hx‖2 + 2σ ‖∂tHx‖2 + 2σγ

1
2

d

dt
‖Hx‖2

+σ2(Hx −Mx, ∂tHx) + σ2γ(Hx −Mx, Hx)
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To conclude, we remark first, (again using (13)-(d)):

(Hx−Mx, ∂tHx) = (∂t(Hx−Mx),Hx−Mx)+(∂tMx,Hx−Mx) =
1
2

d

dt
‖Hx −Mx‖2+γ ‖Hx −Mx‖2

and in the same way:

γ(Hx −Mx,Hx) = γ ‖Hx −Mx‖2 + γ(Hx −Mx,Mx) = γ ‖Hx −Mx‖2 + (∂tMx,Mx)

= γ ‖Hx −Mx‖2 +
1
2

d

dt
‖Mx‖2

Therefore

A3 =
1
2

d

dt

(
‖(∂t + γ)Hx‖2 + 2σγ ‖Hx‖2 + σ2 ‖Hx −Mx‖2 + σ2 ‖Mx‖2

)

+2σ ‖∂tHx‖2 + 2σ2γ ‖Hx −Mx‖2

Theorem 3 The solution of (13) satisfies the following estimate,

‖Hx(t)‖+ ‖Hz(t)‖ ≤ ‖|U0|‖+
E1/2

1 (0)
γ

‖Ey(t)‖ ≤ ‖|U0|‖+
E1/2

1 (0)
σ + γ

(22)

Proof: these estimates are a consequence of lemma 1 and of the following technical lemma.

Lemma 2 Let G be a function defined in L∞(0,∞, L2(IR2)), and G its norm:

G = sup
t≥0

‖G(t)‖

Let H be related to G through the following differential equation

∂tH + γH = G, H(0) = H0

then it satisfies the following estimate

‖H(t)‖ ≤ Cγ , ∀t > 0

where Cγ = ‖H0‖+ G/γ.

Proof : The solution of the ordinary differential equation is determined by:

H(x, t) = H0(x)e−γt +
∫ t

0
G(x, s)e−γ(t−s)ds

so that
‖H(t)‖ ≤ ‖H0‖ e−γt +

∥∥∥∥
∫ t

0
G(x, s)e−γ(t−s)ds

∥∥∥∥
Using the identity:

(∫ t

0
G(x, s)e−γ(t−s)ds

)2

=
(∫ t

0
G(x, s)e−γ(t−s)ds

) (∫ t

0
G(x, u)e−γ(t−u)du

)
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it is then easy to show that
∥∥∥∥
∫ t

0
G(x, s)e−γ(t−s)ds

∥∥∥∥
2

≤
∫ t

0

∫ t

0
e−γ(t−s)−γ(t−u) ‖G(s)‖ ‖G(u)‖ dsdu

≤ G2

(
1− e−γt

γ

)2

≤ G2

γ2

which allows to conclude.
As a consequence of Theorem 3, it is easy to see, using the equations (13) at the initial time

t = 0 in order to rewrite the initial first-order energy E1(0) with respect to the initial conditions,
that if U0 ∈ X and additionally

(
~rot E0

y , rot ~H0
)
∈ (L2(IR2))2 × L2(IR2), the solution of (13)

satisfies the estimate: there exists a constant C > 0 independent of t such that

‖Hx(t)‖+ ‖Hz(t)‖ ≤ C

(
(1 +

1
γ

) ‖|U0|‖+
1
γ

∥∥∥ ~rot E0
y

∥∥∥ +
1
γ

∥∥∥rot ~H0
∥∥∥
)

‖Ey(t)‖ ≤ C

(
(1 +

1
σ + γ

) ‖|U0|‖+
1

σ + γ

∥∥∥ ~rot E0
y

∥∥∥ +
1

σ + γ

∥∥∥rot ~H0
∥∥∥
) (23)

4.2 A second-order energy decay result for the PML corner

For the new unsplit PML in a corner, where the x̂−directed layer overlaps the ẑ−directed layer,
and for σx(x) = σz(z) = σ constant, the governing equations are (see the Appendix of [10], and
do some differentiation of integrals using Leibnitz’s Rule):

∂tEy + 2σEy + σ2(1− 2γ
σ )P − σ2γQ = ∂zHx − ∂xHz (a)

∂tHx = ∂zEy (b)

∂tHz = −∂xEy (c) (24)

(∂t + γ)P = Ey (d)

(∂t + γ)Q = P (e).

In contrast to the case γ = 0, we have not been able to derive a zero-order energy decay result
for (24). We proceed with an identity satisfied by a second-order energy, defined as:

2E2(t) =
∥∥(∂t + γ)2Hz

∥∥2 +
∥∥(∂t + γ)2Hx

∥∥2 +
∥∥(∂t + γ)2Ey

∥∥2

+σ2
(
‖∂tEy‖2 + ‖γEy‖2

) (25)

Lemma 3 The energy E2 of the solution of (24) satisfies the identity:

d

dt
E2(t) = −2σ

(
‖∂t(∂t + γ)Ey‖2 + σγ ‖∂tEy‖2

)
≤ 0 (26)

which shows that it is decreasing in time.

Proof: The technique is very similar to the one used in Lemma 1:

• we apply the operator (∂t + γ)2 to equation (24)-(a) and multiply it by (∂t + γ)2Ey

• we apply the operator (∂t + γ)2 to equation (24)-(b) and multiply it by (∂t + γ)2Hx
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• we apply the operator (∂t + γ)2 to equation (24)-(c) and multiply it by (∂t + γ)2Hz

Similar manipulations lead to the stated result.

Theorem 4 The solution of (24) satisfies the following estimate: ∃Cγ > 0 independent of t
such that

‖Hx(t)‖+ ‖Hz(t)‖+ ‖Ey(t)‖ ≤ Cγ (27)

where Cγ depends on the initial conditions and on γ as 1/γ2 for small γ.

Proof: Again, these estimates are a consequence of Lemma 3 and of the technical Lemma 2.

One can notice that the estimate (27) does not reduce to (5) as γ → 0. Also, the attempt
to estimate a zero-order energy did not lead us to an estimate like (17). In our numerical
simulations, we do not consider a problem where the computational domain requires a corner
layer for the PML implementation.

5 Numerical Experiments

A two-dimensional simulation of an electric line source exciting a parallel plate waveguide with
perfectly conducting walls was performed as a validation of the energy estimates given in Section
4. The problem space is illustrated in Figure 1. The space was discretized via a two-dimensional
Yee lattice with uniform grid spacing ∆x = ∆z = 1mm. The center of the lattice was excited by
a ŷ−directed point-current source, thus launching a TMy wave. The source had a time signature
given by either

Jy(t) = e
− (t−to)2

t2w sin 2πfct, (28)

or

Jy(t) = −2
t

tw
e
− (t−to)2

t2w sin 2πfct, (29)

where tw = 3.183 × 10−10 sec, to = 4tw and fc = 3 × 109 Hz. The normal-to−ẑ boundaries
were terminated with a 10 cell thick PML, itself terminated with a perfect electric conductor
boundary condition on the tangential electric field Ey. The conductivity of the PML was scaled
using polynomial scaling with m = 4 and σmax = 10.61 S/m. The simulations with source
(28) were performed with a time step of ∆t = 1.9065 × 10−12 sec, while those with (29) were
performed with a time step of ∆t = 2.35× 10−12 sec or ∆t = 1.175× 10−12 sec. Three values of
γ are considered, γ = 0, 0.08, 0.16.

Initially, the simulation was performed using the standard unsplit PML (γ = 0) with source
(28); it was run for 100, 000 timesteps, and the fields were sampled at spatial index (31, 59) and
(31, 31). Figure 2-(a) illustrates the late-time response of the axial Magnetic field, Hz, in the
PML; it is observed that it exhibits a linear growth in time while the remaining field components
tend to zero in full accordance with the discussion following Eq. (2)-(3).

Next, this simulation was repeated with γ = 0.08. The late-time fields are shown in Figure 2-
(b). Now, all field components remain bounded by a time-independent constant in full agreement
with our energy considerations in Section 4.

To test whether the zero-frequency content introduced by the sharp turn-on of the source is
responsible for the late-time DC offset exhibited by the computed fields when γ > 0 we repeated
the two previously described simulations with source (29). The results in Figure 3-(a) show that
the late-time linear growth of the axial magnetic field in the PML is independent of the source’s
DC spectral content, again verifying the discussion following Equations (2)-(3). Figure 3-(b)
shows that when γ = 0.08 only the axial magnetic field tends to a constant while the other field
components decay to zero. Again, this is in agreement with our energy considerations given
in Section 4. For this set of simulations we also graphed the axial magnetic field inside the
computational domain; Figure 4 shows that the axial field decays to zero in the late time for
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Figure 1: Geometry of the numerical experiments.
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Figure 2: For source (28): a) The late-time linear growth of the axial PML field, Hz(31, 59, t).
The Hx(31, 59, t) field behaves exactly like the graphed electric field Ey(31, 59, t). This case,
γ = 0, represents the standard unsplit PML. b) γ = 0.08; the late-time linear growth of Hz has
been removed.
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Figure 3: For source (29): a) The late-time linear growth of the axial PML field, Hz(31, 59, t).
The Hx(31, 59, t) field behaves exactly like the graphed electric field Ey(31, 59, t). This case,
γ = 0, represents the standard unsplit PML. b) γ = 0.08; the late-time linear growth of Hz has
been removed.
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Figure 4: The axial magnetic field, Hz(31, 31, t), inside the computational domain for source
(29).
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Figure 5: Same as Figure 3-(b) but with ∆t/2 timestep.
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Figure 6: Same as Figure 5 but with γ = 0.16.
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γ ≥ 0, hence the linear growth indicated above for γ = 0 is restricted to the PML layer (at least
for the time interval considered herein ≈ 7.4× 104 source durations). Figure 5 shows the effect
of a reduction in the timestep with γ = 0.08. Again, the fields in the PML remain bounded by a
time-independent constant. Finally, Figure 6 verifies the dependence of the field estimates on γ
since in this case doubling this parameter reduces the long-time constant value of the fields Hz

and Hx (while leaving the value of Ey largely unaffected) in accordance to (22); these long-time
values should be compared to those shown in Figure 5. As it is evident from all the Figures, the
long-time value of Ey is not sensitive to the variation in γ since σ À γ (see second relation in
(22)).

6 Conclusion

With analysis and numerical experiments we explained how the Complex Frequency Shifted
scaling function (9) eliminates the long-time linear growth, identified in [11], of the fields in
the unsplit PML while maintaining the perfectly matched property of the equations. Also,
we showed via energy arguments that all the fields in the new unsplit PML are bounded by
time-independent constants. The present work, together with the numerical results on the
absorption properties of the CFS scaling function for elongated domains [15], indicate that the
resulting unsplit PML is the most suitable for problems requiring long-time integration of the
time-domain Maxwell equations. Also, it is suitable for problems with significant low-frequency
and/or evanescent-wave content [17].
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[17] J. P. Bérenger, ”Application of the CFSPML to the absorption of evanescent waves in
waveguides,” IEEE Microwave and Guided Wave Letters, vol. 12, pp. 218-220, 2002.

[18] H- O. Kreiss and J. Lorenz, Initial-Boundary Value Problems and the Navier-Stokes Equa-
tions, Academic Press, 1989.

[19] J. De Moerloose and D. De Zutter, ”Poynting’s theorem for the finite-difference - time-
domain method,” Microw. Opt. Tech. Letters, vol. 8, no. 5, pp. 257-260, 1995.

15


