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Abstract

In a previous paper [13] we calculated the leading-order term q0(x, t, ε) of the

solution of q(x, t, ε), the focusing nonlinear (cubic) Schrödinger (NLS) equation

in the semiclassical limit (ε → 0) for a certain one-parameter family of initial

conditions. This family contains both solitons and pure radiation. In the pure ra-

diation case, our result is valid for all times t ≥ 0. The aim of the present paper

is to calculate the long-term behavior of the semiclassical solution q(x, t, ε) in

the pure radiation case. As before, our main tool is the Riemann-Hilbert problem

(RHP) formulation of the inverse scattering problem and the corresponding sys-

tem of “moment and integral conditions,” known also as a system of “modulation

equations.” c© 2006 Wiley Periodicals, Inc.
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1 Introduction

The general initial-value problem for the cubic nonlinear Schrödinger (NLS)

equation was solved by the method of inverse scattering in [15]. The characteri-

zation of the map between the initial data and the scattering data was obtained in

[16]. In [13] we studied the semiclassical limit of the focusing NLS

(1.1) iεqt +
(

ε2

2

)
qxx + |q|2q = 0,

subject to a one-parameter family of initial conditions

(1.2) q(x, 0, ε) = A(x)ei S(x)/ε

with A(x) = − sech x , S′ = −µ tanh x , and S(0) = 0, where µ ≥ 0. Earlier

numerical studies [1, 2, 11] showed that, in spite of the modulational instability [8],

orderly oscillatory structures appear as the system evolves. A rigorous approach

to (1.1) with real analytic, pure soliton initial data [10], which relied however on

the numerically confirmed assumption of the breaking of the genus 0 solution,

produced the modulated algebrogeometric oscillatory evolution similar to that of

small-dispersion KdV [5] (see also [14]). The breaking of the genus 0 solution was

proved for initial data (1.2) in [13], where it was shown that breaking occurs at each

point of a curve t = t0(x) in the case µ > 0. In the latter work, basic properties of

the breaking curve were established and formulae (together with error estimates)

that give the leading asymptotic behavior of the solution to (1.1)–(1.2) as ε → 0

were derived in the following regimes: (a) for any values −∞ < x < ∞, t ≥ 0,

except on the breaking curve when the initial data are solitonless (µ/2 ≥ 2), and

(b) up to the second break when the initial data contain solitons. The scattering

data of the one-parameter family of initial data (1.2) was derived explicitly in [12].

The algebrogeometric solutions referred to above are controlled by 2N + 1

constants α0, α2, . . . , α2N , in the upper complex half-plane and by their complex

conjugates. They are given explicitly by formulae that involve theta functions that

arise from the radical

R(z) =
√√√√ N∏

j=0

(z − α2 j )(z − ᾱ2 j ).

Modulations of these are solutions that agree to leading order with an algebroge-

ometric one in which a large-scale dependence αj = αj (x, t), N = N (x, t) (the

oscillations occur at space-time order ε), is allowed. We refer to the curves on the

(x, t)–plane on which the integer N has a jump as breaking curves. They may be

viewed as fully nonlinear caustics.

As in the earlier work on KdV [5], the following are key elements of the analysis

in [13]:

(1) For each N = 0, 1, . . . , we derive a set of 4N + 2 real pointwise equations

for determining the 2N + 1 complex α2 j ( j = 0, 1, . . . , N ) as functions of
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FIGURE 1.1. Zero level curves and signs of Im h, prebreak.

x and t ; from the method of their derivation, we refer to these equations as

the set of the moment and integral conditions (MI conditions). Our system

of equations may be viewed as the solution to the corresponding Whitham-

type modulation system for focusing NLS in implicit function form. In the

case N = 1 the MI conditions for (1.1)–(1.2) are listed below.

(2) We have a mechanism involving a set of inequalities that allows us to select

the correct value of N = N (x, t). These inequalities are requirements for

the sign of Im h(z) in different parts of the upper half-plane, where

(1.3) h′(z) = 1

2
R(z)

∫
|ζ |≥T

sign ζ dζ

(ζ − z)|R(ζ )|

and Im h(µ/2) = 0.

The leading-order term q0(x, t, ε) of the solution q(x, t, ε) to (1.1)–(1.2) at the

point (x, t) as ε → 0 is given by a formula [13] that, up to phase shifts, involves

only the local αj ’s, i.e., αj (x, t). Expressions for q0 below the breaking curve t0(x),

i.e., in the genus 0 region (where genus is equal to 2N ), is given by

(1.4) q0(x, t, ε) = Im α0(x, t)e−(2i/ε)

∫ x

0

�α0(s, t)ds,

whereas in the genus 2 region above the breaking curve the expression for q0 is

considerably more complicated (see [13]). The breaking curve t0(x) is asymptotic

to t = x/(2µ) as x → ∞. The change of genus across the breaking curve is caused

by changes in the topology of zero level curves of Im h; see Figures 1.1 through

1.3.

The present paper is devoted to the study of the behavior of q(x, t, ε) when

t → ∞ along the rays x = ξ t in the genus 2 region, i.e., when ξ ∈ [0, 2µ). Here

we assume that µ ≥ 2, i.e., that we are in the pure radiation case. In this case

[13], the genus 2 region covers the whole area above the breaking curve t0(x). The
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FIGURE 1.2. Zero level curves and signs of Im h, breaking point.
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FIGURE 1.3. Zero level curves and signs of Im h, postbreak.

key element in the present study are the MI conditions for the genus 2 region (see

Section 2): ∫
|ζ |≥T

sign ζ dζ

|R(ζ )| = 0,(M0)

∫
|ζ |≥T

ζ sign ζ dζ

|R(ζ )| = 8t,(M1)

∫
|ζ |≥T

ζ 2 sign ζ dζ

|R(ζ )| = 2x + 8t

2∑
j=0

a2 j ,(M2)

∫
|ζ |≥T

[ζ 3 sign ζ − |R(ζ )|]dζ

|R(ζ )| = 2x

2∑
j=0

a2 j + 8t Q(α) − µ + 2T,(M3)
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Im

∫ α2

a2

∫
|ζ |≥T

R(z) sign(ζ )dζ dz

(ζ − z)|R(ζ )| = π

(
µ

2
− |â2|

)
sign

(
µ

2
− a2

)
,(I1)

Im

∫ α4

a4

∫
|ζ |≥T

R(z) sign(ζ )dζ dz

(ζ − z)|R(ζ )| = π

(
µ

2
− |â4|

)
sign

(
µ

2
− a4

)
.(I2)

Here T =
√

µ2/4 − 1, αj = aj + ibj , the quadratic form Q(α) = 1
2

∑
j<k(a2 j +

a2k)
2 − 1

2

∑2
j=0 b2

2 j , and â denotes max{a, T } when a ≥ 0 and min{a,−T } when

a < 0. The integrals in M2 and M3 are principal value integrals. This system

determines the values of α0, α2, and α4 for a given pair (x, t).

In Section 4 we study the MI conditions in the limit t → ∞ along the rays

x = ξ t in order to derive the asymptotics of α0, α2, and α4. The main result of this

section is the following:

THEOREM 1.1 If µ ≥ 2 and ξ ∈ [0, 2µ), then the branch points α0, α2, and

α4 converge to µ/2, −ξ/4, and −µ/2, respectively, as t → ∞, x = ξ t . The

convergence of a0 and a4 to µ/2 and −µ/2, respectively, is exponentially fast.

Moreover,

ln b4 = −4

(
µ

2
− ξ

4

)
t + O(1), ln b0 = −4

(
µ

2
+ ξ

4

)
t + O(1),

b2 =
√

µ/2 − max{ξ/4, T }√
2t

(1 + O(t−1/2)),

a2 = −ξ

4
+ κ

(
ξ

4

)
ln t

8t
+ O

(
1

t

)
,

where κ(s) = 0, 1
2
, 1 if s < T , s = T , or s > T , respectively, in the case T > 0;

κ(0) = 0 and κ(s) = 1 if s > 0 in the case T = 0.

The analysis of Section 4 is preceded by a detailed study of a number of in-

equalities that are consequences of the MI conditions (Section 3). These inequali-

ties immediately lead to Theorem 3.2, which states the boundedness of α0, α2, and

α4 for any compact subset in the (x, t)–plane. This theorem was formulated in [13,

sec. 6.4], but the proof was deferred to the present paper since it follows naturally

from the above inequalities.

The MI conditions are used in Section 5 to determine the asymptotics of the

double point α = α2 = α4 as t → ∞ along the breaking curve t0(x) and to refine

the asymptotics of the breaking curve t0(x) ∼ x/(2µ) obtained in [13]. The main

result of this section (Theorem 5.1) is the following:

THEOREM 1.2 The function t = t0(x), defining the breaking curve l, has asymp-
totics

(1.5) t0(x) = x

2µ
− 1

2µ
ln

2µ

µ + 2T
− T/µ

µ + 2T
+ O

(
1

x

)
,
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as x → ∞. Moreover, along this curve,

(1.6)

b = π

8t

(
1 − µ2/2 − 1

4µt
+ O(t−2)

)
,

a = −µ

2
− 1

4t

[
ln

2µ2

µ + 2T
+ 2T

µ + 2T

]
+ O(t−2),

as t → ∞, where α = a + ib is the double branch point.

Our error estimate analysis (Section 6) show that our results are valid for t →
∞ as long as ε = o(te−8t[µ/2+ξ/4]). It allows us (Section 7, Theorem 7.5) to

calculate the leading-order behavior of the solution q(x, t, ε) along the rays x = ξ t
as t → ∞. Theorem 7.5, which is based on Theorem 1.1, is stated below:

THEOREM 1.3 If µ ≥ 2 and ξ ∈ [0, 2µ), then the leading-order behavior of the
solution q(x, t, ε) to (1.1)–(1.2) as ε → 0, t → ∞, and ε = o

(
b2

0

√| ln b0|
)

along
the ray x = ξ t is given by

q(x, t, ε)

= −
√

µ/2 − max{ξ/4, T }
2t

e
i
ε
(tξ2/4+ln t[µ/2−max{ξ/4,T }])(1+O(t−1))(1 + O(t−1/2))

+ O

(
ε

b2
0|ln b0|

)
,

where ln b0 = −4t (µ/2 + ξ/4) + O(1).

The long-term behavior of q along t0(x), which is based on Theorem 1.2, was

also obtained in Section 7. However, no error estimates for that case are included

in the paper. Finally, in Section 8, we prove that branches of the zero level curve of

Im h(z) in the upper half-plane approach the real axis and the vertical ray Re z =
−ξ/4 as t → ∞ along x = ξ t .

The present paper can be considered as a natural extension of our previous

work [13] for the case of pure radiational initial data. Therefore, although some

facts from [13] are repeated here, we frequently refer to [13] for required state-

ments, definitions, and notation. We would also like to mention that additional

information, relevant to the present paper, can be found in [13].

2 The MI Conditions

For the solitonless case µ ≥ 2, the genus 2 region (N = 1) is the whole region

above the breaking curve t = t0(x). Therefore, the above-listed MI conditions with

N = 1 (i.e., the six real equations for three complex unknown α2 j ’s—α0, α2, and

α4) will occupy us in this study. In general, these six equations are given by (A.6)

in the appendix, where f (z) is, roughly speaking, proportional to the logarithm of

the reflection coefficient.
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The function f ′(z) corresponding to our initial data (1.2) is given by (A.7).

Since f ′(z) is analytic in the upper half-plane, the integrals in (A.7) depend on the

endpoints α0, α2, and α4 and their conjugates but not on the contours of integration.

For more information about functions f (z), g(z), and h(z) and the MI conditions,

see [13, secs. 2–3] and also the Appendix, which contains an overview of part of

the work in [13]). The moment conditions (M0) through (M3)∫
|ζ |≥T

sign ζdζ

|R(ζ )| = 0,(M0)

∫
|ζ |≥T

ζ sign ζdζ

|R(ζ )| = 8t,(M1)

∫
|ζ |≥T

ζ 2 sign ζdζ

|R(ζ )| = 2x + 8t
2∑

j=0

a2 j ,(M2)

∫
|ζ |≥T

[ζ 3 sign ζ − |R(ζ )|]dζ

|R(ζ )| = 2x
2∑

j=0

a2 j + 8t Q(α) − µ + 2T,(M3)

where T =
√

µ2/4 − 1, αj = aj + ibj , and the quadratic form

Q(α) = 1

2

∑
j<k

(a2 j + a2k)
2 − 1

2

2∑
j=0

b2
2 j ,

are derived from (A.7) in the appendix. The integrals in (M2) and (M3) are principal

value integrals.

Taking linear combinations of the moment conditions (M0) to (M3), we derive

the modified set of conditions∫
|ζ |≥T

s0(ζ )s2(ζ )s4(ζ ) sign ζ dζ = 0,(M̂0)

∫
|ζ |≥T

p2i (ζ )s2 j (ζ )s2k(ζ ) sign ζ dζ = 8t,(M̂1)

∫
|ζ |≥T

p2i (ζ )p2 j (ζ )s2k(ζ ) sign ζ dζ = 2x + 8ta2k,(M̂2)

∫
|ζ |≥T

[1 − p0(ζ )p2(ζ )p4(ζ ) sign ζ ]dζ = 4t (b2
0 + b2

2 + b2
4) + µ − 2T,(M̂3)
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where the indices i , j , and k in (M̂1) and (M̂2) are any permutation of 0, 1, and 2,

and where the following definitions apply:

p2 j (ζ ) = ζ − a2 j

|ζ − α2 j |
= ζ − a2 j√

(ζ − a2 j )2 + b2
2 j

,

s2 j (ζ ) = 1

|ζ − α2 j |
= 1√

(ζ − a2 j )2 + b2
2 j

.

(2.1)

The factors p2i (ζ ) are approximated by sign(ζ − a2i ). The inequality∣∣∣∣∣ ζ√
ζ 2 + b2

− sign ζ

∣∣∣∣∣ ≤ b2

ζ 2 + b2

provides the error estimate

(2.2)

∣∣∣∣ ∫
J

f (ζ )p2i (ζ )dζ −
∫
J

f (ζ ) sign(ζ − a2i )dζ

∣∣∣∣ ≤ πb2i sup
ζ∈J

| f (ζ )|

on an interval J ⊂ R and its straightforward iterates (recall |p2l | ≤ 1, l = 0, 1, 2),∣∣∣∣ ∫
J

f (ζ )p2i (ζ )p2 j (ζ )dζ −
∫
J

f (ζ ) sign(ζ − a2i ) sign(ζ − a2 j )dζ

∣∣∣∣(2.3)

≤ π(b2i + b2 j ) sup
ζ∈J

| f (ζ )|∣∣∣∣ ∫
J

f (ζ )p0(ζ )p2(ζ )p4(ζ )dζ(2.4)

−
∫
J

f (ζ ) sign(ζ − a0) sign(ζ − a2) sign(ζ − a4)dζ

∣∣∣∣
≤ π(b0 + b2 + b4) sup

ζ∈J

| f (ζ )|.

In these formulae, f is any integrable function and i and j are equal 0, 1, or 2.

Note that estimate (2.2) has the form | ∫ f g| ≤ | f |L∞|g|L1 . Sharpening this to

(2.5)

∣∣∣∣ ∫
J

f g

∣∣∣∣ ≤ | f |L∞(J\D)|g|L1(J\D) + | f |L1(D)|g|L∞(D)
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where D is a subinterval of J , we obtain stronger versions of (2.2) and (2.3)

given by ∣∣∣∣ ∫
J

f (ζ )p2i (ζ )dζ −
∫
J

f (ζ ) sign(ζ − a2i )dζ

∣∣∣∣(2.6)

≤ πb2i sup
ζ∈J\D

| f (ζ )| +
(

sup
ζ∈D

b2
2i

((ζ − a2i )2 + b2
2i )

)∫
D

| f (ζ )|dζ,

∣∣∣∣ ∫
J

f (ζ )p2i (ζ )p2 j (ζ )dζ −
∫
J

f (ζ ) sign(ζ − a2i ) sign(ζ − a2 j )dζ

∣∣∣∣(2.7)

≤ π(b2i + b2 j ) sup
ζ∈J\D

| f (ζ )|

+ sup
ζ∈D

(
b2

2i

(ζ − a2i )2 + b2
2i

+ b2
2 j

(ζ − a2 j )2 + b2
2 j

)∫
D

| f (ζ )|dζ.

The approximation with the sign functions leads to elementary integrals F(ζ ) =∫
f (ζ )dζ in M̂2 (see (M̂2)) with f (ζ ) = s2k and in M̂3 (see (M̂3)) with f (ζ ) = p2.

We pick the f ’s differently in the special case a2 = a4, the integrals though remain

elementary. The following elementary proposition will be frequently used in the

following sections:

PROPOSITION 2.1 If a function f (x) is continuous (piecewise continuous) on
[a, b], points a ≤ x1 ≤ x2 ≤ · · · ≤ x2n ≤ b and F(x) = ∫

f (ζ )dζ , then

(2.8)

∫ b

a

f (ζ )

2n∏
j=1

sign(ζ−x j )dζ = F(b)−2

n∑
k=1

F(x2k)+2

n∑
k=1

F(x2k−1)−F(a).

Here n ∈ N and −∞ ≤ a < b ≤ ∞. The obvious adjustments to (2.8) can be
made for the case of an odd number of points x j ∈ [a, b].

To consider the integral conditions we start with the following definition:

DEFINITION 2.2 â = max{a, T } when a ≥ 0 and â = min{a,−T } when a < 0.

PROPOSITION 2.3 Let α = a + ib denote any of the α2 j . Then,

(2.9) Im

∫ α

a

∫
|ζ |≥T

R(z) sign(ζ )dζ dz

(ζ − z)|R(ζ )| = π

(
µ

2
− |â|

)
sign

(
µ

2
− a

)
.

PROOF: According to [13, sec. 3.1], the integral conditions can be written in

the form Im h(α2 j ) = 0, where α2 j is any branch point of h in the upper half-plane.

Equivalently, Im
∫ α2 j

±µ/2 h′(z)dz = 0, where we choose the contour of integration

going horizontally from ±µ/2 to a2 j (the sign of µ/2 coincides with the sign of
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a2 j ) and then vertically from a2 j to α2 j . Using the definition of h′(z) (see (A.7) or

section 3.1 in [13]), we can write these integral conditions as

(2.10) Im

{∫ α

a

+
∫ a

±µ/2

}
R(z)dz

2π i

∫
γ

f ′(ζ )dζ

(ζ − z)R(ζ )
= 0

where α = a + ib could be any branch point α2 j , j = 0, 1, 2.

Since h = 2g − f and Im g = 0 on R, the second integral is equal to

(2.11) Im

[
h(a) − h

(
±µ

2

)]
= − Im f (a) = −π

2

(
µ

2
− |â|

)
sign

(
µ

2
− a

)
,

where the expression for f (a) was obtained in [13]. Combining the previous two

equations and using the fact that Im f ′(ζ ) = −(π/2) sign(ζ ), we obtain (2.9). �

Note that one of the above three equations follows from the remaining two and

from the moment conditions.

3 A Priori Inequalities for MI Conditions

and Control of the α for Finite Time

In the present and following sections we assume that a0 = max{a2 j } and a4 =
min{a2 j }, where j = 0, 1, 2. According to M0, we always have a0 ≥ 0 and

a4 ≤ 0. This labeling of the branch points α does not necessarily coincide with the

“natural” labeling α0, α2, and α4 of the branch points as we move along the contour

γ . The use of labeling in the latter sense will always be indicated in these sections.

THEOREM 3.1 The following a priori inequalities hold for the MI equations:

(1) REDUCTION OF INTEGRAL CONDITIONS. For any j = 0, 1, 2, we have

(3.1)

∣∣∣∣µ2 − |â2 j |
∣∣∣∣ ≤ 2tb2

2 j + 4b2 j

π
[1 + 2 ln(1 +

√
2)].

(2) REDUCTION OF M̂1. For any pair i, j ∈ {0, 1, 2}, i �= j , we have

(3.2) b2i b2 j ≤
(

π

8t

)2

; if additionally b2i ≤ b2 j , then b2i ≤ π

8t
.

(3) REDUCTION OF M̂3.

(i)

∣∣∣∣|â0 − α2| + |â4 − α2| − 1

2
|T − α2| − 1

2
|T + α2| − µ

2
− 2t (b2

0 + b2
2 + b2

4)

∣∣∣∣
≤ π

2
(b0 + b4);

(ii)

∣∣∣∣â0 − â4 − max{|a2|, T } − µ

2
− 2t (b2

0 + b2
2 + b2

4)

∣∣∣∣
≤
(

π

2
+ 1

)
(b0 + b2 + b4).
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If α2 = α4, that is, a2 = a4 = a and b2 = b4 = b, and if additionally a < −T ,
then

(iii)

∣∣∣∣8tb2 − πb + (µ − 2a0)

+ b

(
2 tan−1 a0 − a

b
− tan−1 T − a

b
+ tan−1 T + a

b

)∣∣∣∣
< πb0 + 4tb2

0.

(4) REDUCTION OF M̂2. If a0 − max{a2, T } > 2δ > 0, then

(3.3)

|2x + 8ta0 + 2 ln b0|

≤ π(b2 + b4)

δ

+ 2(b2
2 + b2

4)

δ2
tanh−1 δ√

δ2 + b2
0

+ 6 max
{∣∣ln(δ +

√
δ2 + b2

0

)∣∣, ∣∣ln(a0 − â4 +
√

(a0 − â4)2 + b2
0

)∣∣}.
If min{a2,−T } − a4 > 2δ > 0, then

(3.4)

|2x + 8ta4 − 2 ln b4|

≤ π(b2 + b0)

δ
+ 2(b2

2 + b2
0)

δ2
tanh−1 δ√

δ2 + b2
4

+ 6 max
{∣∣ln(δ +

√
δ2 + b2

4

)∣∣, ∣∣ln(â0 − a4 +
√

(â0 − a4)2 + b2
4

)∣∣}.
If 2δ = min{a2 − a4, a0 − a2}, then

|2x + 8ta2 − (F(T ) + F(−T ))|

≤ π(b0 + b4)

δ

+ 2(b2
0 + b2

4)

δ2
tanh−1 δ√

δ2 + b2
2

+ 4 max
{∣∣ln(δ +

√
δ2 + b2

2

)∣∣, ∣∣ln(â0 − â4 +
√

(â0 − â4)2 + b2
2

)∣∣}
(3.5)

where

(3.6) F(ζ ) = ln
(
ζ − a2 +

√
(ζ − a2)2 + b2

2

)− ln b2.



1390 A. TOVBIS, S. VENAKIDES, AND X. ZHOU

If α2 = α4, that is, a2 = a4 = a and b2 = b4 = b, and if additionally a < −T ,
a0 > T , and a0 − a > δ, then

(3.7) 2x + 8at = F(T ) + F(−T ) − 2F(a0)

where

(3.8) F(ζ ) = 1

2
ln((ζ − a)2 + b2) + O(max{b0, b2

0 ln b}).

PROOF:

Inequality (1). We begin with (2.9) with α = α2 j .

(3.9)
1

2
Im

∫ α2 j

a2 j

∫
|ζ |≥T

R(z) sign(ζ )dζ dz

(ζ − z)|R(ζ )| = π

2

(
µ

2
− |â2 j |

)
sign

(
µ

2
− a2 j

)
.

The key idea in the proof is iterating the obvious identity

1

ζ − z
= 1

z − u

[
−1 + ζ − u

ζ − z

]
twice, choosing u ∈ C to be ᾱ2k and ᾱ2i , respectively, and using the moment

conditions M0 and M1:

(3.10)

∫
|ζ |≥T

sign(ζ )dζ

|R(ζ )| = 0,

∫
|ζ |≥T

(ζ − u) sign(ζ )dζ

|R(ζ )| = 8t.

We obtain

(3.11)

(
µ

2
− |â2 j |

)
sign

(
µ

2
− a2 j

)
= −8t

π
Im

∫ a2 j +ib2 j

a2 j

R(z)dz

(z − ᾱ2i )(z − ᾱ2k)

+ 1

π
Im

∫ a2 j +ib2 j

a2 j

∫
|ζ |≥T

R(z)

(z − ᾱ2i )(z − ᾱ2k)

· (ζ − ᾱ2i )(ζ − ᾱ2k) sign(ζ )

(ζ − z)|R(ζ )| dζ dz.

(It still holds if constants α2k and α2i are replaced by any complex constants.) We

estimate the simple and the double integrals in (3.11), denoted, respectively, by I1

and I2. We begin with

(3.12) I1 =
∫ a2 j +ib2 j

a2 j

√
(z − a2 j )2 + b2

2 j

√
(z − α2i )(z − α2k)

(z − ᾱ2i )(z − ᾱ2k)
dz.

Since Im z ≥ 0, we have ∣∣∣∣(z − α2i )(z − α2k)

(z − ᾱ2i )(z − ᾱ2k)

∣∣∣∣ ≤ 1,
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so that, introducing z = a2 j + iy,

(3.13) |I1| ≤
∫ b2 j

0

√
b2

2 j − y2 dy = b2
2 j

∫ 1

0

√
1 − y2 dy = 1

4
πb2

2 j .

In order to estimate I2 we first notice that

I3 =
∫

|ζ |≥T

(ζ − ᾱ2i )(ζ − ᾱ2k) sign(ζ )

(ζ − z)|R(ζ )| dζ

=
∫

|ζ |≥T

√
(ζ − ᾱ2i )(ζ − ᾱ2k)

(ζ − α2i )(ζ − α2k)
· sign(ζ )dζ

(ζ − z)
√

(ζ − a2 j )2 + b2
2 j

.

(3.14)

Since ζ ∈ R, the absolute value of the square root is 1.

We now need to evaluate the integral

∫
|ζ |≥T

dζ

|ζ − z|
√

(z − a2 j )2 + b2
2 j

= K1 + K2,

where in K1 we integrate over [a2 j − b2 j , a2 j + b2 j ] ∩ {z : |ζ | ≥ T } and in K2 over

the rest of {z : |ζ | ≥ T }. Since z = a2 j + y, 0 ≤ y ≤ b2 j , we obtain

(3.15)

K2 ≤ 2

∫ ∞

a2 j +b2 j

dζ

(ζ − a2 j )

√
(ζ − a2 j )2 + b2

2 j

= 2

∫ ∞

b2 j

du

u
√

u2 + b2
2 j

= 2

b2 j

ln(1 +
√

2),

K1 ≤ 2

∫ a2 j +b2 j

a2 j

dζ√
(ζ − a2 j )2 + y2

√
(ζ − a2 j )2 + b2

2 j

≤ 2

b2 j

∫ b2 j

0

du√
u2 + y2

= 2

b2 j

ln(u +
√

u2 + y2)

∣∣∣∣b2 j

0

≤ 2

b2 j

[ln b2 j + ln(1 +
√

2) − ln y].
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Thus, |I3| ≤ 2/(b2 j )[ln b2 j + 2 ln(1 + √
2) − ln y]. Therefore

(3.16)

|I2| ≤
∫ a2 j +ib2 j

a2 j

√
(z − a2 j )2 + b2

2 j

√
(z − α2i )(z − α2k)

(z − ᾱ2i )((z − ᾱ2k)
|I3| |dz|

≤ 2

b2 j

∫ b2 j

0

[ln b2 j + ln(1 +
√

2) − ln y]
√

b2
2 j − y2 dy

= 2b2 j

∫ 1

0

[2 ln(1 +
√

2) − ln t]
√

1 − t2 dt

≤ 2b2 j [1 + 2 ln(1 +
√

2)].
The proof of the lemma follows from (3.11) and inequalities (3.13) and (3.16).

Inequality (2). According to M̂1,

(3.17) I =
∫

|ζ |≥T

dζ

|ζ − α2i | |ζ − α2k |
≥

∫
|ζ |≥T

(ζ − a2 j ) sign(ζ )dζ∏2
j=0 |ζ − α2 j |

= 8t

for any j = 0, 1, 2 and i, k �= j . By the Cauchy-Schwartz inequality, that yields

(3.18) I 2 ≤
∫

|ζ |≥T

dζ

|ζ − α2i |2
·
∫

|ζ |≥T

dζ

|ζ − α2k |2
= π2

b2i b2k

.

Thus

(3.19) min
i �=k

1

b2i b2k

≥ 64t2

π2
,

and the proof of the first part is completed. The second part follows from the first

trivially.

Inequality (3). Inequality (i) is obtained from relation M̂3, which, using (2.3),

can be rewritten as∣∣∣∣ ∫
|ζ |>T

[1 − p2(ζ ) sign(ζ − a4) sign ζ sign(ζ − a0)]dζ

− 4t
2∑

j=0

b2
2 j − µ + 2T

∣∣∣∣
≤ π(b0 + b4).

(3.20)

Note that replacing a0 and a4 by â0 and â4, respectively, does not change the inte-

gral in (3.20). It now remains to apply Proposition 2.1:∫
|ζ |>T

(1 − f (ζ )) sign(ζ − â4) sign ζ sign(ζ − â0)dζ

= (ζ − F(ζ ))
∣∣∞
ζ=â0

+ (ζ + F(ζ ))
∣∣â0

T
+ (ζ − F(ζ ))

∣∣−T

â4
+ (ζ + F(ζ ))

∣∣â4

−∞
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where f (ζ ) and its antiderivative F(ζ ) are given by

(3.21) f (ζ ) = ζ − a2√
(ζ − a2)2 + b2

2

, F(ζ ) =
√

(ζ − a2)2 + b2
2.

Inequality (ii) follows from applying the estimate |a| ≤ √
a2 + b2 ≤ |a| + |b|

to inequality (i).

Inequality (iii) follows similarly to inequality (i). Now, when a4 = a2 = a,

equation (3.20) becomes

(3.22)

∣∣∣∣ ∫
|ζ |>T

[1 − f (ζ ) sign ζ sign(ζ − a0)]dζ − 4t
2∑

j=0

b2
2 j − µ + 2T

∣∣∣∣ ≤ πb0.

The integral takes the form∫
|ζ |>T

[1 − f (ζ )) sign ζ sign(ζ − a0)]dζ

= (ζ − F(ζ ))
∣∣∞
ζ=a0

+ (ζ + F(ζ ))
∣∣a0

T
+ (ζ − F(ζ ))

∣∣−T

−∞

where f and its antiderivative F are

f (ζ ) = (ζ − a)2

(ζ − a)2 + b2
= 1 − b2

(ζ − a)2 + b2
,

F(ζ ) = ζ − b tan−1 ζ − a

b
.

Inserting these in (M̂3), we obtain (3).

Inequality (4). Inequality (3.3) is obtained directly from relation M̂2 with inte-

grand s0 p2 p4. The proof of the other two inequalities (3.4) and (3.5) requires the

integrands p0 p2s4 and p0s2 p4, respectively.

Replacing p2 and p4 with sign(ζ −a2) and sign(ζ −a4), respectively, and using

(2.7) with D = (a0 − δ, a0 + δ), we reduce M̂2 to

(3.23)

∣∣∣∣2x + 8a0t −
∫

|ζ |>T

sign(ζ − a2) sign(ζ − a4)
sign ζdζ√

(ζ − a0)2 + b2
0

∣∣∣∣
≤ π(b2 + b4)√

δ2 + b2
0

+ 2(b2
2 + b2

4)

δ2
tanh−1 δ√

δ2 + b2
0

.
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We now use Proposition 2.1 with

(3.24)

f (ζ ) = 1√
(ζ − a0)2 + b2

0

,

F(ζ ) = ln
ζ − a0 +

√
(ζ − a0)2 + b2

0

b2
0

.

Inequality (3.3) follows from

(3.25)

F(∞) + F(−∞) + 4 ln b0 =
lim

M→∞
ln
{[√

(M − a0)2 + b2
0 + (M − a0)

]
· [√(M + a0)2 + b2

0 − (M + a0)
]} = 2 ln b0

and from

(3.26)

2(|F(â2)| + |F(â4)|) + |F(T )| + |F(−T )|
≤ 6 max

{∣∣ln(δ +
√

δ2 + b2
0

)∣∣, ∣∣ln(a0 − â4 +
√

(a0 − â4)2 + b2
0

)∣∣}.
To obtain the latter inequality, we observe that u = ξ − a0 is negative for

ξ = â2, â4,±T and that

(3.27)

∣∣∣∣ln
√

u2 + b2 − u

b2

∣∣∣∣ =
∣∣ln(√u2 + b2 + u

)∣∣
for any positive b and u.

For inequality (3.4), we have f (ζ ) = 1/

√
(ζ − a4)2 + b2

4. We choose

(3.28) F(ζ ) = ln
[
ζ − a4 +

√
(ζ − a4)2 + b2

4

]
instead of (3.24). Otherwise, the proof is similar to that of (3.3).

For inequality (3.5), we have f (ζ ) = 1/

√
(ζ − a2)2 + b2

2. We choose

(3.29) F(ζ ) = ln
ζ − a2 +

√
(ζ − a2)2 + b2

2

b2

instead of (3.24). Then∫
|ζ |>T

sign(ζ − a0) sign(ζ − a4)
sign ζ dζ√

(ζ − a2)2 + b2
2

= F(∞) − 2F(â0) + F(T ) + F(−T ) − 2F(â4) + F(−∞).

(3.30)
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It is now clear that limM→∞[F(M) + F(−M)] = 0 and

(3.31) 2F(â0) + 2F(â4) = 2 ln

√
(â0 − a2)2 + b2

2 + â0 − a2√
(â4 − a2)2 + b2

2 + a2 − â4

,

which completes the proof of (3.5).

To prove the last inequality, (3.7), we notice that, taking into account the esti-

mate (2.6), the moment condition M̂2 becomes

(3.32) 2x + 8at =
∫

|ζ |>T

(ζ − a) sign(ζ − a0) sign ζdζ

(ζ − a)2 + b2
+ O(max{b0, b2

0 ln b}).

Calculation of the elementary integral together with Proposition 2.1 completes the

proof. �

The a priori inequalities obtained above allow us to prove the following impor-

tant theorem.

THEOREM 3.2 If µ ≥ 2, then for any ξ, σ > 0 the values of αj (x, t) satisfying
the MI conditions (A.6) are uniformly bounded on the set Sξ,σ = {(x, t) : |x | ≤
tξ, t ≥ σ }. Moreover, αj (x, t) are uniformly separated from R on any bounded
subset S of Sξ,σ .

PROOF: By inequality (2), two of the three b2i (x, t)’s are bounded by π/(8t)
in Sξ,σ . By inequality 1, the two corresponding a2i ’s are also bounded in Sξ,σ . We

denote the third branch point α = a + ib and assume that a(x, t) approaches either

plus or minus infinity over a sequence s = {(xn, tn)}∞1 ⊂ Sξ,σ . Hence, a is either

a0 or a4, respectively. In that case the estimate

(3.33) |a| = 2b2t (1 + o(1))

along s follows from inequality (3).

Let us first consider the case a = a0. Taking into account ln b = 1
2
(ln a− ln t)+

o(1), we see that the right-hand side of inequality (3.3) is at most logarithmic in a
and in t , while the smaller left-hand side is equal to 2t (x/t + 4a − (ln b)/t). Since

|x/t | ≤ ξ , the left-hand side behaves like 8ta(1 + o(1)) along s, which leads to

a contradiction. So, a0(x, t) is bounded along s. The same argument will work in

the case a = a4. Thus, by inequality (3), b is also globally bounded.

We now exclude the possibility that some branch point α, say α0, approaches

the real axis as (x, t) → (x∗, t∗) ∈ Sξ,σ . Indeed, then, according to inequality

2, α0 → µ/2. Since all the branch points α2 j are bounded, the left-hand side of

the moment condition M1 approaches +∞, whereas its right-hand side is bounded.

The obtained contradiction completes the proof. �

Note that Sξ,0 contains the whole genus 2 region when ξ is sufficiently large.
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4 Long-Term Behavior of the α’s

In this section we study behavior of the branch points α in the long-time limit

along the rays x/t = ξ , where 0 ≤ ξ < 2µ. As follows from [13, sec. 4], these

rays lie in the genus 2 region. As in the previous section, we consider the pure

radiation case only, i.e., the case µ ≥ 2.

THEOREM 4.1 If µ ≥ 2 and ξ ∈ [0, 2µ), then the branch points α0, α2, and
α4 converge to µ/2, −ξ/4, and −µ/2, respectively, as t → ∞, x = ξ t . The
convergence of a0 and a4 to µ/2 and −µ/2, respectively, is exponentially fast.
Moreover,

(4.1)

ln b4 = −4

(
µ

2
− ξ

4

)
t + O(1), ln b0 = −4

(
µ

2
+ ξ

4

)
t + O(1),

b2 =
√

µ/2 − max{ξ/4, T }√
2t

(1 + O(t−1/2)),

a2 = −ξ

4
+ κ

(
ξ

4

)
ln t

8t
+ O

(
1

t

)
where κ(s) = 0, 1

2
, 1 if s < T , s = T , or s > T , respectively, in the case T > 0;

κ(0) = 0 and κ(s) = 1 if s > 0 in the case T = 0.

PROOF: As t → +∞, the boundedness of the three a2i and of the three b2i

(Theorem 3.2) and a priori inequality (3) from Theorem 3.1 imply that b2i ∼
O(t−1/2), i = 1, 2, 3. Inequalities (1) and (2) from Theorem 3.1 imply that

b2 j ∼ o(t−1/2) is equivalent to |a2 j | → µ/2 and that at least two of the branch

points α approach points ±µ/2. To prove that all α2i , i = 1, 2, 3, are separated

from each other along the ray x = ξ t , 0 ≤ ξ < 2µ, as t → +∞, we need the

following statement:

PROPOSITION 4.2 If a2k ≤ a2i and d > 0, then there exists a∗ ∈ [a2k, a2i ] such
that

(4.2) H(a∗) =
∫ ā+d

ā−d

(ζ − a∗)dζ√
(ζ − a2k)2 + b2

2k

√
(ζ − a2i )2 + b2

2i

= 0

where ā = 1
2
(a2k + a2i ).

PROOF: Since H(a∗) is a continuous function, it is sufficient to show that

H(a2k) > 0 and H(a2i ) < 0. Indeed, (ζ − a)/
√

(ζ − a)2 + b2 is an odd and

increasing function, whereas 1/
√

(ζ − a)2 + b2 is an even function with the sole

maximum at ζ = a. Thus,

(4.3) 0 <

∫ ā+d

ā−d

(ζ − a2k)dζ√
(ζ − a2k)2 + b2

2k

< H(a2k).

The second inequality H(a2i ) < 0 can be proved similarly. �
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Suppose now that all |a2i | → µ/2, i = 1, 2, 3, as t → ∞. According to

M0, they should approach both ±µ/2. Let as assume, for example, that both

a4, a2 → −µ/2, whereas the remaining a0 → µ/2. The other case can be consid-

ered similarly. Taking a linear combination of M0, M1, and M2, we obtain

(4.4)

∫
|ζ |>|T |

(ζ − a∗)p0(ζ ) sign ζ dζ√
(ζ − a4)2 + b2

4

√
(ζ − a2)2 + b2

2

= 2x + 8t (a4 + a2 − a∗).

Using (2.6), we obtain

(4.5)

∣∣∣∣2x + 8t (a4 + a2 − a∗) −
∫

|ζ |>|T |

(ζ − a∗) sign(ζ − a0) sign ζ dζ√
(ζ − a4)2 + b2

4

√
(ζ − a2)2 + b2

2

∣∣∣∣ < C

where the constant C > 0 does not depend on t . By shrinking the region of inte-

gration in (4.5) to [ā − d, ā + d], where ā = 1
2
(a2 + a4) and d ∈ (0, |ā| − T ), we

only change the value of C in this formula. Then (4.5) becomes

|2x + 8t (a4 + a2 − a∗) − H(a∗)| < C.

Using Proposition 4.2, we obtain ξ − 2µ → 0 as t → ∞, which contradicts the

condition ξ < 2µ. Thus, one of the branch points, say α2 j , stays away from vicini-

ties of both ±µ/2. According to inequalities (1) and (2), Theorem 3.1, the corre-

sponding b2 j = O(t−1/2) (whereas the remaining b’s are of the order o(t−1/2)). We

call this α2 j a “slow” branch point. Each of the remaining two “fast” branch points

α should approach ±µ/2, respectively, in order to comply with M0. So, for large t
all the branch points α are separated and two of them approach ±µ/2, respectively.

Then we can use all inequalities (4) from Theorem 3.1.

For example, for large t inequality (3.3) implies

(4.6) −(ξ + 4a0)t + C

t
ln b0 ≤ ln b0 ≤ −(ξ + 4a0)t + C

t
ln b0

where C > 0 is independent of t . Thus, b0 = e−(ξ+4a0)(t+O(1)), which means α0 is

a fast branch point. Similarly, we get b4 = e(ξ+4a4)(t+O(1)). As lim supt→∞ a4 ≤
−µ/2, we see that ξ < 2µ implies that α4 is a fast branch point. Therefore, the

slow branch point is α2. Notice also that, according to inequality (1), a0 and a4

approach ±µ/2 exponentially fast.

The first two equations in (4.1) follow from (4.6) and the corresponding in-

equality for α4. To obtain the remaining equations, we start by considering in-

equality (3.5), Theorem 3.1, in the limit t → ∞. As follows from (3.6), there is

K > 0 such that |F(T ) + F(−T )| ≤ 2|ln b2| + K for all sufficiently large t and

any a2 ∈ (a4 + δ, a0 − δ). Thus, we obtain

(4.7)
ξ

4
+ a2 = O

(
ln t

t

)
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i.e., a2 → −ξ/4 as t → ∞. Substituting (4.7) into inequality (3)(ii), we obtain the

third equation (4.1). To obtain the last equation, we calculate

lim
t→∞

[F(T ) + F(−T )]
ln

√
(T + ξ

4 )2+b2
2+T + ξ

4√
(T − ξ

4 )2+b2
2+T − ξ

4

if 0 ≤ ξ

4
< T,

ln

√
4T 2+b2

2+2T

b2
if ξ

4
= T,

ln

[√
(T + ξ

4 )2+b2
2+T + ξ

4

][√
(

ξ
4 −T )2+b2

2+ ξ
4 −T

]
b2

2

if T <
ξ

4
<

µ

2

(4.8)

along the ray x = ξ t . Substitution of (4.8) into inequality (3.5) completes the

proof. �

Theorem 4.1 establishes that three branch points α2 j , j = 0, 1, 2, on the contour

γ approach three different points µ/2, −ξ/4, and −µ/2 on the real axis as t → ∞,

x = ξ t , where 0 ≤ ξ < 2µ. The points α2 j are also naturally ordered by the

oriented contour γ connecting µ/2 with −µ/2. A priori, it is not clear that this

order coincides with another order we used above, where a0 = maxj=0,1,2{a2 j } and

a4 = minj=0,1,2{a2 j }. In order to show that the two orders do indeed coincide, we

start with the following statement:

PROPOSITION 4.3 Suppose that the branch points α2k = a2k + ib2k , k = 0, 1, 2,
are approaching the different points a2k on the real axis, respectively, and a con-
tinuously differentiable-on-{z : |ζ | ≥ T } function ρ(ζ ) is such that the integral
below exists. We also assume that �a2k = |T | for any k = 0, 1, 2 implies that α2k

approaches a2k transversally. Then

(4.9)

∫
|ζ |≥T

ρ(ζ )

|R(ζ )| dζ = −2

2∑
k=0

sign(a2k)κ(|a2k |)ρ(a2k) ln b2k

|a2k − a2i | |a2k − a2 j |
+ O(1)

where {i, j, k} is a permutation of {0, 1, 2}, R(ζ ) = ∏2
j=0 |ζ − a2 j |. (With a slight

abuse of notation, we use here a2k to denote both the real part of α2k and the
limiting value of α2k .)

PROOF: Let us choose a small but fixed δ > 0 such that the intervals Ij =
(a2 j − δ, a2 j + δ) do not intersect each other for j = 0, 1, 2 and that Ii and Ik do

not contain ±T . Then

(4.10)

∫
Ij

ρ(ζ )

|R(ζ )| dζ =
∫
Ij

ρ(a2 j )s2 j (ζ )dζ

|a2 j − α2k ||a2 j − α2i |
+
∫
Ij

u j (ζ )p2 j (ζ )dζ

where u j is a continuous-on-Ij function. The second integral is obviously bounded

as α approaches R. Direct calculation of the first integral yields

(4.11) −2
ρ(a2 j ) ln b2

2 j

|a2 j − α2k ||a2 j − α2i |

[
1 + O

(
1

ln b2 j

)]
.
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The observation that the integral outside the union of Ij , j = 0, 1, 2, is uniformly

bounded completes the proof. �

Suppose now that the two orders do not coincide. Then there should exist a zero

level curve of Im h(z) crossing the vertical interval Ik = (a2k, α2k) for at least one

k, k = 0, 1, 2, when t is large enough. Since Im h(α2k) = 0, it sufficient to show

that Re h′(z) �= 0 on Ik to obtain a contradiction.

Using the same arguments as for calculating the moment conditions ( (M0)), we

see that

(4.12) h′(z) = 1

2
R(z)

∫
|ζ |≥T

sign ζ dζ

(ζ − z)|R(ζ )| .

Representing R(z) = √
(z − α2k)(z − ᾱ2k)R̃(z), we obtain

(4.13)

R̃(z) = R̃(a2k)(1 + [ln R(z)]′z=a2k
(z − a2k) + · · · )

= |a2i − a2k | |a2 j − a2k |

·
(

1 +
[

1

a2k − a2i

+ 1

a2k − a2 j

+ O(b2
2i + b2

2 j )

]
(z − a2k) + · · ·

)
uniformly on Ik . Therefore, for z ∈ Ik , i.e., for z = a2k + iη, 0 ≤ η ≤ b2k , we have

(4.14) R(z) = b2k

√
1 − y2|a2i −a2k | |a2 j −a2k |(1+ iη[K + O(b2

2i +b2
2 j )]+· · · )

where y = η/b2k and K = 1/(a2k − a2i ) + 1/(a2k − a2 j ).

Let us now calculate the contribution to Re h′(z) coming from the point a2k ; see

Proposition 4.3. Indeed, as t → ∞, the leading-order term of∫ a2+δ

a2−δ

sign a2k dζ

(ζ − z)R(ζ )
,

where δ > 0 is a small fixed number, is

sign a2k

|a2i − a2k | |a2 j − a2k |
∫ δ

−δ

(1 − K u)du

(u − iη)

√
u2 + b2

2

= 2 sign a2k

|a2i − a2k ||a2 j − a2k |
∫ δ

0

(iη − K u2)du

(u2 + η2)

√
u2 + b2

2

(4.15)

where u = ζ − a2. Thus, the contribution to Re h′(z), according to (4.14) and

(4.15), is

(4.16) − 2K
sign a2k

|a2i − a2k | |a2 j − a2k |
b2

2k

√
1 − y2 |a2i − a2k | |a2 j − a2k |

·
∫ δ

0

du√
u2 + b2

2

.
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In the case when α2k is a slow branch point, i.e., when 2k = 2, we see that the

contribution from a2k (the integral in (4.16)) is of smaller order than the contribu-

tion from the fast branch points a0 and a4. Using this observation together with

Theorem 4.2 and Proposition 4.3, we obtain

lim
t→∞

�h′(a2 + iyb2)

= −1

2
b2

√
1 − y2(a0 − a2)(a2 − a4)

[ −2 ln b0

(a0 − a2)2(a0 − a4)

+ −2 ln b4

(a4 − a2)2(a0 − a4)

]
= 4tb2

√
1 − y2,

(4.17)

where y ∈ [0, 1]. That equation shows that �h′(z) > 0 for all z ∈ [a2, α2). Thus, a

zero level curve of Im h(z) cannot cross the interval I . Similarly, in the case when

α2k is a fast point, i.e., when k = 0 or k = 2, the leading contributions to Re h′(z)
also come from points a0 and a4. Direct calculations for this case, using (4.16),

Theorem 4.2, and Proposition 4.3, yield

(4.18) lim
t→∞

Re h′(a2k + iyb2k) = −4tb2k

√
1 − y2.

Thus, we have established the following fact:

THEOREM 4.4 If µ ≥ 2 and ξ ∈ [0, 2µ), then the branch points α0, α2, and α4,
taken in the order they appear on the oriented contour γ + connecting points µ/2

and −µ/2 in the upper half-plane, converge to µ/2, −ξ/4, and −µ/2, respectively,
as t → ∞, x = ξ t .

5 Long-Term Behavior on the Breaking Curve

In Section 4 we considered the behavior of α’s along the lines x/t = ξ , where

the constant ξ ∈ [0, 2µ), i.e., in the genus 2 region. The subject of this section

is the long-term behavior of α’s along the breaking curve l, which is defined as

a graph of the function t = t0(x) such that α2(x, t0(x)) = α4(x, t0(x)). It was

proven in [13] that the curve l has asymptotics x/t = 2µ as t → ∞. The aim

of this section is to study the asymptotics of α = α2 = α4 along l, as well as to

compute the refined asymptotics of l. Note that the results of Section 4 do not apply

to the breaking curve since in this case we cannot assume that all α’s are distinct.

We start with an observation that the radical R(z) → (z − α2)(z − ᾱ2)R0(z),

where R0(z) =
√

(z − a0)2 + b2
0, in the limit |α2 − α4| → 0. It was shown in [13,

sec. 3] that in this limit the function h corresponding to the genus 2 region coincides

with the function h corresponding to the genus 0 region, i.e., h(z; R) ≡ h(z; R0).

It is also easy to see that on the breaking curve l, integral condition Im becomes

trivial, whereas the second integral condition Ic (which will be denoted by I ) co-

incides with Im h(α2) = 0. Regarding the moment conditions, it is easy to show
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that the conditions M2 and M3 are identical to two genus 0 moment conditions that

define α0 (see [13, sec. 4.1], whereas the remaining moment conditions M0 and M1

are equivalent to the condition h′(α2) = 0.

THEOREM 5.1 The function t = t0(x), defining the breaking curve l, has asymp-
totics

(5.1) t0(x) = x

2µ
− 1

2µ
ln

2µ

µ + 2T
− T/µ

µ + 2T
+ O

(
1

x

)
as x → ∞. Moreover, along this curve,

(5.2)

b = π

8t

(
1 − µ2/2 − 1

4µt
+ O(t−2)

)
,

a = −µ

2
− 1

4t

[
ln

2µ2

µ + 2T
+ 2T

µ + 2T

]
+ O(t−2),

as t → ∞, where α = a + ib is the double branch point.

PROOF: As we know from [13, sec. 4.6], the branch point α(t) is located in

the left half-plane (t = t0(x), x > 0), whereas the remaining branch point α0(t)
is located in the right half-plane. According to inequalities (1) and (2) of Theorem

3.1, we obtain b(t) ≤ π/(8t) and, as t → ∞, a(t) → −µ/2. By the same

argument as in the proof of Theorem 4.3, we see that on the breaking curve ξ = x/t
approaches 2µ as t → ∞. Then inequality (3)(ii) from Theorem 3.1 shows that

a0 −µ/2 − 2tb2
0 → 0, i.e., a0 ≥ µ/2 as t → ∞. Now we can apply (3.3) to obtain

the fact that the behavior of α0 described by Theorem 4.3 for the genus 2 region is

also valid on the breaking curve.

To obtain the first equation (5.2), we consider b → 0 in (3). Replacing the

inverse tangent with its expansion at infinity, we obtain

(5.3)

∣∣∣∣8tb2 − πb − (2a0 − µ) − b2

(
2

a0 − a
− 1

T − a
+ 1

T + a

)∣∣∣∣
≤ πb0 + 4tb2

0 + 4b4

3(µ/2 − T )
.

The expression for b in (5.2) follows from (5.3).

To complete the proof, it remains to calculate smaller-order terms for t0(x) and

a. Our next step is to prove (5.1) using the integral condition Ic : Im h(α; R0) = 0,

which can be written as

(5.4) Im
R0(α)

2π i

[
−2π i Res

f (ζ )

(ζ − α)R0(ζ )

∣∣∣∣
ζ=∞

− 2i

∫
|ζ |≥T

Im f (ζ )dζ

(ζ − α)R0(ζ )

]
= 0.

By elementary residue calculus, we can reduce (5.4) to

(5.5) Im R0(α)

[
x + 2t (a0 + α) − 1

π

∫
|ζ |≥T

Im f (ζ )dζ

(ζ − α)R0(ζ )

]
= 0.
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Since we know that Im f (a) = (π/2)(µ/2 − |ã|) sign(µ/2 − a) (see (2.11)), the

last term of (5.5) becomes

(5.6) −1

2

∫
|ζ |≥T

µ/2 − ζ sign ζ

(ζ − α)|R0(ζ )| dζ = −1

2
(m + in)

where m and n are the real and imaginary parts of the integral.

Using the expression (4.1) for b0 and (2.2), we can represent

(5.7) (m + in) =
∫

ζ≥T

sign(µ/2 − ζ )dζ

(ζ − α)
−

∫
ζ≤−T

(µ/2 + ζ )dζ

(ζ − α)(ζ − a0)
+ O(e−4µt).

Computing the integrals in (5.7), we obtain

(5.8) m + in = − ln(ζ −α)
∣∣∞
µ/2

+ ln(ζ −α)
∣∣µ/2

T
−[A ln(ζ −α)+ B ln(ζ −a0)]

∣∣−T

−∞

where

(5.9) A = −α + µ/2

a0 − α
, B = a0 + µ/2

a0 − α
.

Calculations at ±∞ yield

A ln(−M − α) + B ln(−M − a0) − ln(M − α)

= ln
−M − a0

M − α
+ A ln

−M − α

−M − a0

→ iπ

as M → ∞. Thus

(5.10) m + in = ln
(µ/2 − α)2

(T − α)(T + a0)
− A ln

−T − α

T + a0

+ i Aπ.

Since R0(α) = (a0 − a) − ib + ρ, where ρ is exponentially small in t , the

integral condition (5.5) can be written as

Im[(a0 − a) − ib]
[

x + 2t (a0 + a) + 2i tb − 1

2
(m + in)

]
= 0

if we ignore exponentially small terms, or

(5.11) −x − 4ta = 1

2

[
(a0 − a)n

b
− m

]
.

It follows from (5.9) and (5.10) that

m = ln
(µ/2 − a)2

(T − a)(T + a0)
+ O(b),

n

b
= 1

T − a
− 2

µ/2 − a
− π(µ/2 + a)

b(µ/2 − a)
+ O(b).

(5.12)
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Substituting now (5.12) into (5.11), we obtain after some algebra

x = 2µt + 1

2

[
ln

(µ/2 − a)2

(T − a)(T + a0)
+ 2

a0 − a

µ/2 − a

− a0 − a

T − a
+ 2(µ/2 + a)(T 2 − a0a)

(T − a)(T + a0)

]
+ O(t−1).

(5.13)

This is the refined equation of the breaking curve. Taking into account a0 → µ/2

exponentially fast and that |µ/2 + a| = O(t−1), the latter equation becomes

(5.14) x = 2µt + ln
2µ

2T + µ
+ 2T

2T + µ
+ O(t−1),

which implies (5.1).

We now use (3.7) to calculate the correction term K/t to a = −µ/2 + K/t +
· · · . Rewriting (5.14) as x = 2µt + C + O(t−1) and substituting into (3.7), we

obtain K = − 1
4
(C + ln µ)+ O(t−1), which leads to the second equation (5.2). The

proof is completed. �

Note that we can obtain the asymptotics of α(t) and of the breaking curve x(t)
with any accuracy t−k , k ∈ N.

6 Solution of the RHP and Error Estimates

Here we derive the leading-order term q̃(x, t, ε) of the solution q(x, t, ε) of

(1.1)–(1.2) along the rays x/t = ξ as t → ∞, ε → 0, where 0 ≤ ξ < 2µ, and

estimate the error |q(x, t, ε) − q̃(x, t, ε)|. The relationship between parameters

ε and t is described in Theorem 6.6 below. We first recall the result about the

leading-order term q0(x, t, ε) of the solutin q(x, t, ε) (as ε → �), obtained in [13,

sec. 8]. Introduce

(6.1) λ(z) =
( 2∏

j=0

z − β̃j

z − α̃j

)1/4

with vertical branch cuts along the segments ν̃j = [αj , βj ]. Here α̃j and β̃j denote

the beginning and the end points of a vertical segment ν̃j (so that α̃0 = α1, β̃0 = α0,

α̃1 = α2, . . . , β̃2N = α4N+1); see Figure 6.1.

We choose the branch of λ(z) such that limz→∞ λ(z) = 1 and λ+ = iλ− on ν̃j .

As in [13, sec. 8], we introduce the canonical homology basis Aj , B j , j =
1, . . . , N , of the hyperelliptic surface R̃(x, t), determined by the cuts ν̃j of RHP

P̃ (mod); see Figure 6.2. The dotted curves in Figure 6.2 are passing through the

second sheet. For a given point (x, t) in the genus 2 region, the following theorem

gives the leading-order term q0 of the solution q in the limit ε → 0 together with

the error estimate.
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FIGURE 6.2. Basic cycles Aj and B j , genus 4 case.

THEOREM 6.1 [13] If λ(z)−λ−1(z) has two simple zeroes, then the leading-order
term of the solution (as ε → 0) to (1.1)–(1.2) has the form
(6.2)

q0(x, t, ε) = θ(u(∞) + �̂/2π − d)θ(u(∞) + d)

θ(u(∞) − �̂/2π + d)θ(u(∞) − d)
e(2i/ε)[2g(∞)+�1]

2∑
j=0

Im β̃j

where Im β̃j = (−1) j b2 j , j = 0, 1, 2, and

(6.3) g(∞) = 1

2π i

∫
γm

f (ζ ) + W

R+(ζ )
ζ 2 dζ + 1

2π i

∫
γc

�

R(ζ )
ζ 2 dζ
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in the region of genus 2. Here γm and γc denote the union of all main and all
complementary arcs, respectively; the theta functions and the basic holomorphic
differentials ω, dual to α-cycles A, are associated with the hyperelliptic Riemann
surface R̃(x, t), and the vector ω0 ∈ C

2 is the leading coefficient of ω; u(z) =∫ z

α1
ω; �̂1 = −(2/ε)W1, �̂2 = −(2/ε)(W1 +�1); f (0)

0 (z) is the leading-order term

of (i/2e) ln r (0)(z) as ε → 0; R(z) = ∏5
j=0

√
(z − αj ) and the branch R+(z) →

−z3 as z → ∞; and d = − ∫ X2(z1)

α2
ω1 − ∫ X2(z2)

α5
ω2, where X2(z) is the preimage of

z on the second sheet of the hyperelliptic surface R̃(x, t). The real constant vectors
W and � are determined through equations (3.8) in [13]. The error

(6.4) |q(x, t, ε) − q0(x, t, ε)| = O(ε)

uniformly on compact subsets of the genus 2 region of the (x, t)–plane.

In our case N = 1 and equations (3.8) in [13] become

(6.5) �1 =
∫ α2

α4

h′
−(z)dz, W1 =

∫ α2

α0

h′(z)dz,

where h−(z) is the value of h(z) on the negative side of γ +
m,1.

Assertions of Theorem 6.1 are valid for sufficiently large t because in this case

the assumption about simple zeroes of λ(z) − λ−1(z) = (1 − λ2(z))/λ(z) is satis-

fied. Indeed, note that the condition λ2(z) = 1, where

(6.6) λ2(z) =
(

z − α4

z − ᾱ4

· z − ᾱ2

z − α2

· z − α0

z − ᾱ0

)1/2

is equivalent to the equation λ4 = 1 together with arg λ(z) = πk for some k ∈ Z.

Writing the former equation as

(6.7)
z − α4

z − ᾱ4

· z − ᾱ2

z − α2

· z − α0

z − ᾱ0

= 1,

it is easy to see that this is a quadratic equation with real coefficients. Therefore,

multiple roots are possible only when z ∈ R. It is easy to see that

(6.8) −4π < φ(z) < 2π

where z ∈ R and the function φ(z) is defined by

(6.9) φ(z) = arg
z − α4

z − ᾱ4

+ arg
z − ᾱ2

z − α2

+ arg
z − α0

z − ᾱ0

.

We have |λ(z)| = 1 for all z ∈ R; hence φ(z) = 0 is the necessary and sufficient

condition for z ∈ R being a root of λ2(z) = 1.

LEMMA 6.2 If b2 > b0 + b4, then equation λ2(z) = 1 has a simple real root.
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FIGURE 6.3. The upper half-plane part �(4)+ of the contour �(4). The

lower half-plane part �(4)− is symmetrical to �(4)+. The thinner parts

have jump matrices approaching I , whereas the bold parts have jump

matrices approaching some constant limits.

PROOF: It is easy to see that for any fixed values of branch points α0, α2, and

α4 the function φ(z) is continuous on R with asymptotic behavior

(6.10) φ(z) ∼ b2 − b0 − b4

z
and φ(z) ∼ b2 − b0 − b4

z
− 2π

as z → ±∞, respectively. Thus, the graph of φ(z) should intersect two horizon-

tal lines φ = 0 and φ = −2π at two different points, which correspond to two

different solutions of the quadratic equation (6.7). �

In the case b2 = b4 + b0 one can deduce some further conditions that guarantee

simple roots of (6.7). Lemma 6.2 together with Theorem 4.1 justifies the validity

of (6.2) from Theorem 6.1 in the genus 2 region for µ ≥ 2 and for a sufficiently

large (but finite) t .
The expression (6.2) together with Theorem 4.1 indicates that the leading con-

tribution to q0 comes from the branch point α2, since b0, b4 = o(b2) as t → ∞.

However, our error estimates from section 2.8 in [13] are not valid in the case

t → ∞, since branch points α2 j , j = 0, 1, 2, approach their complex conjugates

as t → ∞. Therefore, a different error estimate approach is taken below.

We start with the RHP P (4) : m(4)
+ = m(4)

− V (4) on �(4) from section 2.7 in [13],

which approaches the constant matrix e2(i/ε)g(∞)σ3 as z → ∞. It is also denoted as

the RHP (V (4), �(4), m(4)); see Figure 6.3.

An RHP (V, �, m) is called normalized at infinity if m → I as z → ∞.

Please note that local (away from ∞) deformations (equivalent to a local change

of variables) do not change the normalization (or a constant value) at ∞. In fact,

unless specified otherwise, we assume all RHPs in this section are normalized
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FIGURE 6.4. Deformation of the bold parts of contour �(4), genus 4 case.

at ∞. Also, by the nature of our problem, only the solution near ∞ is material

in the reconstruction of the potential. We therefore omit most details of these

deformations.

Deforming the bold parts of contour �(4) as described in section 8 of [13] (see

also Figure 6.4), we arrive at the equivalent RHP (V, �, m(4)), where the contour

�+ is shown on Figure 6.5.

On the vertical segments ν̃j , j = 0, 1, 2, the jump matrix V = Vj , where the Vj

are

(6.11)

(
0 e

2i
ε

�1

−e− 2i
ε

�1 0

)
,

(
0 e− 2i

ε
(W1−�1)

−e
2i
ε

(W1−�1) 0

)
,(

0 e− 2i
ε

W1

−e
2i
ε

W1 0

)
,

respectively. On the remaining dashed parts of � the jump matrix V approaches

I exponentially fast as ε → 0, i.e., like e−κ/ε, where the positive constant κ de-

pends on z. It is known (see [13]) that for a given (x, t) κ is separated from zero

everywhere on the dashed parts of � except vicinities of the branch points.

Our analysis is based on the following lemma, first proven in [6]. The proof is

repeated below for reader’s convenience.

LEMMA 6.3 Let (V, �, m) and (V̂ , �, m̂) be two RHPs with

(6.12) m = I + 2π i Q

z
+ o(z−1), m̂ = I + 2π i Q̂

z
+ o(z−1),

as z → ∞. Assume the following:
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FIGURE 6.5. Contour �+.

(1) Norms ‖(1 − CV̂ )−1‖L2�, ‖V − I‖L2∩L∞ , and ‖V̂ − I‖L2∩L∞ are bounded
by a constant M > 0.

(2) The norm ‖V̂ − V ‖L∞ is sufficiently small.

Then there exists some c > 0 such that

(6.13) |Q − Q̂| ≤ c‖V − V̂ ‖L1∩L∞ .

Here | · | denotes some matrix norm.

PROOF: The fact that ‖V̂ − V ‖L∞ is sufficiently small implies that ‖CV −
CV̂ ‖L2� is sufficiently small. Therefore, ‖(1−CV )−1‖L2� is bounded by a constant.

We also have

(6.14) ‖m̂ − I‖L2 = ‖(1 − CV̂ )−1CV̂ I‖L2 ≤ c‖V̂ − I‖L2 ≤ c

and

(6.15)

‖m− − m̂−‖L2 = ‖(1 − CV̂ )−1(CV − CV̂ )(1 − CV )−1 I‖L2

≤ ‖(1 − CV̂ )−1(CV − CV̂ )I‖L2

+ ‖(1 − CV̂ )−1(CV − CV̂ )(1 − CV )−1CV I‖L2

≤ c‖V − V̂ ‖L2 + c‖V − V̂ ‖L∞

≤ c‖V − V̂ ‖L2∩L∞ .

In these formulae, as well as in (6.17) below, c denotes a “generic” positive con-

stant.

The Cauchy representation gives

(6.16) Q =
∫
�

(m+ − m−) =
∫
�

m−(V − I ) and Q̂ =
∫
�

m̂−(V̂ − I ).
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Therefore, using (6.14)–(6.15), we obtain

(6.17)

|Q̂ − Q| =
∣∣∣∣ ∫

�

m−(V − I ) − m̂−(V̂ − I )

∣∣∣∣
≤
∣∣∣∣ ∫

�

(m− − m̂−)(V − I )

∣∣∣∣+ ∣∣∣∣ ∫
�

(m̂− − I )(V̂ − V )

∣∣∣∣
+
∣∣∣∣ ∫

�

(V − V̂ )

∣∣∣∣
≤ ‖m− − m̂−‖L2‖V − I‖L2 + ‖m̂− − I‖L2‖V̂ − V ‖L2

+ ‖V̂ − V ‖L1

≤ c‖V̂ − V ‖L2∩L∞ + c‖V̂ − V ‖L2 + c‖V̂ − V ‖L1

≤ c‖V̂ − V ‖L1∩L∞ .

The proof is completed. �

To apply Lemma 6.3, we need to introduce a number of RHPs. Let mαk
,

k = 0, 2, 4, denote the standard Airy parametrices used in [13] in the vicinities

of points αk , respectively. The exact form of mαk
is not essential for our purposes.

Similarly, mµ/2 denotes the parametrix in the vicinity of z = µ/2 that was implic-

itly obtained in [13] through the RHP approach. We remark that these parametrices

are local solutions to the RHP and are defined uniquely up to nonsingular analytic

left multipliers that give correct matching. These parametrices will be used inside

the cicles Sk , k = 0, 2, 4, and Sµ/2, as indicated in Figure 6.6. Since all Im αk → 0

as t → ∞ (see Theorem 4.1), the radii of these circles must shrink proportionally.

In particular, we choose the radius of Sk to be proportional to bk = Im αk and the

radius of Sµ/2 to be proportional to b0 in such a way that these circles do not inter-

sect each other and, except for Sµ/2, do not intersect the real axis. The contour ν̃0 is

bent to the left, if necessary, so that it does not intersect Sµ/2. The circles Sk around

the complex-conjugated branch point αk , k = 1, 3, 5, in the lower half-plane, are

defined as Sk = S̄k−1.

Let m j denotes the solution of the RHP (Vj ν̃j , m j ), j = 0, 1, 2, normalized at

infinity. Since b2 j , j = 0, 1, 2, are shrinking as t → ∞, we choose to localize

each vertical slit ν̃j , together with the parametrix regions S2 j , S̄2 j , and Sµ/2, by

fixed-size (t-independent) ellipses E j , as shown in Figure 6.7.
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FIGURE 6.6. Small circles around branch points and the point z = µ/2.
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FIGURE 6.7. Fixed-size ellipses Ej , j = 0, 1, 2.

We then define the global parametrix Mp by

(6.18) Mp =



I outside ellipses E j , j = 0, 1, 2,

mαk
within Sk, k = 0, 2, 4,

m†
αk

within Sk+1 = Sk, k = 0, 2, 4, where f †(z) = f ∗(z̄),
mµ/2 within Sµ/2,

m j within E j but outside S2 j ∪ S2 j

(and outside Sµ/2 if j = 0).
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FIGURE 6.8. Contour �.

Define M = m M−1
p , where m(4) = e2(i/ε)g(∞)σ3m and σ3 = diag(1,−1). Then

M is the solution of the RHP (V̂ , �̂, M) with the contour �̂ shown on Figure 6.8.

The jump matrix V̂ for this problem can be calculated directly from the jump ma-

trix of the RHP (V, �, m) and from (6.18).

Remark 6.4. By choosing to localize the problem within the ellipses E j , j =
0, 1, 2, the parametrix matching of the circles S2 j and S2 j (and of Sµ/2 when j = 0)

becomes easier, because it is similar to the genus 0 case: no Riemann theta func-

tions are needed.

We now want to estimate the ‖ · ‖L∞–norm of V̂ − I . On the ellipses E j we

have V̂ = Mp = m j , j = 0, 1, 2. Then

(6.19) ‖V̂ − I‖L∞ = O(bk)

follows from the explicit expression for mk (see, e.g., [13, sec. 4.4]).

To estimate ‖V̂ − I‖L∞ on the shrinking circles Sk (as t → ∞), we choose the

local scaling z �→ bkz to bring each Sk , k = 0, 2, 4, to a fixed size.

PROPOSITION 6.5 In the limit t → ∞, x = ξ t , the function h′(z) has behavior

(6.20) h′(z) =
(

µ − 2
ˆ(ξ

4

))√
2i

b3
2

√
z − α2(1 + O(

√
z − α2))

(
1 + O

(
ln t

t

))
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near the slow branch point α2. Near the fast branch point α0

(6.21) h′(z) = ln b0

µ

√
2ib0

√
z − α0(1 + O(

√
z − α0))

(
1 + O

(
ln t

t

))
.

An expression similar to (6.21) is valid near the remaining branch point α4.

PROOF: We start with the observation that the analytic function h′(z) has a

square root branch point at z = αk , k = 0, 2, 4. To find the coefficient in front

of
√

z − α2, we apply Proposition 4.3 to the integral representation (4.12) of h′(z).
Note that in this case ρ(ζ ) = sign ζ/(ζ − z). Since ln b2 = o(ln b0) in the limit

t → ∞, we retain only the two terms with ln b0 and ln b4 in the right-hand side of

(4.9), which, after some algebra, yield

(6.22) h′(z) ∼ 4t
√

2ib2

√
z − α2.

The corresponding formula for α0 is

(6.23) h′(z) ∼ −4t
µ/2 + ξ/4

µ

√
2ib0

√
z − α0.

Speaking technically, we cannot use Proposition 4.3 to calculate the contribu-

tion of a vicinity of the point α2 to the integral in (4.12), since ρ(ζ ) is not uniformly

bounded near ζ = a2 as t → ∞. However, we can apply Proposition 7.1, which

is proved independently of the present section, to estimate the contribution of a

vicinity of the point α2 to the integral in (4.12) as O(ln t). Then (6.20) follows

from (6.22) and Theorem 4.1. Similar considerations lead to (6.21) and the corre-

sponding formula for α4. �

Now we know that, according to Proposition 6.5,

(6.24) Im h(z) ∼ c2

√
1

b3
2

(z − α2)
3/2, Im h(z) ∼ cj ln bj

√
bj (z − αj )

3/2

in the vicinities of the branch points α2 and αj , j = 0, 4, respectively, where

(6.25) c2 =
(

µ − 2
ˆ(ξ

4

))√
2i, cj =

√
2i

µ
.

After the scalings z �→ bkz, the expressions (6.24) are transformed into

(6.26) Im h(z) ∼ c2

(
z − α2

b2

)3/2

, Im h(z) ∼ cj ln bj b
2
j

(
z − αj

bj

)3/2

,

respectively, where j = 0, 4.

We can choose mα2
so that (as in [13]) on S2 (and on S2) we have

(6.27) ‖V̂ − I‖L∞ = O(ε).
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Similarly, on Sj , j = 0, 4, (and on Sj ) we have

(6.28) ‖V̂ − I‖L∞ = O

(
ε

|ln bj |b2
j

)
.

To estimate the behavior of ‖V̂ − I‖L∞ on Sµ/2 we use (2.11) to obtain

Im h(z) = −π

2

∣∣∣∣µ2 − z

∣∣∣∣, z ∈ R,

in a vicinity of z = µ/2. Repeating the scaling z �→ b0z, we arrive at

(6.29) ‖V̂ − I‖L∞ = O

(
ε

b0

)
on Sµ/2.

So far, we have shown that

(6.30) ε = o(b2
0 ln b0)

is a sufficient condition for

(6.31) ‖V̂ − I‖L∞ → 0

on the circles Sk , k = 0, 2, 4, and Sµ/2. We now show that (6.31) also holds on the

remaining part of the contour �̂, i.e., on the curves from the contour � that connect

different circles Sk , k = 0, 2, 4, Sµ/2. The points of intersection of these curves

with the circles are called endpoints.

Let us show that a curve l, connecting circles, say, S2 and S0, can be deformed

in such a way that the minimum of Im h along l is attained at one of its endpoints.

Indeed, by construction, Im h > 0 along l. Let us consider the region E+
0 inside

the ellipse E0, where Im h > 0. Since the distance between the boundary ∂ E0 and

α0 is greater than some δ > 0 for all t , we can use the asymptotic formula (8.2) for

Im h on ∂ E0. According to (8.2), there exists a level curve Im h(z) = Im h(λ0) in

E+
0 , where the endpoint λ0 = l ∩ S0, that connects the point λ0 with some point

e0 ∈ ∂ E0; see Figure 6.9. We can deform l inside E0 to coincide with the piece of

the level curve connecting λ0 and e0 and lying outside S0. (A part of this level curve

that may be inside S0 can be replaced by the corresponding arc of the circle S0.) A

similar construction allows us to define e2 ∈ ∂ E2 such that Im h(z) = Im h(λ2),

where the endpoint λ2 = l ∩ S2. Now, according to (8.2), we can deform, if

necessary, contour l outside E2 and E0 so that min Im h(z) on the deformed contour

l̃ is attained at one of the endpoints. Similar arguments can be applied to each piece

of the contour �̂ that lies outside the ellipses Ek , k = 0, 2, 4. In the case of pieces

of �̂ connecting the circle Sµ/2 with S0 and S0, the required statement follows from

the topology of the level curves of Im h in E−
0 = E0 \ E+

0 . (Indeed, we can control

Im h on ∂ E0 through (8.2), whereas on R we have Im h = − Im f .)
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FIGURE 6.9. Control of Im h on the contour � outside circles Sk , k =
0, 2, 4. The figure contains branch points α0 and α2 together with zero

level curves of Im h emanating from them.

Using (6.26) to estimate V̂ − I at the endpoints, we find out that there exists a

constant c > 0 such that

(6.32) ‖V̂ − I‖L∞ = O

(
exp

−cb2
0|ln b0|
ε

)
.

Thus, we have proved that the RHP (V̂ , Ĝ, M) is a small norm RHP under condi-

tion (6.30).

Our plan is to compare this RHP with the RHP (Vmod, E2, Mmod), where Vmod =
Mp

∣∣
E2

. We make the trivial extension of the latter RHP to the entire contour Ĝ and

denote it by (Vmod, Ĝ, Mmod). Then our previous analysis shows that

(6.33) ‖V̂ − Vmod‖L∞ = O

(
max

{
ε

b2
0|ln b0|

, b4

})
.

Note that ‖V̂ − Vmod‖L1 is of the same order or smaller than ‖V̂ − Vmod‖L∞ , since

infinite parts of the contour �̂ can be deformed to lie on the real axis, where the

explicit expression for Im h is given by (2.11).

Applying now Lemma 6.3 to the RHPs (V̂ , Ĝ, M) and (Vmod, Ĝ, Mmod), we

obtain

(6.34) |Q̂ − Qmod‖L∞ = O

(
max

{
ε

b2
0| ln b0|

, b4

})
where Q̂ = limz→∞ z(M − I )/2π i , Qmod = limz→∞

z(Mmod−I )

2π i
. Since the RHP

(Vmod, Ĝ, Mmod), i.e., the matrix m2, can be found explicitly (e.g., [13, sec. 4.4]),

we obtain the following theorem:
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THEOREM 6.6 Assuming that ε → 0, t → ∞, and b2
0

√| ln b0|/ε → ∞, we have

(6.35) q(x, t, ε) = −b2e(2i/ε)(2g(∞)+�1−W1) + O

(
ε

b2
0|ln b0|

)
+ O(b4),

The latter limit guarantees that the error terms in (6.35) are of a smaller or-

der than the leading term. The exact expression of the leading-order behavior of

solutions to (1.1)–(1.2) is given in Theorem 7.5.

7 Long-Time Behavior of the Wave Form

In this section we translate the information obtained about the behavior of the

branch points α(x, t) along the rays x/t = ξ as t → ∞, where 0 ≤ ξ < 2µ, into

the leading-order behavior of q(x, t, ε) described in Theorem 6.6.

PROPOSITION 7.1 Suppose that the branch points α2k = a2k + ib2k depend on a
parameter t in such a way that they approach, respectively, three different points
a2k on the real axis such that |a2k | > T , as t → ∞, k = 0, 1, 2. Suppose also
that ρ(ζ ) is a bounded function on R, that it is twice continuously differentiable in
vicinities of a2k , and that the integral below exists. Let us choose some δ1 > 0 and
φ ∈ (0, π/2), and denote by Z a compact subset of the set of all z such that either
Im z > δ1 or |arg(z − α2k) − π/2| ≤ φ for some α2k and for all t . Then for any
z ∈ Z

(7.1)

∫
|ζ |≥T

ρ(ζ )

(ζ − z)|R(ζ )| dζ

= 2

2∑
k=0

1√
(z − a2k)2 + b2

2k

[
ρ(a2k)[ln b2k − ln(z − a2k)]

|a2k − α2i ||a2k − α2 j |
+ O(1)

]

uniformly in Z in the limit t → ∞, where {i, j, k} is a permutation of {0, 1, 2},
R(ζ ) = ∏2

j=0 |ζ − a2 j |. If some |a2k | < T , its contribution to the sum (7.1) is zero.
If some |a2k | = T and α2k approaches a2k along an orthogonal-to-R trajectory,
then the contribution of a2k to the sum (7.1) should be multiplied by 1

2
.

PROOF: Let us choose some α2k and compute its contribution to the sum (7.1).

In order to do that, we consider a small but fixed δ > 0 such that the intervals

Ij = (a2 j − δ, a2 j + δ) do not intersect each other for j = 0, 1, 2 and that Ii and

Ik do not contain ±T . It is clear that the integral in the left-hand side of (7.1),

restricted to {|z| > T } \⋃2
j=0 Ij , is uniformly bounded for all z ∈ Z as t → ∞.
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Then

(7.2)

∫
Ik

ρ(ζ )

(ζ − z)|R(ζ )| dζ

=
∫
Ik

ψ(a2k)

(ζ − z)
√

(ζ − a2k)2 + b2
2k

dζ +
∫
Ik

(ζ − a2k)ψ̃(ζ )

(ζ − z)
√

(ζ − a2k)2 + b2
2k

dζ

where

ψ(ζ ) = ρ(ζ )

|ζ − a2i ||ζ − a2 j |
and

ψ̃(ζ ) = ψ(ζ ) − ψ(a2k)

ζ − a2k

.

Let us introduce s = ζ − a2k and y = z − a2k . To estimate the first term in

(7.2), we have

(7.3)

∫
Ik

ψ(a2k)

(ζ − z)
√

(ζ − a2k)2 + b2
2k

dζ = ψ(a2k)

∫ δ

−δ

(s + y)ds

(s2 − y2)

√
s2 + b2

2k

= 2yψ(a2k)

∫ δ

0

ds

(s2 − y2)

√
s2 + b2

2k

.

According to [9, sec. 2.284], the antiderivative of the latter integrand is

(7.4)
−1

2y
√

y2 + b2
2k

ln
y
√

s2 + b2
2k + s

√
y2 + b2

2k

y
√

s2 + b2
2k − s

√
y2 + b2

2k

= −1

y
√

y2 + b2
2k

tanh−1
s
√

y2 + b2
2k

y
√

s2 + b2
2k

.

Multiplying the ratio inside the logarithm by the conjugate, we obtain

(7.5) ψ(a2k)

∫ δ

−δ

(s + y)ds

(s2 − y2)

√
s2 + b2

2k

= −2ψ(a2k)√
y2 + b2

2k

ln
yδ
(√

1 + b2
2k/δ

2 +
√

1 + b2
2k/y2

)
b2k

√
y2 − δ2

Note that the construction of the set Z implies that y ± δ = O(1) as t → ∞
uniformly in z ∈ Z . The logarithm of the square root in the numerator is also

uniformly bounded, since 1 + b2
2k/δ

2 > 1 and Re[1 + b2
2k/y2] ≥ 0 for all z ∈ Z .
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Thus, the right-hand side of (7.5) yields the contribution of α2k to the right-hand

side of (7.1).

According to (2.6) with D = J , the second term in (7.2) can be represented as

(7.6)

∫
Ik

(ζ − a2k)ψ̃(ζ )

(ζ − z)
√

(ζ − a2k)2 + b2
2k

dζ =
∫
Ik

sign(ζ − a2k)ψ̃(ζ )dζ

(ζ − z)
+ O(1).

The latter integral is uniformly bounded if |z − a2k | ≥ δ1. When this is not the

case, we have ψ̃(ζ ) = ψ̃(Re z) + (ζ − Re z)l(ζ ), where l(ζ ) ∈ C(Ik), since

ρ(σ) ∈ C2(Ik) and Re z is close to a2k . Substituting this expression into (7.6), we

obtain

(7.7)

∫
Ik

(ζ − a2k)ψ̃(ζ )

(ζ − z)
√

(ζ − a2k)2 + b2
2k

dζ = ψ̃(�z)

∫
Ik

sign(ζ − a2k)dζ

(ζ − z)
+ O(1)

since |ζ − Re z|/|ζ − z| < 1. The evaluation of the latter integral yields

(7.8) − 2ψ̃(Re z) ln(z − a2k) + O(1)

= −2ψ̃(Re z)

√
(z − α2k)(z − ᾱ2k) ln(z − a2k)√

(z − a2
2k) + b2

2k

+ O(1).

It is now clear that the numerator of the latter expression is uniformly bounded for

all z ∈ Z and for all large t . The proof is completed. �

THEOREM 7.2 If µ ≥ 2 and ξ ∈ [0, 2µ) but µ + ξ �= 2, then

(7.9)

�1 = 2t

(
µ

2
− ξ

4

)2

+ ln t

2

[
µ

2
−

ˆ(ξ

4

)]
+ O(1),

W1 = −2t

(
µ

2
+ ξ

4

)2

− ln t

2

[
µ

2
−

ˆ(ξ

4

)]
+ O(1),

as t → ∞, x = ξ t . Here (ξ̂/4) = ξ/4 if ξ/4 ≥ T or (ξ̂/4) = T otherwise. In the
special case µ = 2, ξ = 0, equations (7.9) become

(7.10) �1 = 2t + 1

2
ln t + O(1), W1 = −2t − 1

2
ln t + O(1).

PROOF: We will prove only the first of the expressions (7.9) based on (6.5)

since the proof of the second one is similar. Indeed, the arguments of Section 3

together with (6.5) imply

(7.11) �1 = 1

2

∫ α2

α4

∫
|ζ |≥T

R(z) sign ζ dζ dz

(ζ − z)|R(ζ )| ,

where we integrate along the negative side of the main arc γ +
m,1. We now observe

that, according to Theorem 4.1, the inner integral (in ζ ) in (7.11) satisfies the con-

ditions of Proposition 7.1 (with ρ(ζ ) = sign(ζ )) for all possible values of µ ≥ 2,
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ξ ∈ [0, 2µ), with the exception of the case µ = 2, ξ = 0. (We can always deform

the contour of integration [α4, α2] in a z-variable to ensure that z ∈ Z .) The latter

case will be considered separately.

Using Proposition 7.1, we obtain

(7.12) �1 =
2∑

k=0

sign(a2k) ln b2k

|a2k − α2i | |a2k − α2 j |
∫ α2

α4

R(z)dz√
(z − a2k)2 + b2

2k

+ O(1)

uniformly in z as t → ∞. Note that on the contour [α4, α2] for any k = 0, 1, 2 we

have

(7.13)

√
(z − a2k)2 + b2

2k = z − a2k + b2
2k√

(z − a2k)2 + b2
2k + z − a2k

.

Since z ∈ Z and the arguments of two terms in the denominator differ by no more

than π/2, the absolute value of the whole ratio is less than b2k . Thus,

(7.14)

√
(z − a2k)2 + b2

2k = z − a2k + O(b2k)

uniformly in z as t → ∞. Substituting (7.14) in (7.13) and using the fact that b0

and b4 are exponentially small as t → ∞, we obtain

(7.15)

�1 =
∫ α2

α4

[ ln b0(z − a4)

√
(z − a2)2 + b2

2

|a0 − α2||a0 − α4| −
ln b4(z − a0)

√
(z − a2)2 + b2

2

|a4 − α2||a4 − α0|

− κ(ξ/4) ln b2(z − a0)(z − a4)

|a2 − α0||a2 − α4|

]
dz + O(1)

=
∫ α2

α4

{[
ln b0

|a0 − α2||a0 − α4| − ln b4

|a4 − α2||a0 − α4|

]
(z − a2)

√
(z − a2)2 + b2

2

+
[

(a2 − a4) ln b0

|a0 − α2||a0 − α4| + (a0 − a2) ln b4

|a4 − α2||a0 − α4|

]√
(z − a2)2 + b2

2

− κ(ξ/4) ln b2(z − a0)(z − a4)

|a0 − α2||a2 − α4|

]}
dz + O(1)

Here κ(s) = 0, 1
2
, 1 if s < T , s = T or s > T respectively and the sign of R(z) is

choosen so that it is positive on [a4, a2]. Using Theorem 4.1, we obtain

(7.16)

ln b0

|a0 − α2||a0 − α4|
− ln b4

|a4 − α2||a4 − α0|
= − κ(ξ/4) ln t

2(µ2/4 − a2
2)

+ O(1),

(a2 − a4) ln b0

|a0 − α2||a0 − α4|
+ (a0 − a2) ln b4

|a4 − α2||a4 − α0|
= − 4t (µ2/4 − ξ2/16)

(µ2/4 − a2
2)

+ O(1).



LONG-TIME LIMIT OF SEMICLASSICAL NLS 1419

So,

(7.17)

�1 = 1

µ2/4 − a2
2

·
∫ α4

α2

{
κ(ξ/4) ln t

2

[
(z − a2)

√
(z − a2)2 + b2

2 + µ2

4
− z2

]
+ 4t

(
µ2

4
− ξ 2

16

)√
(z − a2)2 + b2

2

}
dz + O(1).

Direct calculations of the leading (linear in t) term, taking into account Theorem

4.1, yield

(7.18)

4t (µ2/4 − ξ 2/16)

µ2/4 − a2
2

[
1

2

(
µ

2
+ a2

)2

+ (µ/2 − ˆ(ξ/4) ln t)

8t

]
+ O(1)

= 2t

(
µ

2
− ξ

4

)2

+ µκ(ξ/4) ln t

4
· µ/2 − ξ/4

µ/2 + ξ/4

+ 1

2
ln t

(
µ

2
−

ˆ(ξ

4

))
+ O(1).

To complete the proof for the generic case, we calculate the remaining term in

(7.17), which yields

−µκ(ξ/4) ln t

4
· µ/2 − ξ/4

µ/2 + ξ/4
.

Considering the special case µ = 2, ξ = 0, we notice that Proposition 7.1 is

applicable to contributions from branch points α0 and α4 but not α2, since ρ(ζ ) =
sign(ζ ) is not smooth on I2 = (a2 − δ, a2 + δ) for any fixed δ > 0. Notice that,

according to Theorem 4.1, b2 = O(t−1/2) and a2 = O(t−1) as t → ∞. We

calculate the contribution of α2 to the integral (7.1) for ρ(ζ ) = sign(ζ ) and show

that its contribution to (7.11) is of order O(1) if a2 = o(b2). Without any loss

of generality, we can assume that the contour of integration [α4, α2] is deformed

in such a way that for any z on the contour within distance 2δ from α2 we have

arg(z − α2) = π/2.

Indeed, introducing s = ζ − a2, y = z − a2, we obtain

(7.19)

∫
I2

sign(ζ )dζ

(ζ − z)
√

(ζ − a2)2 + b2
2

= 2

∫ δ

−a2

s ds

(s2 − y2)

√
s2 + b2

2

− 2y

∫ −a2

0

ds

(s2 − y2)

√
s2 + b2

2

.
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The antiderivative

(7.20)
1√

y2 + b2
2

ln

√
s2 + b2

2 −
√

y2 + b2
2√

s2 + b2
2 −

√
y2 + b2

2

of the first integral in (7.19) shows that, apart from the factor 1/

√
(ζ − a2)2 + b2

2,

this integral is uniformly bounded for our choice of z. Indeed, it is obvious if

|z − α2| > 2δ; whereas for arg(z − α2) = π/2 the absolute value of expression

(7.20) is bounded by π . We now use the antiderivative (7.4) to calculate the second

integral in (7.19) as

(7.21)
2√

y2 + b2
2

ln
y
√

a2
2 + b2

2 − a2

√
y2 + b2

2

b2

√
y2 − a2

2

.

In the case a2 = o(b2) (7.21) becomes

(7.22)
2√

y2 + b2
2

[
ln y + ln

(√
1 + a2

2

b2
2

− a2

b2

√
1 + b2

2

y2

)
− 1

2
ln(y2 − a2)

]
.

So it is clear that both integrals from the right-hand side of (7.19) yield an O(1)

contribution to (7.11). We can now repeat the arguments from Proposition 7.1 to

show that the contribution of

(7.23)

∫
I2

sign(ζ )[(ζ − a2)ψ̃(ζ )]dζ

(ζ − z)
√

(ζ − a2)2 + b2
2

where ψ̃ ∈ C1(I2), to (7.11) is O(1) as t → ∞. The proof is complete. �

Our next step toward computing 2g(∞) + �1 − W1 is given by the following

lemma:

LEMMA 7.3 If µ ≥ 2 and ξ ∈ [0, 2µ), then

(7.24)
1

4π i

∫
γ̂

f (ζ )ζ 2 dζ

R(ζ )
= t

(
ξ 2

16
− µ2

4

)
− ξ 2 ln t

64
· µ/2 − ˆ(ξ/4)

µ2/4 − ξ 2/16
+ O(1)

as t → ∞, x = ξ t , uniformly in µ and ξ .

PROOF: According to section 3.1 of [13], we can rewrite f (z) as

(7.25)

f (z) = 1

2
z ln

(
1 − T 2

z2

)
+ µ

2
ln z +

(
µ

2
− z

)[
ln

(
1 − µ

2z

)
− iπ

2

]
− xz − 2t z2 + µ

2
ln 2 + T tanh−1 T

z
− T tanh−1 T

µ/2
+ π

2
ε.
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As in calculating equations ( (M0)), we deform the contour γ̂ (see Figure A.2) so

that

(7.26)

1

4π i

∫
γ̂

f (ζ )ζ 2 dζ

R(ζ )

= − 1

2π

∫
R

ζ 2 Im f (ζ ) + R(ζ )

R(ζ )
dζ − µ

2
lim

ρ→∞

∮
Cρ

ln ζ dζ

4π iζ

+ lim
ρ→∞

∮
Cρ

−2tζ 2 − xζ + µ
2
(ln 2 + 1) + T tanh−1 T

z − T tanh−1 T
µ/2

+ π
2
ε

4π i R(ζ )
ζ 2 dζ

where Cρ is a negatively oriented circle of radius ρ and ρ → ∞.

Since

(7.27) R−1(ζ )

= −ζ−3

[
1 + ζ−1

2∑
j=0

a2 j + 1

2
ζ−2

(∑
i �=k

(a2i + a2k)
2 −

2∑
j=0

b2
2 j

)
+ · · ·

]
,

the first integral in (7.26) is equal to

(7.28) − 1

2
t

[∑
i �=k

(a2i + a2k)
2 −

2∑
j=0

b2
2 j

]
− 1

2
x

2∑
j=0

a2 j

+ µ

4
(ln 2 + 1) − 1

2
T tanh

T

µ/2
+ π

4
ε.

The second integral in (7.26) is

(7.29) −µ

2

∮
Cρ

ln z dz

4π i z
= µ

4
ln ρ.

We then notice that

(7.30) Im f (z) = π

2

(
µ

2
− |ζ̃ |

)
sign

(
µ

2
− ζ

)
where ζ̃ = max{ζ, T } if ζ ≥ 0 and ζ̃ = min{ζ,−T } if ζ < 0. So, the integral

along R in (7.26) becomes

(7.31) −1

4

[ ∫
|ζ |>T

(µ/2)ζ 2 − ζ 3 sign ζ + |R(ζ )|
|R(ζ )| dζ +

∫
|ζ |≤T

µ/2 − T

|R(ζ )| ζ 2 dζ

]
.

According to Proposition 4.3 and Theorem 4.1, the contribution of the branch point

α2 to (7.26) is

(7.32) −1

4

(
µ

2
− |ã2|

) −2a2
2 ln b2

(a0 − a2)(a2 − a4)
= −ξ 2 ln t

64
· µ/2 − (ξ̂/4)

µ2/4 − ξ 2/16
,
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whereas contributions from the remaining branch points α0 and α4 are of order

O(1). There is also a contribution in (7.31) coming from

−1

4

∫
ρ>|ζ |>µ/2+δ

µ/2ζ 2

|R(ζ )| dζ = −µ

4
ln ρ + O(1)

that cancels (7.29). Now the statement of the lemma follows from (7.32), (7.28),

and Theorem 4.1. �

LEMMA 7.4 If µ ≥ 2 and ξ ∈ [0, 2µ), then

(7.33) 2g(∞) + �1 − W1 = tξ 2

8
+ 1

2
ln t

(
µ

2
−

ˆ(ξ

4

))
as t → ∞, x = ξ t , uniformly in µ and ξ .

PROOF: It remains to calculate

2K = 1

π i

[ ∫
γm

W1ζ
2 dζ

R+(ζ )
+
∫

γc

�1ζ
2 dζ

R(ζ )

]

to obtain (7.33). Deforming contours of integration γ ±
m and γ ±

c as in Section 6, we

see that

(7.34)

∫
γm

ζ 2 dζ

R+(ζ )
=
{∫

ν̃2

+
∫
ν̃1

}
ζ 2 dζ

R+(ζ )
,

∫
γc

ζ 2 dζ

R+(ζ )
= −

{∫
ν̃1

+
∫
ν̃0

}
ζ 2 dζ

R+(ζ )
.

Since

R+(ζ ) = 1 + Mj (ζ )(ζ − a2 j )

|a2 j − a2k | |a2 j − a2i |
for any j = 0, 1, 2, where the function Mj (ζ ) is uniformly bounded on ν̃j , we have

(7.35)
(−1) j

2π i

∫
ν̃j

ζ 2 dζ

R+(ζ )

= 1

2π i |a2 j − a2k | |a2 j − a2i |
∫ α2 j

α2 j+1

ζ 2(1 + Mj (ζ )(ζ − a2 j ))dζ√
(ζ − α2 j )(ζ − α2 j+1)

as t → ∞, where (i, j, k) is a permutation of (1, 2, 3). The change of variable

ζ = a2 j + iy yields

(7.36)
1

2π i

∫ α2 j

α2 j+1

ζ 2 dζ√
(ζ − α2 j )(ζ − α2 j+1)

= a2
2 j

2
+ O(b2

2 j ).
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Then

2K = W1

(a2 − a4)

[
a2

4

a0 − a4

− a2
2

a0 − a2

]
− �1

(a0 − a2)

[
a2

0

a0 − a4

− a2
2

a2 − a4

]
+ O(1)

(7.37)

as t → ∞. Using the fact that a0 and a4 are exponentially close to ±µ/2, respec-

tively, we obtain

(7.38) 2K = (W1 − �1) − µ

4

[
W1

µ/2 − a2

− �1

µ/2 + a2

]
+ O(1).

Calculation of the expression in the square brackets yields

(7.39) −2tµ − 1

2
ln t

(
µ

2
−

ˆ(ξ

4

))
µ

µ2/4 − ξ 2/16
.

Now the statement of the lemma follows from (6.3), (7.24), (7.38), and (7.39).

�

Theorem 6.6, together with Lemma 7.4, yields the following result:

THEOREM 7.5 If µ ≥ 2 and ξ ∈ [0, 2µ), then the leading-order behavior of the
solution q(x, t, ε) to (1.1)–(1.2) as ε → 0, t → ∞, and ε = o(b2

0

√| ln b0|) along
the ray x = ξ t is given by

q(x, t, ε)

= −
√

µ/2 − ˆ(ξ/4)

2t
e(i/ε)(tξ2/4+ln t[µ/2− ˜(ξ/4)])(1+O(t−1))(1 + O(t−1/2))

+ O

(
ε

b2
0|ln b0|

)
,

(7.40)

where ln b0 = −4t (µ/2 + ξ/4) + O(1). Here ĉ denotes c if c > T or T otherwise
for any c ≥ 0.

In fact, the RHP (M ′, V1, ν̃1) from Section 6 can be viewed as corresponding

to a genus 0 situation. Taking into account Theorem 4.1 and ξ = x/t , we obtain
d

dx
[2g(∞) + �1 − W1] = −a2(x, t). Thus, we recover the genus 0 region formula

(7.41) q(x, t, ε) ∼ −b2(x, t)e−2(i/ε)
∫ x

0 a2(s,t)ds

for the leading-order behavior of the solution to (1.1)–(1.2) under the conditions of

Theorem 7.5 (see theorem 1.1 in [13]).

Formula (7.40) is not valid on the breaking curve t0(x) since t0(x) is asymptotic

to x = 2µt . Considered formally, (7.40) shows that the amplitude of q(x, t, ε)
becomes 0 for ξ = 2µ. However, since the breaking curve separates genus 0
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and genus 2 regions of the (x, t)–plane, we can use the genus 0 expression for

q0(x, t, ε),

(7.42) q0(x, t, ε) = b0(x, t)e4(i/ε)g(∞)

[13, sec. 4.4]) to calculate the long-time behavior of q0(x, t, ε) along the rays

x = ξ t in the genus 0 region (so that ξ ≥ 2µ) and along the breaking curve

t0. The corresponding error estimates are not included in this paper, so, speaking

rigorously, the calculations in the rest of this section are formal.

In the genus 0 region (including the breaking curve), the formula

(7.43) g(∞) = 1

2

[
µ

2
ln b + t (2a2 − b2) − T tanh−1 2T tb2

T 2 + µtb2
+ 1

2
επ

]
where α0 = a + ib, is valid for any x and t [13, sec. 4.4]). We recall from section

4.1 in [13] that

(7.44)
b2 sinh2 u = a2 − T 2 tanh2 u, a =

(
µ

2
+ 2tb2

)
tanh u,

where u = (x + 4at).

From these equations we derive that

(7.45) b = 2e−u + O(e−2u), a = µ

2
+ O(te−2u),

as t → ∞. Thus

g(∞) = 1

4

[
−µt (ξ + µ) + µ ln 2 − επ

]
+ O(te−2u),

where x = ξ t . Substituting this and (7.45) into q0, we obtain

(7.46) q0(x, t, ε) = − exp

{
−
(

1 + iµ

2ε

)
[t (ξ + µ) − ln 2](1 + O(e−u))

}
in the genus 0 region as t → ∞. In the particular case of the breaking curve, the

expression

(7.47) ξ = 2µ + t−1

[
ln

2µ

µ + 2T
+ 2T

µ + 2T

]
+ O

(
1

t2

)
follows from (5.13). Therefore, along the breaking curve we have

(7.48) q0(x, t, ε)

= − exp

{
−
(

1 + iµ

2ε

)[
3µt + ln

µ

2T + µ
+ 2T

2T + µ

]
(1 + O(t−1))

}
in the limit t → ∞. Note that (7.48) is consistent with (6.2) from Theorem 6.1,

since, on the breaking curve,
∑2

j=0(−1) j b2 j = b0 and the theta functions in (6.2)

became degenerate. Making formal comparison of (7.40) and (7.47) for ξ = 2µ,

one can observe the abrupt change of phase near the breaking curve.
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8 Long-Time Behavior of Zero Level Curves of h

In Section 4 we have shown that no zero level curve � of h(z) can cross vertical

segments ν̃j = [α2 j , α2 j+1], where j = 0, 1, 2. Now we can actually calculate the

asymptotic location of � for t → ∞. In particular, we will show that, except for

small neighborhoods of points α2 j , the level curve � lies within O(t−1) distance

from the real axis Im ζ = 0 and the vertical ray Re ζ = −ξ/4 and approaches these

lines asymptotically as ζ → ∞. These statements are direct consequences of the

following lemma, which is based on long-time behavior of constants W1 and �1

(Theorem 7.2).

LEMMA 8.1 If µ ≥ 2 and ξ ∈ [0, 2µ), then for any δ > 0

(8.1)

h(z) = t

{(
z + ξ

4

)2

+
[

4

(
µ

2
−

ˆ(ξ

4

))
− κ

(
ξ

4

)(
µ

2
− ξ

4

)]
z2 ln t

8t (µ2/4 − ξ 2/16)

− (µ/2 − ˆ(ξ/4))(3µ2/4 + ξ 2/16) ln t

4t (µ2/4 − ξ 2/16)
+ µ2κ(ξ/4) ln t

32t (µ/2 + ξ/4)

}
+ O(1)

as t → ∞ uniformly on compact subsets of Im ζ ≥ 0 without δ-neighborhoods of
branch points α2 j , j = 0, 1, 2. In particular,

(8.2) Im h(z) = 2tσ

[(
1 + O

(
ln t

t

))
s + ξ

4

]
+ O(1)

where z = s + iσ .

PROOF: As in Lemma 7.3, we represent h(z) as

R(z)

4π i

∫
γ̂

f (ζ )dζ

R(ζ )
= − R(z)

2π

∫
R

Im f (ζ )

(ζ − z)R(ζ )
dζ

+ R(z)

2π i

[ ∫
γm

W1 dζ

(ζ − z)R+(ζ )
+
∫
γc

�1 dζ

(ζ − z)R(ζ )

](8.3)

since residue at ζ = ∞ is 0. It is easy to see that, according to Theorem 4.1,

Proposition 7.1, and expression (7.26) for Im f , the contribution of the first integral

in (8.3) is

(8.4) −κ(ξ/4)(z2 − µ2/4) ln t

8(µ/2 + ξ/4)
.

Therefore, we focus on the remaining part of the right-hand side of (8.3), which

we denote by M(z). Repeating the arguments from Lemma 7.4, we obtain

(8.5) M(z)

= R(z)

2π i

[
W1

{∫
ν̃2

+
∫
ν̃1

}
dζ

(ζ − z)R+(ζ )
− �1

{∫
ν̃1

+
∫
ν̃0

}
dζ

(ζ − z)R+(ζ )

]
.
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Using the antiderivative (7.12) we can, similarly to Lemma 7.4, evaluate

(8.6)
R(z)

2π i

∫ α2 j

α2 j+1

dζ

(ζ − z)
√

(ζ − α2 j )2 + b2
2 j

= −R(z)

2|a2 j − a2k | |a2 j − a2i |
√

(z − α2 j )2 + b2
2 j

+ O(b2
2 j ).

Then

2M(z) = (�1 − W1)(z2 − µ2/4)

(a0 − a2)(a2 − a4)
+

W1(z − µ/2)

√
(z − a2)2 + b2

2

(a0 − a4)(a2 − a4)

−
�1(z + µ/2)

√
(z − a2)2 + b2

2

(a0 − a2)(a0 − a4)
+ O(1).

(8.7)

Direct calculation of (8.7), together with Theorem 4.1, yields

M(z) = t

[(
1 + (µ/2 − ˆ(ξ/4)) ln t

2t (µ2/4 − ξ 2/16)

)
z2 + 1

2
ξ z −

(
3µ2

4
+ ξ 2

16

)
− (µ/2 − ˆ(ξ/4))(3µ2/4 + ξ 2/16) ln t

4t (µ2/4 − ξ 2/16)

]
+ O(1).

(8.8)

The statement of the lemma follows now from (8.4) and (8.8). �

It is clear that for t → ∞ and bounded z (8.2) implies either Im z = O(t−1) or

Re z = −ξ/4 + O((ln t)/t). So the branches of zero level curve � either approach

the real axis or the vertical line Re z = −ξ/4.

Appendix: Some Results of [13]

The linear eigenvalue problem corresponding to the integration of the NLS

(A.1) iεW ′ =
(

z q
q̄ −z

)
W,

where q = q(x, 0, ε) is referred to as a potential and z ∈ C is a spectral parameter,

was studied in [12]. In this paper the scattering coefficients a and b (see [15]) and

the reflection coefficient r (0)(z) = b(z)/a(z), corresponding to (A.1), were found

as products of gamma functions:

a(z) = �(w)�(w − w+ − w−)

�(w − w+)�(w − w−)
,

b(z) = −iε2−iµ/e �(w)�(1 − w + w+ + w−)

�(w+)�(w−)
,

(A.2)
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and

r (0)(z) = b(z)

a(z)

= −iε2−iµ/e �(1 − w + w+ + w−)�(w − w+)�(w − w−)

�(w+)�(w−)�(w − w+ − w−)

(A.3)

where

(A.4)

w+ = − i

ε

(
T + µ

2

)
, w− = i

ε

(
T − µ

2

)
,

w = −z
i

ε
− µ

i

2ε
+ 1

2
, and T =

√
µ2

4
− 1.

In the theory of inverse scattering, the coefficient a(z) is defined in the upper z
half-plane while b(z) and the reflection coefficient are defined on the real-z axis.

In the case 0 ≤ µ < 2 the eigenvalue problem (A.1) contains points of discrete

spectrum (zeroes of a(z)) at zk = T − iε(k − 1
2
) with the corresponding norming

constants

(A.5) c(0)

k = b(zk)

a′(zk)
= Resz=zk

r (0)(z).

Here k ∈ N and k < 1
2

+ |T |
ε

. Because of the Schwartz reflection symmetry of

the problem, it is sufficient to specify the discrete spectrum in the upper half-plane

only.

The time evolution of the scattering data [15] is very simple and explicit; thus,

the calculation of the evolution of the initial value problem (1.1)–(1.2) essentially

consists of solving the inverse scattering problem (ISP), i.e., reconstructing the

potential q = q(x, t, ε) in (A.1) from the explicitly available scattering data at

time t . The leading-order term q0(x, t, ε) (with respect to ε) of q(x, t, ε) was

calculated in [13]. The tools developed in that paper are in many cases sufficient

for the calculation of the higher-order terms; however, we have not included such

calculations.

The inverse scattering problem is formulated as a (multiplicative) matrix Rie-

mann-Hilbert problem (RHP) on the complex plane of the spectral variable z. For

any given x, t , our procedure reduces the construction of q0(x, t, ε) to the solution

of a model RHP on a contour that consists of 2N + 1 arcs {γm, j }N
j=−N (we refer

to them as “main arcs”) interlaced with 2N “complementary arcs” {γc, j }, j =
±1,±2, . . . ,±N . The arcs, as well as their endpoints αj , j = 0, 1, . . . , 4N + 1,

depend on x and t but not on ε. On each of these arcs, whose determination is an

important part of our procedure, the 2 × 2 jump matrix of the RHP is constant with

respect to z but depends on the parameters x , t , and ε.

A major part of the solution to the model RHP is a scalar function g(z; x, t),
which is analytic on the two-sheeted Riemann surface R(x, t) determined by the
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FIGURE A.1. Riemann surface R(x, t).

radical

R(z; x, t) =
4N+1∏

j=0

√
(z − αj )

with branch cuts along the main arcs except at the points of nonanalyticity coming

from the reflection coefficient r (0)(z). The solution of the model RHP is obtained

explicitly through the dual basis of holomorphic differentials ω of R(x, t) and the

corresponding Riemann theta function θ(u); see [13, sec. 7].

The expression for q0(x, t, ε) becomes somewhat simpler if we consider theta

function θ and holomorphic differentials ω associated with the basic cycles of the

Riemann surface R̃(x, t) (Figure 6.1) that consists of 2N + 1 vertical cuts ν̃j , con-

necting the corresponding (complex-conjugated) endpoints of the main arcs γm, j

and γ m, j , j = 0, 1, . . . , 2N ; see section 8 in [13]. In a sense we study the evolu-

tion of q0(x, t, ε) through the evolution of R(x, t) (or of R̃(x, t)), which identifies

q0(x, t, ε) in a neighborhood of x, t as an N -phase NLS solution. The genus 2N ,

N = 0, 1, . . . , of R(x, t) (or of R̃(x, t)) is physically important because it spec-

ifies the number of oscillatory phases of the solution. By a mild abuse of termi-

nology we call it the “genus of the solution q0(x, t, ε)” or simply the “genus.” A

curve on the (x, t)–plane separating regions of different genera is called a “break-

ing curve.”

The main result of [13] provides an explicit expression for q0(x, t, ε) in the

cases of genera 0 and 2 when µ > 0, x ≥ 0, and t ≥ 0 (due to a reflection
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symmetry with respect to the real axis, the genus must be even and γ m, j = γm,− j ,

γ c, j = γc,− j , j = 1, 2, . . . , N , γ m,0 = γm,0). It follows from (1.1)–(1.2) that the

solution q(x, t, ε) is an even function in x for all t .

Certain important points concerning the results of the present paper are listed

below:

• Evolution (with respect to t and x) of the branch points αj (x, t) is governed

by the system MI of moment and integral conditions, which contains the

information about the initial condition (1.2) to (1.1) through the function

f (0)(z) = (i/2e)r (0)(z). In fact, r (0)(z) will later be replaced by its Stirling

approximation r(z) and, correspondingly, f (z) = (i/2e)r(z).
• The branch points αj (x, t) are crucial elements of the construction of the

g-function g(z; x, t), which is an essential element of the leading term

q0(x, t, ε).
• In the region of genus 2 (N = 1, where the genus g = 2N ) the system MI

of 4N +2 real equations can be written as four moment conditions Mk and

two integral conditions Im,c,

(A.6)

1

π i

∫
γ̂

ζ k f ′(ζ )dζ

R(ζ )
= 0,

∫
γ̂m,c

h′(z)dz =
∫

γ̂m,c

R(z)dz
1

π i

∫
γ̂

f ′(ζ )dζ

(ζ − z)R(ζ )
= 0,

where k = 0, 1, 2, 3, the contours γ̂m = γ̂m,1, γ̂c = γ̂c,1, and R(z) =√∏5
j=0(z − αj ).

• In general, for a given pair (x, t) we do not know a priori how to choose

the correct N for the MI system, or even if such an N exists. Moreover, the

system MI with a given N can have many solutions. Therefore, we took

the evolutionary approach to solutions α of the MI system: we proved that

for t = 0 the correct N = 0 and the correct solution α ∈ C is the one

satisfying Re α ≥ 0, 0 < Im α ≤ √
µ + 2. The correct choice of N and α

allows us to construct the g-function with the required properties.

Using then the evolution and degeneracy theorems (see section 3.1 in

[13]), we proved that the g-function with the required properties exists for

any x ≥ 0 and any t ∈ [0, t1(x)], where t1(x) ∈ (0,∞]. In the pure

radiation case (µ ≥ 2) we proved that t1(x) = ∞ for all x and that there

exists a smooth, monotonically increasing curve t = t0(x), x ≥ 0, that

separates the genus 0 region (below the curve) from the genus 2 region

(above the curve).
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FIGURE A.2. Deformed contour γ̂ . In our (solitonless) case T ∈ R, so

there are no bypasses around ±T .

To compute the integrals for moment conditions in (A.6), we use the following

expression for f ′(z) [13, sec. 6.4]:

(A.7) f ′(z) = iπ

2
+ ln

z

z − µ/2
+ 1

2
ln

(
1 − T 2

z2

)
− x − 4t z = iπ

2
+ f̂ (z),

where the logarithm terms have cuts along [0, µ/2] and [−T, T ], respectively.

Note that f̂ (z) is analytic at infinity, so for this term the contour of integration

γ̂ in (A.6) could be deformed into a union of integrals along R and a positively ori-

ented circle of some large radius. The value of the latter integral could be computed

through the residue at z = ∞; see Figure A.2. (Note that in the solitonless case

T ∈ R, so there are no bypasses around ±T .) Because of the Schwarz reflection

symmetry, the combined integrals over R yield

− 1

π

∫
R

ζ k Im f ′(ζ )dζ

R(ζ )
,
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where k = 0, 1, 2 and

− 1

π

∫
R

[ζ 3 Im f ′(ζ ) − R(ζ )]dζ

R(ζ )

for k = 3. Note that, according to (A.7), Im f ′(ζ ) = π/2 if ζ ≤ −T or ζ ≥
µ/2, Im f ′(ζ ) = −π/2 if T ≤ ζ < µ/2, and Im f ′(ζ ) = 0 on (−T, T ). Thus,

denoting |R(ζ )| by R(ζ ) along R (i.e., replacing R(ζ ) by −R(z) for ζ > µ/2),

we get Im f ′(ζ ) = −(π/2) sign ζ if |ζ | ≥ T and 0 otherwise. Therefore, for the

solitonless case µ ≥ 2, the moment conditions (A.6) become∫
|ζ |≥T

sign ζ dζ

|R(ζ )| = 0,(M0)

∫
|ζ |≥T

ζ sign ζ dζ

|R(ζ )| = 8t,(M1)

∫
|ζ |≥T

ζ 2 sign ζ dζ

|R(ζ )| = 2x + 8t
2∑

j=0

a2 j ,(M2)

∫
|ζ |≥T

[ζ 3 sign ζ − |R(ζ )|]dζ

|R(ζ )| = 2x
2∑

j=0

a2 j + 8t Q(α) − µ + 2T,(M3)

where αj = aj + ibj and the quadratic form Q(α) = 1
2

∑
j<k(a2 j + a2k)

2 −
1
2

∑2
j=0 b2

2 j . The integral in M2 is a principal value integral.
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