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INTRODUCTION

It has long been known ; that the amplitude for raciation of a
soft photoh is determined by ths amplitude of the corrssponding non-
radiative process. Indeed the fiprat two terms in an expangion in powers
of the photon momentum are SC determined. In +the game approximation
according to Burnett and Kroll 2), the radiative intensity is determined
by the non—radiative intensity in the case of unpolarized initial
particles and unobserved final spins. They derived this result for the

case of particles of spin O and %+, and conjectured its general

validity. That conjecture is verified in this ncte.

AMPLITUDE

We work in the space of physical spin states |§9s> , ldentified
for example 3) by putting then in correspondence with rest states ]Ogs
via rotation-free Lorentrz transiormations. For the rest states, s 1is
just the component of angular momentum along some chosen axis. The norm

o

3 oo/ - :,\
o/

—— | [ oo o o ,.;7
(Prs P s =2T) OlpTg )

<
will be employed. Actually spin irdices will usually be suppressed in
what follows: the various transition amplitudes are then matrices in a

el
spin space of appropriate dimension, (2S+1)“ for each particle of

spin 8.

Tet guw&b be the radiative amplitude, where Q}L is the photon

polarization. We write

Mo= 0+ R ()
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where I}L gives correctly the one-particle poles. It is assumed that

thege are the only relevant singularities so that the remainder R

pIs
is not singular for small photon momentum k}bo Let the initial particle
momenta be 31, 32,,0., and the final momenta 319'32,00,, Then we

take

The terms given explicitly correspond to radiation from a final line;

the dotg indicate similar terms from initial lines. The quantity
<:§£1{u1155+§:> is the matrix element of the electromagnetic current
between the indicated states of particle n, and 4( iM[‘> is the matrix

element for the non-radiative process. The energy denominator is

A, = kg + Ex - Fu (5)
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Calculating the right-hend gide from {2)3 using the consequence of current

centinuity
TR T N S A N e R -
AR = Ea AP dapat k0 (9)

gives
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Tf ¥ is continued in some smooth way off the momentum conservation shell

z . 5 . . .
(we come back to this point) we can write

—
+o first order in ¥X. We alsc have to

-3 i B A ™ : an N 2 F R
GATIRe® = Q- T Rofefor) o

where _ respect to spin indices,

/\,n(zpn+k) is some Hermitian matrix with
ig just the particle charge

[S Y]

&

a function of the indicaied bty and .

multiplied by the unit matrix. Thus to first order

(9)

- — .
where the arguments of M are the undisplaced P, and ¢,. The possible

term of zero order has cancelled in (9) because of charge conservation

= N
7 (o + - =0
e

in zmero order, to be the coefficient of

The ccuation (9) determines Ry
k}; on the right-iand side : RO =0, and

-,
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To expand %u, also to zero ordexr requires
the expansion
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where the dyadic /Zo , a function of 2p+k, is

respect to spin indices.

Finally,

to zero order,

+ ln €
5 G0
+ )
e

As already remarked, this formula reoquires

, as well as (7) and (8),

LD

ji (11)

YL

a Hermitian matrix with

in a gauge with € =

o 0,

an extension of M off

.- =T - .
the momentum conservation shell A v ::Ziq, To check that the result
doeg net depend on the precise way this is done, note that the difference
in two such extrapolaticns will be of the form
U N
e J— ,? - —:9
§:' . ( pa P Z (,,{ )
H
= . . - . - -
where F is some non-singular function of the p's and g's. The
additional contribution to (12) is, up to zero order terms,
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This is seen to vanish on recalling

i
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The quantities JA, and >

), in (12), defined by (8) and (11), can

of course be expressed in terms of the particle charges and magnetic
moments.

Although we do not need them in what follows, we cxhibit here
the explicit expressions. Dropping the index

n, for a particle of
mass M, charge Q, and gyromagnetic ratio g :
?t? s ,""? - Iy A4 = ;o : ‘:‘? -~ “‘9’.:;)'
hZf:::i(gx;<+ E;:_pr) +-ti_caig c Kxp
- N
’ ( 9 —> -
I\ = (*: Q_, . — £ T X B
LM(ﬂT*“) M B
where
—>
= - A
— 1 2 i . — 5
f) [~ 2 - gl (/ £ .)

and 'E? is the generalization of appropriate dimension of the Pauli spin

matrices (i.e., twice the angular momentum matrix of the rest systeg).
These expressions are obtained by boosting from the Breit system, p =03
the terms in Q

arise from the Thomas precession, or Wigner rotation,

TRANSITION PROBABILITY

If final particle spins are not observed and if initial particles

are unpolarized, the transition probability is proportional to

A

A

AT N N
TTTQJ;E & !\M éy ]V (1%)
where the Trace 1is with respect t0 spin indices and M+ is the Hermitian

Then from (12), to the
k, (13) is equal to

conjugate of M with respect to those indices.
leading and next highest order in
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If we now take € real, the expression simplifies considerably. Firstly
& — .
the 2. and _/_ contributions disappear, for because of the Hermiticity

of these matrices

REQ,_E rFYfLCQ J\/\~ L ?, J\/\. p
Keo? Trace M L N, M =0

Secondly we can use

- 1 + (\ +—
2 Real Trace MT2 M = 2 ™M
“f:h- :’i‘Pl“L

(e a - .Z.'—% ;) < QW\. -Z et +DA)
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where

— +
’(y:) - v o€ J\/‘\~ '\/\

is essentially the non—radiative transition probability. In these formulae
. s o 3 - - — -

we require P outside the momentum conserving shell ii P = Z:q; By a

reasoning similar to that at the end of Ssction 2, different smooth conti~-

nuations do nct give significantly different vesults.
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Pormula (14) is the desired result, expres oing bthe radiative

probability in terms of the non-radiative probability and derivatives
-

thereof. The restricticn +to real & means that we can dest with

]

trangverse photon polarisation, or of course with summ

ation over photon

polarimations. The result applies not only o real photons, but also to
appropriately polariced sof% virtual photons, for we did noet use either
2

k" =0 or e“k = 0,

K

4, COVARIANT NORMATLIZATION

Although it is not essential for our development, already complete,
we will rewrite (12) in a form closer to that usually given for gcalar

particl Pirstly, we introduce "covarLantly" normelized amplitudes ”L
and i such that
/U-'

Yyl ‘}71%L { Yo 7.2 faa\q/W R /u L =3 /%
— 0z M - Mo+ o) N (M+an )
W, )

Secondly, we introduce new dencminators

S Toaa (o2t
Z)ﬂ = — M7+ (F"\ + K l

— ” T 22
= (E.+ ¥o) — B0
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The extra terms generated by commuting the normalization factors through
the differential operators cancel ncatly against those arising from the

last term in (13), leaving in zero order

68/915/5



[ex)

p
y i 3 -
LM = Z ¢ X% LG ) (14 K, & )
S m E\ S ( re ) ~ “ dﬁw
- K:..'w -3 N ™ —y -
- K E—}n € —+~ (:n, £ T@':; -t € _/\_‘n, m <16)
S 3 In, -
<o } "
4 - e -

In the first instance one obtains in (14) % ‘9/ ég rather than
1«:/% E’/ '\r)p}ll in the first fterm:; these forms are equivalent when Mo
is a function only of 1; as implied hitherto. With the form written,
one can in fact continuc Wo off $he mass sholl in any oth-i smooth
way without significant change. This is because 1f one makes an addition

to WMo of the form

< ; / 2 ~1
Lo )\m, L Mm "+ i‘”'rx. )

L
where the Xrl are scme smooth fumetions, the extra zero order terms
are .
S R = ) - '2*9
- s ) J?\ /\”V’ - I\M, !—J.r A T Z Q%.Z PfL
. &
hick nr2l because Lo 2
wrnlcan ca J aus (_‘;n .—,;/UL_EJ'Q/“L o
In the semc way, (14) can be rewritten
i Mt ~
! «‘\/Qy CE E/UL l‘M “ }\/)v o

( — O , O
(7% etprg 2T Gl

" < A Mo g é 4
2% i ” ( 17 )
B L ‘\ fr o~ K‘o
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where

i%) pas rPﬁ*Ouf;EL ’Yrﬁ% ]Wi;

In the Ffirst instance we obtain this in the gauge E_O = 0. However,
this restriction can be dropped, for the form written, is actually in—
variant under the gauge transformation §it-» @w +/\1§M° This is
readily verified remembering

K (‘LIO”"L_‘"K?/Q_ = - gfn,,

ZL CQTL e e = O
Ohe also verifics in the usual way the insensitivity of (17) to how §;>
is continuecd off the mass and energy momentum conservation shells. As
usual the dots in (17) indicatc cxtra terms arising from the particles
in the initial state: they cnn be omitted by formally congidering initial

particles as final antiparticles with reversed charge and four-momentum.

Note finally the manifest covariance of (17). We 4did not bothcr
with manifest covariance in the derivation, and especially in the decom—
position (1)-(2): of course this does not preveni us reaching right

answers if thce subsequent reasoning is correct.

We are indebited to R. Stora for useful discussgsion.
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%) If one wishecs %0 ineclude some hard photons among the

"garticles" of the "non-radiative" process,; one can use, say,
2 helicity labelling. In the lowest order of ¢ for the
given process R}L‘ should still be non-singular and the
demonstration goes through.
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