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ON THE LOWER BOUND FOR THE
INJECΠVΠΎ RADIUS

OF 1/4-PINCHED RIEMANNIAN MANIFOLDS

JEFF CHEEGER & DETLEF GROMOLL

The purpose of this paper is to prove that if Λf is a compact simply

connected riemannian manifold whose sectional curvature K satisfies 1/4 <

K < 1, then every closed geodesic has length > 2τr, or equivalently, the

injectivity radius of the exponential map is > TΓ.

This result, which for example, is necessary for the proof of Berger's

rigidity theorem [1], [2], is well known in the even dimensional case (assuming

only 0 < K < 1), and in the odd dimensional case [6] provided one assumes

1/4 < K < 1. The case 1/4 < K < 1 is treated in [7], but the argument

seems to be somewhat unclear at several points. Our proof is in spirit a

modification of the ideas in [7],

We will use some fairly general standard facts about lifting curves by the

exponential map exp: TM —»M. Our basic references are [2] and [4], For

m G M, exρw is the restriction of exp to the tangent space Mm of M at m. All

curves under consideration will be continuous and parametrized on [0, 1]. Let

P denote the set of all curves in M, and P the set of vertical curves c in TM

emanating from the zero section, i.e., c = π ° c is constant, c(0) = 0 G Mc(0),

where TΓ: ΓM—» M is the natural projection. Throughout this paper, we will

use the topology of uniform convergence for P, P, and any subset.

Let Exp: P -^ P denote the continuous map induced by exp, Exp(c) =

exp o c. The image of Exp is the set of lift able curves; any c G P is a lift of

c = Exρ(c). We call c a regular lift if expm has maximal rank n = dim M at

all points c(t), 0 < t < l,m = τr° c(0), or equivalently, TΓ X exp has maximal

rank 2n at all c(t). Clearly, any c G P has a unique lift if it has a regular lift,

but in general need not have a regular lift or any lift at all. All regular lifts

form an open subset Q c P9 and Exp imbeds Q homeomorphically onto an

open subset Q c P. We are particularly interested in the set of closed curves

Po c P. Lifts of closed curves, if they exist, need not be closed. Po certainly

Received April 26, 1979. This paper is essentially the content of a preprint [3] which appeared
in 1972 while the first author held a Sloan fellowship. Both authors were partially supported by
NSF Grant MCS 7509458A02.



438 JEFF CHEEGER & DETLEF GROMOLL

contains the Exp-image of the closed curves Po in P. Finally, let Qo = Po n
Q denote the set of closed regular lifts, which is open in Po. It follows from
the above that Exp maps Qo homeomorphically onto an open subset Qo of Po.
We conclude this discussion with two simple

Remarks. (1) Any geodesic c G P always has a canonical (radial) lift c,
regular or not, which is never closed.

(2) Suppose for some m G M and r > 0, exρm is nonsingular on the open
ball Ur(m) = {v\\\v\\ < r} c Mm. Let c G P be piecewise differentiate, c(0)
= m, of length L(c) < r. Then c G Q, so c has a unique regular lift c =
Exp"1^), and c(t) G Ur, 0 < t < 1. In essence, this is a consequence of the
Gauss lemma.

Since we have to employ some arguments from Morse theory, we will also
work with the standard approximations of Po by the finite dimensional
subspaces Ω< α of all closed broken geodesies c of energy E(c) < a, with
break point parameters chosen as usual, sufficiently fine and fixed for an
energy level b > a large enough in a given situation. Let Ω< α denote the open
subset of all curves in Ω< Λ whose energy is strictly less than a. Observe that
Ω< α need not be the closure of Ω< α. The critical points of the energy function
E on these free loop spaces are precisely smoothly closed geodesies in M.

We now prove a crucial fact about limits of closed lifts which is quite
general. For any curve c and 0 < s < 1, let cs be the curve given by
cs(t) = c(st), and let c~ denote the reversed curve, c~(t) = c(l — /). By c~ we
will mean (cs)~.

Lemma 1 (Lifting lemma). Suppose, for some r > 0 and all m G M, expm is

nonsingular on the open ball Ur(m) c Mm. Let c G Po be in the closure of

Exp(P0) n Ω < 4 r 2 . Then either c G Qo (and thus is not a closed geodesic if

nonconstant), or both cι^2 and c[/2

 a r e geodesies of length r with conjugate end

points. Furthermore, C = Qo Π Ω < 4 r 2 is a connected component ofίl<4rZ.

Remarks. (3) Ω< 4 r 2 is a manifold, so its connected components are pre-
cisely its pathwise connected components. But Ω<4r* need not be a manifold
(with boundary) if 4r2 is a critical value of the energy E. To avoid difficulties,
we will mostly work with connected, rather than pathwise connected compo-
nents.

(4) If we replace the assumption expm\Ur(m) nonsingular for all m by the
assumption exρc(0)| Ur(c(0)) is nonsingular and leave the rest of the hypothesis
unchanged, then the conclusions of Lemma 1 continue to hold for the loop
space at c(0). But this is not sufficient for our purposes.

Proof. We can assume that at least one of the two branches c1 / 2, cγ/2 (say
c1/2) is not a geodesic, or if so, is free of conjugate points. Note that
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L(cx/1) < λJE(cι/Ί) < r, with equality iff c 1 / 2 is a geodesic of length r.
Therefore, by Remarks 1 and 2, c 1 / 2 ̂  Q- But β is open, so in fact cs E Q
for some 1/2 < s < 1. Then, again by Remark 2, cj~_5 E ζλ By hypothesis,
there exists a sequence c, E Po with Exρ(c,) = cf converging to c. Now
(Explβ)"1 is well-defined and continuous, so it follows that Exp"1^^) = citS

-» cs, and Exp-ι(c7Λ_s) = drχ_s -+ cx_s.

Since c^(\) = ςj~i_,(l) for all i, we have c5(l) = cx_s(l). Thus c, converges
to some c E g0,

 a n d Exρ(c) = c E β 0 . C = Qo Π Ω< 4 r 2 is open, and we have
just shown it is also closed in Ω<4r2. Therefore C is a union of connected
components of Ω<4r2. If Cx is any component of C, then Cx contains a closed
geodesic on which E takes its minimum value. Since C contains no nontrival
closed geodesies, it follows that C = Cx is connected.

We need the following result from Morse theory.
Lemma 2. Le/ f be a smooth function on the differentiable manifold X of

dimension k, and p a possibly degenerate critical point of index > 2 (or a

regular point) with f(p) = a. Then there exists a neighborhood N of p such that

N π X<a is (pathwise) connected and dense in N π X < α .

Proof. We may assume X = R\ p = 0, /(0) = a = 0. If 0 if a regular
point, our claim is trivial. Otherwise, according to the generalized Morse
Lemma in [5], we have, after a change of coordinates near the origin in
R* = R2 X R*-2,

on some neighborhood U, where g is a smooth function in R*~2. Now choose
d, r > 0 such that (x, y) E U and g(y) < d2 on

Let q0 = (xo,yo), qx = Oi,JΊ) E N n Ar<0. It suffices to construct a continu-
ous path T: [0, 1]-H># n X<0 from ?0 to ^ so that τ(t) E N n X<0

whenever 0 < t < 1. For x E R2, let h(x) = έfe/||x|| if x φ 0, A(0) = (d, 0).
Notice that/(A(x),7) < 0 for all (x,j>) E N. The path T can be chosen as the
composition of the following four simple curves: First, move (xo,yo) linearly
to (h(xo),yo), then (h(xo),yo) to (h(xx)9y0) through a rotation on the circle
||Λ:|| = d keeping y0 fixed (here we are using index > 2), then (h(xx),y^)
linearly into (h(xx)9 yx), and finally (h(xx), yx) linearly to (xx, yx).

Lemmas 1 and 2 have the following consequence.
Lemma 3. Assume the hypothesis of Lemma 1, and furthermore that any

smoothly closed geodesic c E Qo Π Ω < (necessarily of length 2r) has index >

2. Then Qo Π Ω < 4 r 2 is the closure of Qo Π Ω< 4 r 2, and a connected component of



440 JEFF CHEEGER & DETLEF GROMOLL

Proof. Let/? 6 β o n Ω < 4 r 2 , and let N be a neighborhood of p in X =

for some Z> > 4r2 = a as in Lemma 2. We have N Π β 0 Π Ω < 4 r 2 ^ 0 . But

TV n Ω < 4 r 2 is dense in JV n Ω < 4 r 2 and β 0 open, so that also N Π Q0Π Ω < 4 r "

Φ 0 . Now JV Π Ω < 4 r 2 is connected, and by the lifting lemma, Q n Ω < 4 r 2 is a

connected component of Ω < 4 r 2 . Therefore iV Π Ω < 4 r 2 c βo> andjthus N n

Ω < 4 r 2 is contained in the closure of QQ Π Ω < 4 r 2 . This implies that Qo n Ω < 4 / J

is the closure of the (connected) set Qo n Ω< 4 r 2, and is relatively open (and

closed) in Ω< 4 r 2, which completes the argument.

The following fact is basically standard.

Lemma 4 (Connectedness lemma). Let f be a smooth proper function on a

finite dimensional manifold X. Suppose, for some regular value b, all critical

points of f in X<b — X<a have index > 2 (but are possibly degenerate). Let

Cv . . . , CN be the connected components of X<b. Then Cγ Π X<a, . . . , CN Π

X<a are the connected components of X<a. In particular, if X<b is connected,

soisX<a.

Remark. (5) If in addition, all critical points in f~ι(a) have index > 2,

then X<b (path) connected implies that X<a is also path connected, since by

Lemma 2, X <a is locally path connected.

Proof. Choose a decreasing sequence b > ak > a, l i m ^ ^ ak = a, of regu-

lar values of/. By standard Morse theory, we can approximate/on X<b by a

nondegenerate Morse function^ which agrees w i t h / o n X<ak u f~ι(b). lΐfk

is sufficiently close to /, all critical points of fk in X<b — X<Ok will have

index > 2. Then it follows from the Morse inequalities that HJ(X<b, X<a")

= 0 for i = 0, 1. Thus Cλ Π X<a", , CN n X<a" are the path connected

components of X<Ok. Since the intersection of a decreasing sequence of

compact connected sets is connected, the lemma is proved.

Finally, we need

Lemma 5 (Index lemma). Let M be odd dimensional with sectional curva-

ture 0 < K < 1. Then any nonconstant smoothly closed geodesic c E Qo Π

Ω < 4 π 2 (necessarily of length 2π) has1 index > 2.

Proof. Recall that by standard index form comparison, K < 1 implies that

for any geodesic in M of length π, at most the end points can be conjugate,

and if this is the case, any Jacobi field vanishing at the end points looks like a

Jacobi field on the Euclidean sphere of curvature 1, i.e., is a multiple of a

parallel field. Therefore, in our situation, the hypothesis of Lemma 1 is

satisfied for r = π, and the geodesic c has precisely two conjugate points for

t = 1/2 and / = 1, at length π and 2π respectively.

1 Some further information has been communicated to us by T. Sakai.
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We can find broken Jacobi fields J± along c, not identically zero, where

J+, /_ are Jacobi on [0, 1/2], [1/2, 1] respectively, and vanish otherwise.

Now / + and J_ span a 2-dimensional space V on which the index form / is

zero. If V does not intersect the null space N of / nontrivially, then the

orthogonal projection of V on the negative eigenspace of / must be an

injection which implies index (c) > 2. Otherwise, there i s O ^ / G K n M

We are working in the free loop space, so N consists of periodic Jacobi fields.

By the above comparison argument, we have /(/) = sin 277-/ E(t), where E is

a closed parallel field along c. Using the Synge argument, since M is odd

dimensional and K > 0, M is orientable, and we conclude that there exists a

second closed parallel field F normal to c. Then E and F span a 2-dimen-

sional space on which / is negative definite.

We can now derive our main result.

Theorem 6. Let M be a simply connected compact riemannian manifold of

odd dimension n. Suppose the sectional curvature satisfies 1/4 < K < 1. Then

(a) Ω<4w" is the closure of Ω < 4 w , and is connected;

(b) Ω < is contained in Qo, and is (pathwise) connected;

(c) c E Ω < 4 i r 2 implies either c G Qo, or both c 1 / 2 and c\/2 are geodesies of

length π with conjugate end points;

(d) any nonconstant smoothly closed geodesic in M has length > 2π and

index > 2.

Proof As described in the proof of Lemma 5, K < 1 implies that the

hypothesis of Lemma 1 is satisfied for r = π. By the same comparison

technique, since 1/4 < K, any geodesic in M of length > 2π has index

n - 1 > 2.

We argue first that for any a > 4ττ2, Ω < α is connected. If not, let cl9 c2 be

curves in different connected components of Ω < α . Since M is simply con-

nected, cx and c2 are homotopic. After suitable refinement of the break point

subdivision of the parameter interval [0, 1], we can therefore join cx and c2 by

a continuous path in &<b for some b > a. So cx and c 2 belong to the same

connected component of Ώ<b for some regular value b > α, contradicting

Lemma 4.

Using Lemma 4 again, we conclude that Ώ<4™* is connected. Now we apply

Lemmas 5 and 3 to obtain that Qo Π Ω < 4 π 2 = Ω< 4 7 r 2 is the closure of Qo Π

Ω< 4 i r 2, which completes the proof of (a). In particular, Qo n Ω<4flr2 is dense,

and by Lemma 1, connected and closed in Ώ<4"\ Thus Qo n Ω < 4 w 2 = Ω< 4 7 r 2 is

connected, which proves (b). The last two statements (c) and (d) are an

immediate consequence of (a), (b), and Lemmas 1 and 5.

We conclude our discussion with some remarks. The result in (d) that all
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nonconstant smoothly closed geodesies have index > 2 is rather surprising.
One has as immediate consequence (which is not the strongest conclusion
that can be drawn) that for any a > 0, the loop spaces Ω< α (and Ω< α as well)
are path wise connected; cf. also Remark 5. The last statement holds also in
even dimensions under the much weaker assumption 0 < K < 1, since by the
Synge Lemma, every nonconstant smoothly closed geodesic has index > 1.
Clearly, Theorem 6 holds in that case except that in (d), the index is
only > 1. Using the preceding remark, just Lemma 1 is needed for the proof.
Finally, both in odd and even dimensions, Theorem 6(b) provides an obvious
direct argument for the fact that the injectivity radius of the exponential map
is > π.
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