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Abstract— In this paper we study hysteresis induced by
friction in a simple mass-spring system and then in a dc servo
motor experimental setup. The experimental setup is modeled
and simulated using the Dahl, LuGre, and Maxwell-slip friction
models. Comparison of the experimental and simulation results
reveals that the LuGre model provides the best model of the
testbed’s friction-induced hysteresis.

I. INTRODUCTION

Modeling and control of friction remains a problem of

interest, both for its intellectual challenge and its practical

ramifications [1]–[3]. In recent work [4] we considered

the relationship between friction models and hysteresis in

mechanical systems. In particular, by using the results in

[5] on Duhem models for hysteresis, we classified the most

widely used friction models in terms of the properties of the

relevant Duhem model; see Table 1.

In the present paper we extend the results of [4] in several

directions. First, we more closely examine the nature of the

hysteresis maps that arise from each friction model. This

examination allows us to compare the hysteretic response of

each friction model with the extensive experimental studies

of friction models available in the literature [6]–[10]. Next,

we embed each friction model within a single-degree-of-

freedom mechanical model in order to examine and compare

the hysteretic response of the system.

Finally, we develop an experimental testbed for friction

identification. The testbed consists of a dc motor with a

speed reduction gearhead, with encoder measurements of

the shaft and load cell measurements of a cable wound

around the gearhead. By operating this testbed under quasi

static conditions, we compare its hysteretic response to the

simulated response of the system under various friction

models. The goal is to determine the most suitable friction

model for the friction and stiction effects observed in the

testbed. As the title of this paper suggests, the LuGre friction

model, which exhibits stick-slip friction, is found to provide

the best model of the testbed’s hysteretic dynamics.

The contribution of the present paper is a broad, system-

theoretic picture of various friction models and their induced

hysteresis maps. All of the principal friction maps are

studied in a common setting, and the resulting characteristic

hysteresis maps are compared. While friction is known to be

a source of hysteresis [8], [9], [11], our goal is to systemati-

cally examine the link between the physical phenomenon of

friction and the system-theoretic phenomenon of hysteresis.

In Section 2 we review the analysis from [4] of the Dahl,

LuGre, and Maxwell-slip friction models concerning their

hysteretic characteristics. In Section 3 we study the friction-

induced hysteresis in the mass-spring system using the three

friction models. In Section 4 we develop a model of the

experimental setup used for identifying friction. In Section 5

we simulate the model using the Dahl, LuGre, and Maxwell-

slip friction models. In Section 6 we report the experimental

results and compare them with the simulation results of

Section 5. In Section 7 we give some concluding remarks.

II. HYSTERESIS IN THE DAHL, LUGRE, AND

MAXWELL-SLIP FRICTION MODELS

In this section, we review the Dahl, LuGre, and the

Maxwell-slip friction models from a hysteresis modeling

point of view as given in [4]. All the three friction mod-

els are expressed as Duhem models, thus indicating that

friction can give rise to hysteresis. The terms closed curve,

limiting periodic input-output map, hysteresis map, and rate-

independence are defined in [5].

Consider the single-input single-output generalized Duhem
model given by

ẋ(t) = f
(
x(t), u(t)

)
g
(
u̇(t)

)
, x(0) = x0, t ≥ 0, (1)

y(t) = h
(
x(t), u(t)

)
, (2)

where x : [0,∞) → R
n is absolutely continuous, u :

[0,∞) → R is continuous and piecewise C1, f : R
n ×R →

R
n×r is continuous, g : R → R

r is continuous and satisfies

g(0) = 0, y : [0,∞) → R, and h : R
n × R → R is

continuous. The value of ẋ(t) at a point t at which u̇(t)
is discontinuous can be assigned arbitrarily. We assume

that the solution to (1) exists and is unique on all finite

intervals. Under these assumptions, x and y are continuous

and piecewise C1. The following result in [5] is needed.

Proposition 2.1: Assume that g is positively homoge-

neous, that is, g(αv) = αg(v) for all α > 0 and v ∈ R. Then

the generalized Duhem model (1), (2) is rate independent.

As a specialization of (1) and (2), the rate-independent
semilinear Duhem model is given by

ẋ(t) =
[
u̇+(t)In u̇−(t)In

]×([
A+

A−

]
x(t) +

[
B+

B−

]
u(t) +

[
E+

E−

])
,

(3)

y(t) = Cx(t) + Du(t), x(0) = x0, t ≥ 0, (4)

where A+ ∈ R
n×n, A− ∈ R

n×n, B+ ∈ R
n, B− ∈ R

n,

E+ ∈ R
n, E− ∈ R

n, C ∈ R
1×n, D ∈ R, and

u̇+(t) �= max{0, u̇(t)}, u̇−(t) �= min{0, u̇(t)}. (5)
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Let the limiting input-output map F∞(u, y) be the

set of points z ∈ R
2 such that there exists an in-

creasing, divergent sequence {ti}∞i=1 in [0,∞) satisfying

limi→∞ ‖(u(ti), y(ti)) − z‖ = 0. A sufficient condition for

the existence of the limiting periodic input-output map of a

rate-independent semilinear Duhem model is given in [5].

The Dahl model [6] is the nonlinear friction model

Ḟ (t) = σ

∣∣∣∣1 − F (t)
FC

sgn u̇(t)
∣∣∣∣
γ

sgn
(
1 − F (t)

FC
sgn u̇(t)

)
u̇(t),

(6)

where F is the friction force, u is the relative displacement

between the two surfaces in contact, FC > 0 is the Coulomb

friction force, γ ≥ 0 is a parameter that determines the force-

deflection curve, and σ > 0 is the rest stiffness, that is, the

slope of the force-deflection curve when F = 0.

The Dahl model (6) can be rewritten as

Ḟ (t) = σ
[F+

(
F (t)

) F−
(
F (t)

)] [
u̇+(t)
u̇−(t)

]
, (7)

where

F+

(
F (t)

) �= σ

∣∣∣∣1 − F (t)
Fc

∣∣∣∣
γ

sgn
(
1 − F (t)

Fc

)
, (8)

F−
(
F (t)

) �= σ

∣∣∣∣1 +
F (t)
Fc

∣∣∣∣
γ

sgn
(
1 +

F (t)
Fc

)
, (9)

which is a generalized Duhem model for all γ ≥ 0. Further-

more, since
[
u̇+(t) u̇−(t)

]T
is positively homogeneous,

Proposition 2.1 implies that (7) is rate independent for all

γ ≥ 0.

For the special case γ = 1, (6) becomes

Ḟ (t) = σ

(
1 − F (t)

FC
sgn u̇(t)

)
u̇(t)

=
[− σ

FC
F (t) + σ σ

FC
F (t) + σ

] [
u̇+(t)
u̇−(t)

]
,

which is a rate-independent semilinear Duhem model.

The LuGre model [7], which models the asperities of two

surfaces as elastic bristles, is given by

ẋ(t) = u̇(t) − |u̇(t)|
r
(
u̇(t)

)x(t), (10)

F (t) = σ0x(t) + σ1ẋ(t) + σ2u̇(t), (11)

where x is the average deflection of the bristles, u is the rel-

ative displacement, F is the friction force, and σ0, σ1, σ2 >
0 are stiffness, damping, and viscous friction coefficients,

respectively. Various choices for the function r(u̇(t)) are

given in [1, p. 83]. In [7] r(u̇(t)) is defined by

r(u̇(t)) =
FC

σ0
+

FS − FC

σ0
e−(u̇(t)/vS)2 , (12)

where FC > 0 is the Coulomb friction force, FS is the

stiction (sticking friction) force, and vS is the Stribeck

velocity, which is the velocity at which the steady state

friction force starts decreasing.

The Dahl model is basically Coulomb friction with a lag in

the change of the friction force when the direction of motion

u

x
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m
1 Δ

1

k
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x
i

x
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m
i

m
N

Δ
i

Δ
N

k
i

k
N

Fig. 1. The Maxwell slip model with N masses and N springs. Each mass
is associated with a displacement deadband Δi, below which the mass does
not move, and above which the mass moves with the same velocity as the
common termination point.

reverses. The Lugre model combines the friction lag of the

Dahl model with the Stribeck effect, in which the friction

force decreases at low magnitudes of velocity [4]. The state

equations (10) and (11) can be rewritten as

ẋ(t) =
[
1 x(t)

] ⎡
⎣ u̇(t)

−
∣∣u̇(t)

∣∣
r
(
u̇(t)

)
⎤
⎦ , (13)

y(t) = σ0x(t) + σ1ẋ(t) + σ2u̇(t), (14)

which is a generalized Duhem model of the form (1). Since

r given in (12) is not positively homogeneous, the LuGre

model is not necessarily rate independent.

The Maxwell-slip model [8]–[10] as shown in Figure 1, has

N masses mi with displacement xi connected by a stiffness

ki to a common termination point whose displacement is u.

Associated with each mass is a displacement deadband of

width Δi ∈ R, below which the mass does not move, and

above which the mass moves with velocity u̇, that is, the

inertia of the masses is ignored when the mass is sliding.

We can write this system as the Duhem model

ẋi(t)=
[M(

xi(t),u(t),Δ
)

1−N (
xi(t),u(t),Δ

)][u̇+(t)
u̇−(t)

]
(15)

F (t) =
∑N

i=1 ki

( − xi(t) + u(t)
)
, (16)

for i = 1, . . . , N , where F is the friction force, Δ �
[Δ1 · · ·ΔN ],

M(
xi,u,Δ

) �= U
( − xi + u − Δi

)
, (17)

N (
xi,u,Δ

) �= U
( − xi + u + Δi

)
, (18)

and, U(v) �=

{
1, v ≥ 0,

0, v < 0.
(19)

The Maxwell-slip model (15), (16) is a generalized Duhem

model of the form (1), (2). Note that
[
u̇+(t) u̇−(t)

]T
is

positively homogeneous, and thus Proposition 2.1 implies

that (15), (16) is rate independent.
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TABLE I

CLASSIFICATION AND PROPERTIES OF FRICTION MODELS. ALL OF

THESE FRICTION MODELS ARE DUHEM MODELS, WHICH SUGGESTS A

DIRECT CONNECTION BETWEEN FRICTION AND HYSTERESIS.

Friction Model Duhem Rate Continuity
type dependence

Dahl 0 ≤ γ < 1 generalized rate independent continuous, but
not Lipschitz

γ = 1 semilinear rate independent Lipschitz
γ > 1 generalized rate independent Lipschitz

LuGre generalized rate dependent Lipschitz
Maxwell-slip generalized rate independent discontinuous

Fig. 2. Mass-spring system with friction force F and external force Fe.

III. BEHAVIOR OF A MASS-SPRING SYSTEM UNDER

FRICTION

In order to study hysteresis caused by friction, we now

consider the case in which one end of the spring is fixed and

a force is exerted on the mass as shown in Figure 2. The

system dynamics can be written as

ẍ(t) +
ks

m
x(t) =

1
m

Fe(t) − 1
m

F (x(t), ẋ(t)), (20)

where x(t) is the displacement of the mass, ks is the spring

constant, m is the mass, Fe(t) is the external force exerted on

the mass, and F (x(t), ẋ(t)) is the friction force acting on the

mass. The external force was chosen to be Fe(t) = sin(0.1t)
N.

The velocity ẋ(t) of the mass and the hysteresis map

between external force F and displacement x(t), generated

with the Dahl, LuGre and the Maxwell-slip models are shown

in Figures 7, 8, and 9, respectively.

All the three friction models exhibit hysteresis when

incorporated into a mass-spring system as shown in Figures

7(b), 8(b), and 9(b).

IV. EXPERIMENTAL SETUP

We now describe an experimental setup for studying the

effects of gearbox friction on the dynamics of a dc motor.

The experimental setup is shown in Figure 6. A schematic

of the setup is shown in Figure 7. Two cables are wound

around the motor shaft and connected to load cells L1 and

L2 that measure the force exerted by the springs k1 and k2.

The dynamics of the shaft are given by,

Iθ̈ = Tm − Tf + F2r − F1r, (21)
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Fig. 3. (a) Velocity ẋ(t) of the mass and (b) the hysteresis map between the
external force Fe(t) and the displacement x(t) of the mass for the mass-
spring system (20), with the Dahl model, where FC = 0.75 N, γ = 1,
σ = 7.5 N/m, ks = 2 N/m, m = 1 kg, and Fe(t) = sin(0.1t) m.
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Fig. 4. (a) Velocity ẋ(t) of the mass and (b) the hysteresis map between
the external force Fe(t) and the displacement x(t) of the mass for the
mass-spring system (20), with the LuGre model (10), (11), where FC = 1
N, FS = 1.5 N, vS = 0.001 m/s, σ0 = 105 N/m, σ1 =

√
105 N-s/m,

σ2 = 0.4 N-s/m, ks = 2 N/m, m = 1 kg, and Fe(t) = sin(0.1t) m/s.
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Fig. 5. (a) Velocity ẋ(t) of the mass and (b) the hysteresis map
between the external force Fe(t) and the displacement x(t) of the mass
for the mass-spring system (20), with the Maxwell-slip model, where
N=10, Δ=[1.5, 2.4, 3.3, 4.2, 5.1, 6, 6.9, 7.8, 8.7, 9.6] × 10−3 m, k=
[1, 1.8, 2.6, 3.4, 4.2, 5, 5.8, 6.6, 7.4, 8.2] N/m, m = 1 kg, ks = 2 N/m,
and Fe(t) = sin(0.1t) m/s.

where θ is the angle of rotation of the shaft, I is the shaft

moment of inertia, Tm is the torque exerted by the motor,

Tf is the torque due to friction, r is the radius of the shaft,

and F1 and F2 are the forces exerted on the shaft by the

springs. The cables are wound such that, when the shaft

rotates counterclockwise, F1 increases and F2 decreases. The

springs are pre-stressed so that neither spring slacks while
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Fig. 6. Experimental setup for studying the effects of gearbox friction on
the dynamics of a dc motor.
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Fig. 7. Schematic of the experimental setup.

the shaft rotates in either direction. Let f1 and f2 be the

initial force values and δ1 and δ2 be the deflections in the

two springs, then

F1 = f1 + k1δ1, F2 = f2 + k2δ2,

and

δ1 = rθ, δ2 = −rθ.

Hence,

Iθ̈ = Tm − Tf − (f1 − f2)r − (k1 + k2)r2θ. (22)

The motor torque Tm is assumed to be proportional to the

motor current, that is,

Tm = kmim, (23)

where km is the proportionality constant and im is the motor

current. Hence, (22) becomes

θ̈(t) +

(
k1 + k2

)
r2

I
θ(t) =

km

I
im(t) − 1

I
Tf − (f1 − f2)r

I
.

(24)

Note that the dynamics in (24) are same as the dynamics of

the mass-spring system (20), if ks

m = (k1+k2)r
2

I , Fe

m = km

I im,
F
m = 1

I Tf , and if symmetry is assumed, that is, if f1 =
f2. The setup is connected to a digital computer through a

dSpace 1103 system, which has 1 encoder, 5 A/D channels,

and 5 D/A channels. Readings from the two load cells are

amplified using an Endevco Voltage Amplifier Model 136.

The load cells can take a maximum load of 75 Kg and have

a sensitivity of 0.26 mV/Kg. The amplifier gain can be set

anywhere between 0 and 1000, and the amplified signals are

sampled by the dSpace system. The dc motor has a built-in

tachometer that measures the angular rate of the motor shaft.

The angular rate signal is read through an A/D channel. A

Heidenhain encoder measures the angular deflection of the

motor shaft. Current is supplied to the dc motor through a

Quanser linear current amplifier LCAM. The required current

profile is commanded to the current amplifier through one

of the D/A channels. The amplifier provides a voltage signal

proportional to the current supplied to the dc motor. This

voltage is read through one of the A/D channels.

V. SIMULATION RESULTS

In this section we simulate the dc motor dynamics given

by (24). The friction torque Tf is modeled using the Dahl,

LuGre, and Maxwell-slip models. The parameter values are

k1 = k2 = 10 N/m, f1 = f2 = 0.01 N, r = 1 inch,

and km = 20 N-m/A. Symmetry is assumed for simplicity.

Assuming that the motor shaft is cylindrical and has a mass

of m = 2 kg, its moment of inertia can be evaluated as

I = mr2/2 = 4 × 10−4 kg-m2.

Firstly, for the Dahl friction model, with a motor current

of im(t) = 0.1 sin(0.1t) A, the angular deflection θ and the

angular velocity θ̇ of the shaft are shown in Figure 12. The

hysteresis map between the motor torque and the angular

deflection is shown in Figure 13.
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Fig. 8. (a) Angular deflection θ and (b) angular velocity θ̇ of the motor
shaft with the Dahl friction model, where FC = 0.75 N-m, γ = 1, σ = 7.5
N-m/deg, and im(t) = 0.1 sin(0.1t) A.
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Fig. 9. Hysteresis map between the motor torque Tm and the angular
deflection θ with the Dahl friction model, where FC = 0.75 N-m, γ = 1,
σ = 7.5 N-m/deg, and im(t) = 0.1 sin(0.1t) A.

For the LuGre and Maxwell-slip models, with a motor

current of im(t) = 0.1 sin(0.1t) A, the angular deflection θ
and the angular velocity θ̇ of the shaft are shown in Figures

14 and 16, respectively. The corresponding hysteresis maps

between the motor torque and the angular deflection are

shown in Figures 15 and 17.
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Fig. 10. (a) Angular deflection θ and (b) angular velocity θ̇ of the motor
shaft with the LuGre friction model, where FC = 1 N-m, FS = 1.5 N-m,
vS = 0.001 deg/s, σ0 = 105 N-m/deg, σ1 =

√
105 N-m-s/deg, σ2 = 0.4

N-m-s/deg, and im(t) = 0.1 sin(0.1t) A.

VI. EXPERIMENTAL RESULTS

In this section we present and analyze the results

obtained from the experimental setup described in Section

4. The current profile commanded to the current amplifier is

0.05 sin(0.2πt) A. The load cell readings, the actual current

supplied by the amplifier to the dc motor, the angular velocity

reading from the tachometer, and the angular deflection

reading from Heidenhain encoder are shown in Figure 18.

There is a bias in the current profile because of asymmetry in

the setup, specifically the spring forces are not initially equal.

Once the current supply is switched on, the motor shaft

reaches an equilibrium position in which both the springs

are equally stressed and then oscillates about that position.

This behavior can be seen clearly in the load cell readings.

The motor shaft rotates to one side until the motor torque

is more than the torque exerted by the springs and the

grearbox friction, after which it stops rotating and stays mo-

tionless until the motor torque changes direction. This kind of
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Fig. 11. Hysteresis map between the motor torque Tm and the angular
deflection θ with the LuGre friction model, where FC = 1 N-m, FS = 1.5
N-m, vS = 0.001 deg/s, σ0 = 105 N-m/deg, σ1 =

√
105 N-m-s/deg,

σ2 = 0.4 N-m-s/deg, and im(t) = 0.1 sin(0.1t) A.
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Fig. 12. (a) Angular deflection θ and (b) angular velocity θ̇
of the motor shaft with the Maxwell-slip friction model, where
N = 10, Δ = [1.5, 2.4, 3.3, 4.2, 5.1, 6, 6.9, 7.8, 8.7, 9.6] × 10−3 deg,
k = [1, 1.8, 2.6, 3.4, 4.2, 5, 5.8, 6.6, 7.4, 8.2] N-m/deg, and im =
0.1 sin(0.1t) A.

motion is the reason for the occurrence of time intervals with

zero shaft angular velocity as shown in the Figure 18. This

behavior is consistent with what was observed in the simu-

lations of the experimental setup as shown in Figures 12(b),

14(b), and 16(b). The angular velocity plot obtained from

the experiment shown in Figure 18 matches best with the

angular velocity plot obtained from the simulations using the

LuGre friction model shown in Figure 14(b). Plot between

the motor torque and the angular displacement exhibiting

hysteresis in the experiment is shown in Figure 19. After

initial transients, the plot settles down to a closed hysteresis

loop. This hysteresis plot matches well with the one obtained

from simulations using the LuGre friction model shown in

Figure 15.

VII. CONCLUSION

In this paper we recast the Dahl, LuGre, and Maxwell-

slip models as extended, generalized, or semilinear Duhem

models. We classified each model as either rate independent

or rate dependent. Smoothness properties of the three friction

models were also considered.

We then studied the hysteresis induced by friction in

single-degree-of-freedom systems. For each friction model,

we computed the corresponding hysteresis map. Next we
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Fig. 13. Hysteresis map between the motor torque Tm and the
angular deflection θ with the Maxwell-slip friction model, where
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0.1 sin(0.1t) A.
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Fig. 14. Clockwise from top left, load cell readings, current supplied by
the amplifier, the angular deflection, and the angular velocity readings for
the dc motor experiment. Note that the angular velocity plot is similar to
the plot in Figure 14(b).
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Fig. 15. Hysteresis map between the motor torque and the angular
deflection for the dc motor experiment. Note that the hysteresis map is
similar to the one in Figure 15.

developed a dc servo motor testbed and performed simple

motion experiments on it. We then modeled the testbed

dynamics and simulated them. By comparing the simulated

and experimental results, it was found that the LuGre friction

model provides the best model of the gearbox friction

characteristics. The reason could be that the LuGre model

exhibits the Stribeck effect where as the other two friction

models do not.
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