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On the Mahalanobis Distance Classification

Criterion for Multidimensional Normal Distributions
Guillermo Gallego, Carlos Cuevas, Raúl Mohedano, and Narciso Garcı́a

Abstract—Many existing engineering works model the sta-
tistical characteristics of the entities under study as normal
distributions. These models are eventually used for decision
making, requiring in practice the definition of the classification
region corresponding to the desired confidence level. Surprisingly
enough, however, a great amount of computer vision works
using multidimensional normal models leave unspecified or fail
to establish correct confidence regions due to misconceptions on
the features of Gaussian functions or to wrong analogies with the
unidimensional case. The resulting regions incur in deviations
that can be unacceptable in high-dimensional models.

Here we provide a comprehensive derivation of the optimal
confidence regions for multivariate normal distributions of arbi-
trary dimensionality. To this end, firstly we derive the condition
for region optimality of general continuous multidimensional
distributions, and then we apply it to the widespread case of
the normal probability density function. The obtained results
are used to analyze the confidence error incurred by previous
works related to vision research, showing that deviations caused
by wrong regions may turn into unacceptable as dimensionality
increases. To support the theoretical analysis, a quantitative
example in the context of moving object detection by means
of background modeling is given.

Index Terms—multidimensional signal processing, uncertainty,
classification algorithms, Gaussian distribution, Chi-squared dis-
tribution, Mahalanobis distance.

I. INTRODUCTION

IN recent years, countless scientific and engineering works

in several areas proposing strategies based on probabilistic

analyses [1] have been developed. Many of these works [2]

use multivariate normal distributions, or mixtures of them [3],

due to the satisfactory continuity, differentiability and locality

properties of the Gaussian function [4].

Often, the algorithms proposed in these works require

the computation of cumulative probabilities of the normal

distributions for different purposes such as, for example, dis-

regarding the data that does not contribute significantly to the

distributions [5] or evaluating how well a normal distribution

represents a data set [6].

The computation of these cumulative probabilities on multi-

variate normal distributions is not trivial due to misconceptions

on their features or to wrong analogies with the unidimensional

case. Thus, several authors establish erroneous criteria to com-

pute such probabilities, which, in high-dimensional models,
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can produce unacceptable results. On the one hand, some

authors [7][8][9] erroneously consider that the cumulative

probability of a generic n-dimensional normal distribution

can be computed as the integral of its probability density

over a hyper-rectangle (Cartesian product of intervals). On

the other hand, in different areas such as, for example, face

recognition [10] or object tracking in video data [11], the

cumulative probabilities are computed as the integral over

(hyper-)ellipsoids with inadequate radius.

Among the multiple engineering areas where the aforemen-

tioned errors are found, moving object detection using Gaus-

sian Mixture Models (GMMs) [12] must be highlighted. In this

field, most strategies proposed during the last years take as a

starting point the work by Stauffer and Grimson [13], which

is a seminal work with more than one thousand citations.

Their algorithm states that a sample is correctly modeled by

a Gaussian distribution if it is within 2.5 standard deviations

from the mean of the distribution. However, the authors leave

unspecified two key details: i) the way the distance from a

sample to the mean is measured and ii) the relation of the 2.5

threshold with respect to both a target confidence value and

the dimension of the GMM model.

In spite of the omitted details, a very significant amount

of recent scientific works rely on [13] to set their classifi-

cation criterion. Some of these works [14][15][16] establish

hyper-rectangular decision regions by imposing the condition

established by [13] separately on each channel (dimension).

Other approaches [17][18][19] use the Mahalanobis distance

to the mean of the multidimensional Gaussian distribution to

measure the goodness of fit between the samples and the

statistical model, resulting in ellipsoidal confidence regions.

Finally, a third group of treatises [20][21][22][23][24] mimic

the description in [13] and therefore do not disambiguate

the shape of the decision region. Similarly to [13], most of

these works set the classification threshold to 2.5 regardless

of the dimensionality of the Gaussian model and the shape

of the confidence region considered. However, the use of a

fixed threshold causes larger deviations of the confidence level

with respect to the one-dimensional case as the dimensionality

increases, which may produce unacceptable results.

Here, to prevent the propagation of these errors into future

works, we present a novel and helpful analysis to determine,

given a target cumulated probability, the correct confidence

region for a multivariate normal model of arbitrary dimension-

ality and general covariance matrix. In Section II-A we discuss

the unidimensional case, while in Sections II-B and II-C

we extend this discussion to multiple dimensions. Firstly, in

Section II-B, we prove that, for a broad class of distributions,
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the optimal region accumulating a target confidence level

is within an equidensity contour of the probability density

function (PDF). Secondly, in Section II-C, we illustrate how to

determine the probability accumulated inside an equidensity

contour of a multivariate normal distribution. In Section III

we compare and analyze the proposed classification criteria to

those applied in previous works, showing that the deviations

caused by erroneously selected confidence regions may result

unacceptable as dimensionality increases. Finally, the conclu-

sions of this work are presented in Section IV.

II. ANALYSIS OF A GENERIC MULTIDIMENSIONAL

NORMAL DISTRIBUTION

A. Motivation from the unidimensional normal distribution

The 68-95-99.7 rule states that 68%, 95% and 99.7% of the

values drawn from a normal distribution are within 1, 2 and 3

standard deviations σ > 0 away from the mean µ, respectively.

In general, for non-integer w, the probability contained in the

symmetric interval (region) R := [µ−wσ, µ+wσ] around the

mean is

P

( |x− µ|
σ

≤ w

)

= erf

(

w√
2

)

, (1)

where erf(x) = 2√
π

∫ x

0
e−t2dt is the error function. Observe

that, since the PDF fX of a normal distribution is symmetric

about its mean µ and R has been chosen symmetric about µ,

R is equivalently characterized by the value of the PDF at the

endpoints according to

R = {x ∈ R such that fX(x) ≥ f0}, (2)

where f0 := fX(µ− wσ) = fX(µ+ wσ).
Equation (1) establishes a one-to-one correspondence be-

tween the region R (characterized by f0) and the probability

contained within it. Hence, given a probability value, it is

possible to find the corresponding region.

Motivated by the previous choice of region R, we consider

the optimality criterion for the determination of confidence

regions. First, we focus on distributions whose PDFs have a

single mode (local maximum), such as the normal distribution

or the beta distribution Beta(α, β) with α > 1, β > 1. Then,

we discuss the case of multimodal distributions.

Consider the context of interval estimates [25, p. 307] of

an unknown parameter θ from noisy observations zi = θ+νi.
To draw a conclusion about the true value of the parameter,

the goal is the determination of the smallest interval [θ1, θ2]
accumulating a given probability (or confidence level) that the

parameter is contained in it, P (θ ∈ [θ1, θ2]) = P0.

Similarly, this notion of smallest size also drives the deter-

mination of optimal decision regions for data classification.

Observe that the above R for a normal distribution satisfies

such optimality condition: it is the smallest interval [a, b]
containing a target confidence level P0. This is easy to prove

since R is the solution of the constrained optimization problem

min
a,b

(b− a) subject to P (x ∈ [a, b]) = P0 (3)

and assuming b > a. Using a Lagrange multiplier λ ∈ R, the

minimizer of (3) is among the extremals of

L(a, b, λ) := (b− a) + λ (P0 − P (x ∈ [a, b])) , (4)
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Fig. 1. Optimal confidence region in one-dimensional PDFs. The optimal
interval R = [a, b] containing a given confidence P0 is compared to a different
interval R′ = [a′, b′] having the same confidence P0. Interval R is smaller
than interval R′, and the value fX(a) = fX(b) fully characterizes R.

where P (x ∈ [a, b]) =
∫ b

a
fX(x) dx. The extremals of (4) are

among the solutions of the system of equations

0 = ∂L/∂λ = P0 − P (x ∈ [a, b]),

0 = ∂L/∂a = −1 + λfX(a),

0 = ∂L/∂b = 1− λfX(b),

which is obtained using Leibniz’s integral rule. Since, in

general λ 6= 0, we conclude from the last two equations

that fX(a) = fX(b), i.e., the endpoints (boundary) of the

optimal R have the same density value. Since R = [a, b]
must contain the regions of maximum density (otherwise its

size would not be minimal), we conclude that it is of the

form (2) with f0 := fX(a). This is illustrated in Fig. 1 for a

non-symmetric unimodal distribution. It compares the optimal

interval R = [a, b] to a different interval R′ = [a′, b′], both

accumulating a given probability P0. Omitting the common

part, R ∩ R′ = [a′, b], it is clear that R is smaller than R′

due to the size of the non-overlapping parts: interval [a, a′) is

smaller than interval (b, b′], since, both accumulating the same

probability, the PDF is higher in [a, a′) than in (b, b′] (high-

lighted PDF segments in bold solid line). Fig. 1 also shows

the optimality condition satisfied by R, i.e., fX(a) = fX(b).
Moreover, such density value completely characterizes the

optimal interval. For any symmetric PDF about its mean µ
(e.g. normal distribution), the previous result implies that the

interval [a, b] is centered at µ, i.e., a = µ−∆ and b = µ+∆,

for ∆ > 0. In contrast, the optimal interval in Fig. 1 is

not symmetric about the mean of the distribution since we

considered an asymmetric PDF.

Let us now consider distributions with one or more modes,

say Beta(α, β) for almost arbitrary α > 0, β > 0. Then,

problem (3) should be restated as the search of the smallest

union of intervals accumulating a target probability. Still, it

would be required that the PDF of the distribution have no

regions of constant value (i.e., flat regions) within its support

so that an optimal region of the form (2) exists for every
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possible value of 0 < P0 < 1. This condition would rule out

distributions such as Beta(α, β) with α = β = 1 (the uniform

[0, 1] distribution).

B. Equidensity contours: extremal volume property

We will extend the previous discussion to multiple di-

mensions. The next result will prove that, for a broad class

of distributions, the optimal region of n-space accumulating

a target confidence level is contained inside an equidensity

contour of the PDF. This is the generalization to multiple

dimensions of the solution to problem (3).

Result 1. The smallest region R ⊆ R
n containing a target

probability 0 < P0 < 1 of a distribution whose PDF fX has

no constant regions within its support is given by the interior

of an equidensity contour of the PDF:

R = {x ∈ R
n such that fX(x) ≥ f0}, (5)

where P0 =
∫

R
fX(x)dx and fX(∂R) = f0 at the boundary

of R.

Proof: Let us solve the constrained optimization problem

min
R⊂Rn

Vol(R) subject to P (R) = P0, (6)

where Vol(R) =
∫

R
dx measures the size of R by means of its

volume, the natural measure in R
n, and P (R) =

∫

R
fX(x)dx.

Using a Lagrange multiplier λ ∈ R, the solution of (6) is

among the extremals of

F := Vol(R) + λ (P0 − P (R))

= λP0 +

∫

R

(1− λfX(x)) dx.

The extremals satisfy a vanishing necessary optimality con-

dition with respect to the variables λ and R. As expected,

∂F/∂λ = 0 yields the constraint, P (R) = P0. To compute

the sensitivity of F with respect to R, assume that R is a region

varying smoothly with respect to a parameter t ∈ (−ǫ, ǫ), ǫ >
0, R(t) ⊂ R

n, such that R(0) = R is the original region.

Then, F also depends on t and, assuming F and dF/dt are

both continuous in an open set containing (−ǫ, ǫ), we may

compute dF/dt using Leibniz’s integral rule

d

dt

∫

R(t)

g(x, t) dx

=

∫

R(t)

∂

∂t
g(x, t) dx+

∫

B(t)

〈

∂x

∂t
(σ), g

(

x(σ), t
)

N(σ)

〉

dσ,

where g(x, t) ∈ R, B(t) := ∂R(t) is the boundary of R(t),
〈x,y〉 is the Euclidean inner product in R

n, N is the out-

ward unit normal to B, σ is a local parametrization of B,

(∂x/∂t)(σ) is the velocity of the boundary, and dσ is the

area element on B.

In our case, g(x, t) := 1 − λfX(x) does not depend on t,
so only the boundary integral (flux) survives in Leibniz’s rule:

dF

dt
=

∫

B(t)

〈

∂x

∂t
(σ), g

(

x(σ), t
)

N(σ)

〉

dσ.

The first order Taylor expansion of F with respect to t is

F ≈ F |t=0 + (dF/dt)|t=0 t. Letting W := ∂x
∂t

∣
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Fig. 2. Graphical illustration of Result 1. A bidimensional PDF is represented
by its equidensity contours corresponding to a monotonically increasing
sequence of density values (pi<pj , ∀i<j). The optimal confidence region
R for a given probability P0 (i.e., the interior of an equidensity contour), is
compared to an arbitrary region R′ accumulating the same probability P0.

velocity field of the boundary B(0), the necessary optimality

condition of F with respect to R is

0 =
dF

dt

∣

∣

∣

∣

t=0

=

∫

B(0)

〈

W(σ), g
(

x(σ), 0
)

N(σ)
〉

dσ.

for every admissible (smooth) W. This implies that 0 =
g
(

x(σ), 0
)

= 1− λfX(x(σ)) ∀σ, and, since λ is a scalar, we

conclude that fX(B) = f0 for some constant f0. If we restrict

our attention to the class of density functions fX that have no

constant regions in its support, the set given by the inverse

image B = f−1
X (f0) will have a zero n-dimensional measure,

a required condition to be a properly defined boundary of

some volume in R
n. Consequently, the boundary of R is

an equidensity contour of fX . Observe that R must contain

the regions of maximum density since otherwise the volume

would not be minimal; therefore we conclude that R is of the

form (5). The previous assumption on the lack of constant fX
regions also implies that an optimal region of the form (5)

exists for every possible value of 0 < P0 < 1.

To show that R in (5) is not only an extremal but also

minimizes the volume while accumulating a probability P0 =
∫

R
fX(x) dx, take any other region R′ of the same size

as R and show that it contains less density mass than R.

Firstly, define new regions by removing the common part,

R1 := R\(R ∩ R′), R2 := R′\(R ∩ R′), that is, R2 = {x ∈
R′ ⊂ R

n such that fX(x) < f0}. Note that V := Vol(R1) =
Vol(R2) because Vol(R) = Vol(R′). Secondly, compare the

density mass within R and R′. Removing the common part,

it is easier to compare R1 and R2,

P1 =

∫

R1

fX(x) dx ≥
∫

R1

f0 dx = f0Vol(R1) = f0V,

P2 =

∫

R2

fX(x) dx <

∫

R2

f0 dx = f0Vol(R2) = f0V.

Therefore, P2 < P1, and consequently, adding common mass

P (R ∩R′) to both sides gives P (R′) < P (R) = P0.
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At the end of Section II-A, we showed a simpler version of

Result 1 and its application to normal distributions. Observe

that, in the unidimensional case (2), the interval R complies

with Result 1. In the n-dimensional case, Result 1 allows

us to state that the optimal confidence region (in the sense

of minimum volume) accumulating a given probability is the

interior of an equidensity contour, and not an hyper-rectangle,

as assumed in many previous works [7][8][14][15] that use

normal distributions, as we will see.

Figure 2 illustrates Result 1 for an arbitrary bidimensional

PDF. In the figure, the optimal region R (of volume, i.e.,

area V ) accumulating a given confidence P0 is depicted: the

interior of an equidensity contour, as stated in Result 1. A

different region R′ (of volume V ′) accumulating the same

confidence is also shown. To compare both regions, we obvi-

ously exclude the common part R ∩ R′. Then, it becomes

visually clear that points in the non-overlapping subregion

R2 = R′\(R ∩ R′) have lower probability density than

points within R1 = R\(R ∩ R′), by the definition of R.

The equidensity contours of the example PDF show this fact.

Because of this and the fact that R and R′ accumulate the

same density mass (and consequently so do R1 and R2), we

conclude that R2 must be bigger than R1. Therefore, V < V ′,
i.e., R is the smallest region for the given level P0.

Result 1 matches an insightful argument: given a region

R′ ⊂ R
n whose boundary does not have a constant density

mass fX(∂R′) 6= f0, it is possible to shrink the region while

holding a constant mass by swapping large portions of small

density for small portions of high density. This deformation

process stops if it is no longer possible to exchange regions,

i.e., if compared regions have equal size and mass within, even

at infinitesimal scale. Hence, the resulting region (R) will have

a constant density at the boundary. Moreover, the minimum

density within the region will be achieved at the boundary.

C. Probability accumulated in an optimal confidence region

of a generic n-dimensional normal distribution

Let us focus on the multivariate normal distribution [26],

and, given that the optimal confidence regions are equidensity

contours (see Result 1), let us compute the probability accu-

mulated inside such regions in a self-contained manner and

show well known connections with the Mahalanobis distance

and the χ2 distribution. The result will be the generalization

of (1), origin of the 68-95-99.7 rule.

Let X ∼ N (µ, Σ) follow an n-dimensional normal distri-

bution with mean µ ∈ R
n and (symmetric, positive definite)

covariance matrix Σ ∈ R
n×n. Let the Mahalanobis distance

between two vectors x,y according to the weighting matrix Σ

be

dMah(x,y) := ‖x− y‖Σ, (7)

with

‖u‖Σ :=
√
u⊤Σ−1u,

then the PDF of X can be written as

fX(x) := (2π)−
n

2 (det(Σ))−
1

2 exp

(

−1

2
‖x− µ‖2

Σ

)

. (8)

In the one-dimensional (1-D) case, the standard score (or

z-score) z = (x − µ)/σ is a dimensionless quantity whose

absolute value measures how far an observation or datum is

from the mean. Similarly, in the multivariate (n-D) case, the

Mahalanobis distance dMah(x,µ) provides such a measure.

The equidensity contours of fX , characterized by constant

dMah(x,µ), are ellipsoids centered at µ whose axes are aligned

with the eigenvectors of Σ [27]. The specific equidensity

contour accumulating a target probability can be found using

the property that the squared Mahalanobis distance follows a

χ2 distribution [26, p.86]. The next result shows an alternative

and self-contained derivation of these statements.

Result 2. For the normal distribution N (µ, Σ), whose PDF

is (8), the probability accumulated in the region

R := {x ∈ R
n such that dMah(x,µ) ≤ d} (9)

is

P (R) := P
(

‖x− µ‖Σ ≤ d
)

=
γ
(

n
2 ,

d2

2

)

Γ
(

n
2

) , (10)

where Γ(p) is the Gamma function and γ(p, x) is the lower

incomplete Gamma function.

Proof: Let us directly evaluate P (R) =
∫

R
fX(x) dx.

Just as in the 1-D case it is possible to relate any normal

random variable N (µ, σ2) to the standard normal N (0, 1) by

a standardization process, so it is in the n-D case. This is

implemented by substituting y = Σ
− 1

2 (x−µ), whose Jacobian

is | det(∂x/∂y)| = det(Σ
1

2 ), in the integral P (R). The matrix

of the change of variables, which satisfies Σ
1

2 (Σ
1

2 )⊤ = Σ,

can be obtained by Cholesky or singular value decompo-

sitions. The geometric interpretation of the standardization

is the concatenation of three operations: a translation of µ

to the origin, a rotation that aligns the normal PDF with

the coordinate axes, and a different scaling in each axis. In

the new coordinate system, R becomes the spherical region

{y such that ‖y‖ ≤ d}, where ‖ · ‖ stands for the Euclidean

norm in R
n. Hence,

∫

R

fX(x)dx

=(2π)−
n

2 (det(Σ))−
1

2

∫

‖y‖≤d

exp

(

−1

2
‖y‖2

)

det(Σ
1

2 ) dy

=(2π)−
n

2

∫

‖y‖≤d

exp

(

−1

2
‖y‖2

)

dy. (11)

Let I be the integral in (11) and observe that its integrand

is rotationally invariant, corresponding to the standard normal

distribution N (0, In×n). Hence, in spherical coordinates, with

r = ‖y‖, we have

I =

∫ d

0

∫

Sn−1(r)

e−r2/2 dAdr,

where Sn−1(r) is the (n − 1)-sphere of radius r, and the

n-dimensional volume element dy := dAdr splits into

the length and area elements. Since the surface area of an
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Fig. 3. Curves representing Eq. (10) for n = {1, 2, . . . , 9, 10, 20, 30}. The
three circular markers illustrate the 68-95-99.7 rule on the curve representing
Eq. (1).

(n− 1)-sphere of radius r is An−1(r) = r(n−1)An−1(1), with

An−1(1) = 2πn/2/Γ(n/2), substituting t = r2/2, we have

I =

∫ d

0

e−r2/2An−1(r) dr

= An−1(1) 2
n

2
−1

∫ d2/2

0

t
n

2
−1e−t dt, (12)

where the last integral is a form of the lower incomplete

Gamma function

γ(p, x) =

∫ x

0

tp−1 e−t dt. (13)

Collecting results (11), (12) and (13) gives formula (10).

The right hand side of (10) coincides with the value of the

cumulative distribution function (CDF) of a (centered) chi-

squared distribution with n degrees of freedom, χ2
n, for a d2

abscissa, i.e., Fχ2
n

(d2). This is due to the fact that, after the

standardization, the sum of the squares of n i.i.d. Gaussians is

a chi-squared distribution with n degrees of freedom. Hence,

as already announced, the squared Mahalanobis distance fol-

lows a χ2
n distribution.

Equation (10) generalizes (1) to the n-dimensional setting. If

n = 1, the Mahalanobis distance reduces to the z-score (‖x−
µ‖Σ = |x−µ|/σ) and, using formulas for special values of the

Gamma functions, (10) reduces to (1) as expected. Moreover,

since γ(p, x) in (13) is a strictly increasing function of x,

(10) also establishes a one-to-one correspondence between the

region R (characterized by d > 0 in (9)) and the probability

it contains, as it is shown in Fig. 3 for different dimensions

n = {1, 2, . . . , 9, 10, 20, 30}. Thus, given a probability value

0 < P0 < 1, the value d > 0 that specifies the equidensity

contour bounding the region R for which P0 = P (R) can

be obtained by inverting (10). Scientific software (such as the

GNU Scientific Library) provides routines to evaluate the well

known Gamma functions in (10).

Some special cases deserve further comments. If n is even,

the χ2
n distribution coincides with the Erlang distribution of

shape parameter n/2 and scale parameter 2, and (10) admits

further simplifications. In case n = 2, a Rayleigh distribution

(of parameter σ = 1) is obtained by taking the square root

of the χ2
2 distribution, i.e., dMah ∼ Rayleigh(1), and a closed

form solution exits for d in terms of P : d =
√

−2 log(1− P ).

III. COMPARISON OF CLASSIFICATION CRITERIA

While the theory behind (10) should be known to re-

searchers and it is properly used in many computer vision

works [28][29][30][31][32], to our surprise, there is a large

amount of works that do not follow such approach. This fact

motivates the following analysis of the different incomplete or

wrong classification criteria found in the literature.

Table I presents a list of some representative works

among those using questionable classification criteria to decide

whether a datum matches a multivariate normal distribution.

The first four treatises listed in the table (before the double

line) explicitly provide an erroneous confidence probability

P , while the rest do not specify such a value (presumably

P ≥ 90%) and therefore use incomplete or inadequate criteria.

Most of the references correspond to the specific area of

moving object detection and take the GMM approach proposed

in [13] as a starting point; this is indicated in the second

column of the table. The third column shows the criteria

used in each work (i.e., the shape of the decision/confidence

regions): testing each dimension independently against a

threshold (hyper-rectangular regions) or testing the Maha-

lanobis distance (7) (ellipsoidal regions). The works that are

ambiguous about the criterion used are marked with a ‘?’

entry. The fourth, fifth and sixth columns contain the following

information extracted from the references: the dimension n
of the normal model, the distance d considered to build the

abovementioned rectangular or ellipsoidal regions, and the

target confidence probability P . Observe that most cited works

have dimension n = 2, 3 or 5 since they correspond to models

that use spatial coordinates and/or the color vector of a pixel

as components to apply a distance criterion. The last two

columns report the actual confidence value (P̄ ) obtained by

us resulting from the parameters of the model (information

in columns 3-5). If the criterion (column 3) is clear, only the

corresponding column (Rect. or Ellip.) is given. Otherwise,

two confidence values are provided depending on both possible

disambiguations of the criterion.

Table I is further explained in section III-C, but let us

discuss now the two deceiving situations reported therein:

i) the case of choosing hyper-rectangular confidence regions

instead of ellipsoidal ones (section III-A), and, ii) the case

of choosing an ellipsoidal confidence region of incorrect size

(section III-B). Both usual situations arise from misguided

generalizations of the familiar unidimensional theory to mul-

tiple dimensions.

A. Case I: Treating each dimension independently

Consider an uncorrelated normal distribution N (µ, Σ) with

diagonal covariance matrix Σ = diag(σ2
1 , . . . , σ

2
n). Let us

compare two classification criteria: a datum x = (xi) ∈ R
n is

classified as a match of the previous distribution if

Criterion 1: dMah(x,µ) ≤ d.
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TABLE I
REFERENCES USING INCOMPLETE OR INADEQUATE CLASSIFICATION CRITERIA.

References Based Criteria n d P (%) P̄ (%)
on [13] Rect. Ellip.

2007 Wang et al. [11] Ellip. 3 2.5 98 90
2009 Li & Prince [10] Ellip. 2 2.5 99 95.6
2009 Nieto et al. [9] Rect. 2 2.5 99 97.5
2012 Pedro et al. [33] X Rect. 3 2.5 95 96.3

2000 Stauffer & Grimson [13] X ? 3 2.5 - 96.3 90
2003 Hayman & Eklundh [14] X Rect. 3 2 - 3 - 86.9 - 99.2
2003 Zang & Klette [20] X ? 3 2.5 - 96.3 90
2004 Zivkovic [17] X Ellip. 3 3 - 97.1
2005 Lee [21] X ? 3 3 - 99.2 97.1
2005 Jin & Mokhtarian [7] Rect. 3 3 - 99.2
2006 Luo et al. [8] Rect. 5 3 - 98.7
2009 Ming et al. [22] X ? 3 2.5 - 96.3 90
2009 Ying et al. [23] X ? 2 2.5 - 97.5 95.6
2011 Camplani & Salgado [19] X Ellip. 3 2.5 - 90
2011 Suhr et al. [15] X Rect. 3 2.5 - 96.3
2012 Mirabi & Javadi [24] X ? 3 2.5 - 96.3 90
2012 Gallego et al. [16] X Rect. 3 2.5 - 96.3
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Fig. 4. Curves representing Eq. (14) for n = {1, 2, . . . , 9, 10, 20, 30}. The
three circular markers illustrate the 68-95-99.7 rule on the curve representing
Eq. (1). Note the different horizontal axis range with respect to Fig. 3.

Criterion 2: The magnitude of the z-score of each coordi-

nate xi of x is smaller than d, i.e., |xi − µi|/σi ≤ d
for i = 1, . . . , n, where µ = (µi) ∈ R

n.

First of all, criterion 2 is meaningless unless the covari-

ance matrix Σ of the normal distribution is diagonal (i.e.,

the equidensity ellipsoids of the PDF are aligned with the

coordinate axes), whereas criterion 1 is meaningful for any

admissible covariance Σ. That is why, to compare both criteria,

a diagonal Σ was chosen. Also observe that criterion 1 tests

a mixture of the coordinates xi against d, whereas criterion 2

does not.

Let us compare the confidence regions generated by both

criteria. For criterion 1,

R1(d) = {x ∈ R
n such that dMah(x,µ) ≤ d}

defines a confidence region with ellipsoidal shape bounded

by an equidensity contour since fX(∂R1(d)) = f0. For crite-

rion 2, if we define the intervals Ii(d) = {y ∈ R such that |y−

µi|/σi ≤ d} for i = 1, . . . , n, then

R2(d) = {(xi) = x ∈ R
n such that xi ∈ Ii(d)}

is the Cartesian product of the intervals Ii(d), i.e, a hyper-

rectangle in R
n, which explains the label ‘Rect.’ in Table I.

By virtue of Result 1, confidence regions R2 are not optimal

for normal distributions with n > 1 because they are not

the interior of equidensity contours. Even without Result 1,

we may justify the superiority of criterion 1 over criterion 2

simply by examining the relationship between both criteria

and the PDF. The value of the normal PDF (8) is a function

of the single parameter dMah. Therefore, any decision that is

not a function of dMah (such as criterion 2) is not taking into

account the joint PDF; it is artificially dissociating the decision

from the probability density, which is definitely not the desired

goal.

Even assuming that criterion 2 is valid, although not optimal

for normal distributions, many works in the literature set

the classification threshold d not taking into account the

dimensionality n of their models. Let us show how to set

such a threshold and quantify the classification difference with

respect to criterion 1 by computing the probabilities associated

with the previous events. For criterion 1, P1 := P (R1(d)) is

given by (10). For criterion 2,

P2 := P (R2(d)) =

n
∏

i=1

P (Ii(d)) =

(

erf

(

d√
2

))n

, (14)

which is illustrated in Fig. 4. Obviously, if n = 1, then

P2(d) = P1(d). Comparing Figs. 3 and 4 for n > 1, observe

that P1(d) < P2(d) because R1(d) ⊂ R2(d). For n > 1 and

a target probability P0 = P1(d1) = P2(d2), we have d2 < d1,

but Result 1 guarantees that Vol(R1(d1)) < Vol(R2(d2)), i.e.,

the volume of the ellipsoid of “radius” d1 is smaller than the

volume of the hyper-rectangle of sides 2d2σi.

Fig. 5 shows the difference P2 − P1 ≥ 0 between clas-

sification criteria. It is stunning that, as the dimension n
increases, the difference can be as large as possible for

some values of d. Typically, based on the z-score for the
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Fig. 5. Case I. Error curves corresponding to difference of probabilities
P2 − P1 for n = {1, 2, . . . , 9, 10, 20, 30}. P1 and P2 are represented in
Figs. 3 and 4, respectively.

unidimensional distribution, researchers select d ∈ [2, 3]. For

a small dimensionality such as n = 3, this yields moderate

errors of 3% − 12%. However, such deviations can become

dramatic as n increases, for example errors of 15%− 45% if

n = 6, 50% − 68% if n = 10, or even larger, 40% − 95% if

n = 20.

B. Case II: Setting the threshold without taking into account

the dimension of the model

We concluded in previous sections that the optimal confi-

dence region for a normal distribution depends on the Maha-

lanobis distance of the datum x from the mean. This section

analyzes methods based on this distance, so the covariance

matrix does not need to be diagonal in the following discus-

sion.

Another common error, more subtle to detect than Case I,

is that of setting an incorrect threshold on the Mahalanobis

distance, typically, without taking into account the dimen-

sion n of the model. Instead, values drawn from the familiar

unidimensional theory (1), e.g., thresholds w ≡ d = {1, 2, 3}
corresponding to the 68-95-99.7 rule, are used. The confidence

regions are still ellipsoids, but their Mahalanobis “radius” is

smaller than it should be for a target probability. The selected

classification regions are over-confident [27]: one might think

that they accumulate enough probability to reach a desired

confidence level when in fact they do not because they are

smaller than required.

Fig. 6 shows the errors caused by such a deceiving choice

of classification threshold. For small dimensionality n, the

errors might be small, hence difficult to detect. However, as

n increases (for more complicated models), the errors can be

arbitrarily large. This is definitely a situation to avoid. For

instance, a threshold d = 2.5 causes an error of ≈ 10% if

the model has n = 3, whereas the error grows up to 40%
if n = 6, and > 95% if n ≥ 10. In addition, in the typical

interval d ∈ [2, 3] and for some values of n, there is a wild

error variation. For example, errors of 3% − 23% if n = 3,

17% − 64% if n = 6, or 50% − 90% if n = 10. Therefore,
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Fig. 6. Case II. Error curves corresponding to difference of probabilities
P (d; 1)−P (d;n) for n = {1, 2, . . . , 9, 10, 20, 30}. P (d;n) is represented
in Fig. 3.

caution is paramount for the selection of the right classification

threshold depending on the dimensionality of the model n,

both to avoid over-confidence (smaller threshold than required)

and under-confidence (larger threshold than required).

C. Discussion of confidence regions used in the literature

The works in Table I admit several classifications.

According to the sixth column, two categories may

be distinguished: works that provide an incorrect confi-

dence level [9][10][11][33], and works that are incom-

plete (marked with ‘-’) because they do not specify such

confidence values. According to the third column, many

works [20][21][22][23][24] are ambiguous about the clas-

sification criterion used. In most cases, this is due to the

ambiguity inherited from [13]. If the ambiguity is resolved,

two interpretations are possible: some treatises [14][16][33]

opt for hyper-rectangular regions, while others [17][19] choose

ellipsoidal ones. In other references it is not possible to infer

the criteria used, and the choice between both criteria causes

confidence variations, e.g., a 6% variation for the n = 3,

d = 2.5 case [13][20][22][24]. The last two columns of Table I

are given taking into account both possible disambiguations.

Within classification scenarios, the confidence level that

determines the decision regions is usually designed based on

a target false detection rate (type I error) of the system, and

it therefore also affects the misdetection rate (type II error).

Specifically, in moving object detection applications through

background modeling ([13] and subsequent works), the two

situations that differ from a nominal confidence design are as

follows. On the one hand, under-confident decision regions

can cause cropped detections and the miss of moving objects

with similar features to those of the background. On the other

hand, over-confident regions improve the detection rate but

they also increase the false alarm rate due to a very restrictive

background classification.

In [13] and related works, the models are described for

arbitrary dimension n, but they are usually exemplified with

n = 3 (color components), and, as we have analyzed, the
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Seq. 1 Seq. 2

n = 3, d = 3 n = 6, d = 3

n = 6, d = 4.48n = 3, d = 3.76

n = 3, d = 3 n = 6, d = 3

n = 3, d = 3.76 n = 6, d = 4.48

Fig. 7. Results obtained from the application of the classical GMM method to detect moving objects in two different outdoor sequences. Color notation:
correct detections (green), misdetections (red), and false detections (black).

TABLE II
MAHALANOBIS DISTANCE d(P ) OF GENERIC n-DIMENSIONAL NORMAL

DISTRIBUTIONS TO OBTAIN TYPICAL CONFIDENCE LEVELS.

Confidence level P

Dimension n ≈ 68% ≈ 95% ≈ 99.7%

1 1 2 3
2 1.52 2.49 3.44
3 1.88 2.83 3.76
4 2.17 3.12 4.03
5 2.43 3.36 4.27
6 2.65 3.58 4.48
7 2.86 3.79 4.67
8 3.05 3.97 4.86
9 3.23 4.15 5.03

10 3.40 4.31 5.19

deviations in confidence values are moderate for such small

dimensionality (cf. the last columns of Table I, P vs P̄ ).

Nevertheless, it is expected that future works consider higher

dimensional models such as [18] (n = 6) and [34] (n = 10),

and, since many of the references listed in Table I set the

decision regions without taking into account n, they might

lead to severe errors if the dimension used is large.

As a final recommendation, Table II summarizes, based

on Fig. 3, the correct Mahalanobis distance thresholds for

general n-dimensional normal distributions (from n = 1 to

n = 10) to obtain the accumulated probabilities considered as

a reference in the one-dimensional case. It can be observed

that the required threshold increases with the dimension for

each fixed probability.

TABLE III
COMPARISON OF DIFFERENT CLASSIFICATION THRESHOLDS FOR

BACKGROUND MODELING: QUANTITATIVE RESULTS

Seq. 1 Seq. 2

n d Recall Precision F -score Recall Precision F -score

3
3 88.37 66.63 75.98 94.55 59.49 73.03

3.76 83.40 75.47 79.24 91.69 66.49 77.08

6
3 95.07 54.31 69.12 98.80 49.49 65.95

4.48 88.25 73.84 80.40 96.05 65.14 77.63

D. Numerical experiments

To evaluate the disadvantages resulting from the use of

inadequate classification criteria in real applications, we have

analyzed their effect on the quality of the results provided

by the popular GMM-based moving object detection strat-

egy [13]. Since the RGB color space is probably the most

commonly used in the literature [19][20][22], initially, this

analysis has been carried out using it (n = 3). Additionally, a

combination of RGB components and their gradients (n = 6)

have been used, as proposed by several authors [34][35] to

improve classification if background and foreground have

similar colors.

All tests performed use ellipsoidal decision regions, but two

different distance thresholds are compared: one borrowed from

the unidimensional case (d = 3, used by many authors and

corresponding to a 99.7% confidence level), and the correct

one taking into account the dimensionality n of the model

(for the same confidence level). The quality of the detections
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provided by the analyzed method is measured by means

of the conventional recall, precision and F -score evaluation

parameters [36].

Figure 7 illustrates some of the results obtained for two

outdoor sequences from the PETS database [37], and Table III

reports the corresponding quality measurements. It can be

observed that the background variations are better captured

using the adequate classification thresholds (d = 3.76 if n = 3
or d = 4.48 if n = 6) than in case of the fixed threshold taken

from the unidimensional case (d = 3, over-confident region):

the amount of false detections is significantly reduced in all

the analyzed cases, and consequently, the overall quality of

the detections (given by the F -score) is clearly improved. This

quality improvement is more noticeable as model dimension-

ality increases.

IV. CONCLUSION

In this work, we have provided a detailed comparative

analysis between the correct confidence regions corresponding

to general multidimensional normal distributions and certain

incomplete and/or erroneous but frequent practices observed

in the literature.

To this end, we have studied general n-dimensional prob-

ability distributions and have proved that, for a broad class

of them, the optimal confidence region accumulating a target

confidence level is the interior of an equidensity contour of the

PDF. For multivariate normal distributions, the Mahalanobis

distance provides the right dimensionless quantity (fully char-

acterizing the equidensity contours of the PDF) for decision

making, i.e., for establishing confidence regions. Hence, deci-

sions based on individual z-scores (one per dimension), which

lead to hyper-rectangular confidence regions, are discouraged.

We have derived the formula that relates the size of an

optimal confidence region (specified by its largest Mahalanobis

distance) and its cumulated probability. Concisely, the squared

Mahalanobis distance follows a Chi-squared distribution with

n degrees of freedom. We used this formula to quantify the

errors harvested by many works in the literature, mostly caused

by a wrong extrapolation of unidimensional results without

taking into account the dimensionality of the model. Using

several plots, we showed that such errors can be significantly

large depending on the dimension n. In particular, we dis-

cussed the deviations in the typical threshold range d ∈ [2, 3].
To prevent errors from propagating to future works, we have

specified the correct threshold values that describe the optimal

confidence regions for some common target confidence levels.

Finally, we have demonstrated the theoretical analysis with a

concrete example in the context of moving object detection.
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F. Nazareno, and M. Stücheli, “Hand gesture recognition for robot hand
teleoperation,” in ABCM Symposium Series in Mechatronics, vol. 5,
2012, pp. 1065–1074.

[34] C. Cuevas and N. Garcı́a, “Tracking-based non-parametric background-
foreground classification in a chromaticity-gradient space,” in IEEE Int.

Conf. Image Processing, 2010, pp. 845–848.
[35] S. Atev, O. Masoud, and N. Papanikolopoulos, “Practical mixtures

of gaussians with brightness monitoring,” in Intelligent Transportation

Systems, 2004. Proceedings. The 7th International IEEE Conference on.
IEEE, 2004, pp. 423–428.

[36] F.-C. Cheng and S.-J. Ruan, “Accurate motion detection using a self-
adaptive background matching framework,” Intelligent Transportation

Systems, IEEE Transactions on, vol. 13, no. 2, pp. 671–679, 2012.
[37] Computational Vision Group, “PETS: Performance Evaluation of Track-

ing and Surveillance,” http://www.cvg.rdg.ac.uk/, University of Reading.

Guillermo Gallego received the Ingeniero de Tele-
comunicación degree (five years engineering pro-
gram) from the Universidad Politécnica de Madrid,
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Politécnica de Madrid (UPM), Madrid, Spain.

Since 1977 he is a faculty member with the
UPM where he is currently a Professor of Signal
Theory and Communications. He leads the Grupo de
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