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TECHNICAL NOTE

On the Marginal Cost Approach in Maintenance'
J. B. G. FRENK,? R. DEKKER,’> AND M. J. KLEUN?*

Communicated by S. Schaible

Abstract. In this paper we investigate the conditions under which the
marginal cost approach of Refs. 1-3 holds. As observed in Ref. 4, the
validity of the marginal cost approach gives rise to a useful framework
of single-component maintenance optimization models, which covers
almost all models used in practice. For the class of unimodal finite-
valued marginal cost functions, we show that these optimization models
are easy to solve.
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1. Introduction

In a series of papers, Berg (Refs. 1-3) introduces the so-called marginal
cost analysis (MCA) method for the study of single-component replacement
models with particular application to block or age replacement structures.
This readily implementable approach is applied to a large collection of mod-
els without adequate introduction of the mathematical setting involved. In
particular, we shall be interested in revealing the conditions which validate
the approach. At the same time, we will show under which conditions on
the so-called marginal cost function this approach can be used to determine
the optimal age replacement policy.
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2. Analysis

In an infinite-horizon single-component replacement model with
stationary replacement policies characterized by a finite positive parameter
T, one can identify for every policy p(T), T>0, a nonnegative increasing
stochastic process {R(¢, p(T)): t=0} with right-continuous sample paths.
For each ¢>0, the random variable R(¢, p(T')) represents the total mainten-
ance costs up to time ¢ if policy p(T) is used. Well-known examples of such
policies are the block and age replacement policies (Ref. 5). In this paper,
we will only consider the class of age replacement policies. Observe that a
completely similar analysis can be given for the class of block replacement
policies. Each age replacement policy p(T') is now completely determined
by the random variables TA X;, iz 1, with TA X,;;=min{T, X,} and X;, i1,
a sequence of nonnegative, independent and identically distributed random
variables. Clearly, the random variable T A X, represents the elapsed time
between the (i — 1)th and ith replacements. If E(Z) denotes the expectation
of the random variable Z, and if the function k: [0, c0) = [0, c0) given by

kK(T)=E(R(T A Xy, p(T)))

is finite-valued, it is well known by the regenerative structure of the family
of age replacement models (Ref. 6) that the infinite-horizon average costs
¢(T) of policy p(T) equal

«(T)=k(T)/KT A X)). 1)
In this paper we always assume that the following conditions hold:

(a) the function k: [0, o) — [0, o) is continuous on (0, c0) and right-
continuous at 0;

(b) the distribution function F of the random variable X, is continuous
on (0,00), has support [0, 0), and satisfies F(0)=0 and
F(o)=1.

By condition (b), it is easy to verify that the denominator in (1) is
positive and continuously differentiable on (0, cv). Moreover, by condition
(a), this yields that the function c: (0, o) — [0, 00) is finite-valued and con-
tinuous. In the MCA approach, it is now assumed by Berg (Refs. 1-3)
without any proof that the existence of the marginal cost function implies
that the numerator in (1) is absolutely continuous and can be represented
by the sum of a constant and an integral involving this marginal cost function
and the tail of the distribution function F. This is based, as can be seen, on a
tacit assumption that the function & is continuous. Since the MCA approach
provides a useful economic interpretation of the replacement-decision timing
and its optimization, it is useful to obtain the precise conditions under which
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it holds. To start with our analysis, we need the following definition (the
terminology is that introduced in Refs. 1-3).

Definition 2.1. Let g: [0, 0c0) = (—o0, o) be a finite-valued function.
The upper right Dini derivative D*g: [0, c0) = [—0c0, 0] at t>0 is given by

(D+g)(t)i=lirr;lsoup(g(t+h)—g(t))/h-
Moreover, the lower right Dini derivative D.g: [0, c0) —[—00, 0] at =0
is given by

(D.g))= li‘;ﬁinf(g(t +h)—g())/h.

Clearly, the upper and lower right Dini derivatives at ¢t >0 always exist,
but may possibly be —co or 0. To analyze the numerator, we observe that,
for every 2> 0, the policy p(T) is the same as the policy p(T+4) if X, < T,
and so

k(T+h)—k(T)

=E((RU(T+R) AX:, p(T+R) = R(TAX, (T (x,213)

=E(R((T+h) AXy, p(T+h))—R(TAXy, p(THI X1 2T)(1 - K(T)).

If we define

m(T) :=lirr:l%up(|E(R((T+ WAX,p(T+h)=R(TAX,, p(THIX, =T))/h,

then it follows that
(DTR)(T)=m(T)(1 - F(T)).

As observed in Ref. 3, the function m: [0, c0) = [— o0, c0] measures at T the
local increase or decrease in costs between the preventive replacement of a
component of age T at time T and the costs of deferring this preventive
replacement an infinitesimal time unit later. Therefore, it is not surprising
that the function m: [0, c0) = [—o0, 0] is given the following name
(Refs. 1-3).

Definition 2.2. The function m: [0, ©0) - [—00, o0] is called the mar-
ginal cost function.

In his papers, Berg in fact assumes that the right-hand derivative defin-
ing the marginal cost function exists, which in particular implies that the
lower and upper Dini derivatives must be equal, and so his approach is less
general. However, since we use upper Dini derivatives, the marginal cost
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function is always defined. We now prove that the function k is absolutely
continuous.

Theorem 2.1. If the function k:[0, ) —[0, 0) is continuous on

(0, oc0) and right-continuous at 0, and if the marginal cost function
m: [0, c0) = [— o0, ] is nonnegative and finite-valued for every =0, then
it follows that

T

k(T)=k(0)+j m(y)(1 = F(y)) dy,

0
for every T>0. Moreover, the above integral represents a Lebesgue integral.
If additionally the function m is continuous almost everywhere with respect
to the Lebesgue measure and bounded on [0, T}, then the above integral
can be interpreted as a Riemann integral.

Proof. Introduce for each neN the function &, : [0, c0) = [0, o) given
by
k() :=nlk(t+1/n)—k(1)).

By our assumptions, k, is a finite-valued continuous function on (0, ),
and therefore is Riemann integrable on [0, T'] for every 0<T<oo. This
yields

T T+1/n 1/n
f kn(y) dy=nf k() dy—nf k(y) dy,
0 T 0
and by the continuity of the function &, we obtain that

T
lim f kn(y) dy=k(T)—k(0). (2

n—c

Since the marginal cost function m is nonnegative, it follows that, for every
t=0,

(DTk)(1)=m(r)(1 ~ F(1)) 20,

and again by the continuity of k and Theorem 1.13(ii) of Ref. 7, the function
k is increasing on (0, o). Hence, for each neN, it follows that &, is nonnega-
tive, and so we can apply the Fatou lemma (Ref. 8) to (2). As a result, we
obtain

T T

k(T)—k(0)= ]iTm j lin} infk,(y)dy. 3)

0

ka(y) dyzf

0

Since the function £ is increasing, it follows by Theorem 2.3.9 of Ref. 8 that
k is differentiable almost everywhere with respect to the Lebesgue measure,
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and hence D k= D. k, except on a set of Lebesgue measure zero. Using
(D*k)(y)zliminf k,(y) = (D+k)(y), forevery y=0,
ntoo

Inequality (3), and Theorem 1.6.5(b) of Ref. 8, this finally implies that

T

T
k(T) —k(0) Zf (D) (y) dy= f m(y)(1=F(y)) dy.
0 0

To verify the reverse inequality, we introduce the function X'
[0, 00) =+ [0, o) given by
T

H (T):=k(0) +f m(y)(1-F(y)) dy.
0

For every >0, we obtain by the calculus rules for Dini derivatives (Ref. 7)
that

(D™ (A = K)) () 2 (DA )(®) + (D+(—k))(2)
=(D"H W)= (D k)(1),
and this yields by Theorem 2.3.10 of Ref. 8 that
(D™ (A —k))(1) =0,

for almost every >0 (with respect to the Lebesgue measure). Moreover,
since & is increasing due to m nonnegative, and hence (D*2¢ )() 20 and
by assumption (D k)(#) < oo for every >0, we obtain that

(D" (A —k))(1) > ~co,

for every t = 0. Since by Theorem 2.3.4 of Ref. 8 the function ¢ is absolutely
continuous and hence continuous, and since by assumption k is continuous,
it follows that " —k is continuous on (0, o0). The assumptions of Lemma
2, p. 370 of Ref. 9, are now satisfied, and so we may conclude that the
function " —k is increasing. This implies that, for every 7>0,

J m(y)(1—F(y)) dy +k(0) —k(T) = (T) — k(T)
0

=>(0)—k(0)
=0,

and this yields the inequality
T

k(T)gk(0)+f m(y)(1—F(y)) dy.

0
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The second part of the above result is an immediate consequence of Theorem
1.7.1 of Ref. 8. a

The condition in Theorem 2.1 that k is continuous on (0, o) and right-
continuous at 0 cannot be omitted. As a counterexample, we mention the
function k: [0, c0) — R given by

1, ift>1,

km:{o, ifo<r<l.

Clearly, for this function
(D*k)(t)=0,  forevery t>0,

and so
!
j (D¥k)(y) dy=0, for every t>0.
(V]

However,
k(t)=1, forevery t>1,
and this yields that

k(t)#k(0)+f (D¥k)(y) dy, ift>1.
0

Moreover, one also needs in Theorem 2.1 the condition that m(¢), or equiva-
lently (D*k)(#), is finite for every t=0. As a counterexample, we mention
the Cantor function k: [0, 1] — R discussed in Section 11.72 of Ref. 9. This
function is continuous, increasing, and satisfies (D*k)(r) =0 for almost every
t=0and (D*k)(#) = o0 on a Lebesgue set of measure zero. Moreover, k(1) =
1 and £(0)=0, and so

i
k(1) #k(0) +J (DTk)(y) dy.
0

It is easy to adapt the above proof whenever the marginal cost function
is finite-valued and uniformly bounded from below on every compact inter-
val. Since in almost all age replacement models the marginal cost function
is nonnegative, we did not prove this result in detail. Clearly, for 7=0 the
expected costs in a degenerate cycle of length zero are given by k(0), and this
value is assumed to be positive. By the above result, the objective function of
any age replacement model belonging to the above family has the following
representation involving the marginal cost function. This representation
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gives an intuitive appealing interpretation of the objective function and is
mentioned in Ref. 10 and Ref. 4 without a proper mathematical justification.

Theorem 2.2. Under the conditions of Theorem 2.1, it follows that,
for every 0<T< o0,

T T
e(T) =(k(0)+f m(y)(1—F(»)) dy)/(j (1-F(y) dy)-
0 0

Proof. This is an easy application of Theorem 2.1 and (1). O

Observe that, for the infinite-horizon discounted cost criterion with
discount factor a >0, under the same conditions on the discounted marginal
cost function m,, a similar result can be derived. In this case, the discounted
cost function ¢, has the representation

T T

ca(T)=(k(0) +J mg ()(1=F(y)) dJ’>/(0’ j exp(—ay)(1 — F(y)) dJ’)-

0 0

The optimal policy 0< T* < oo (if it exists) is a solution of the optimization
problem (P) given by

inf{c(T): 0<T< 0},

with ¢ a continuous function on (0, c0) and ¢(0) = co. Denote now by 2*
the possibly empty and closed set of optimal solutions of (P). To verify that,
under certain conditions, the set 2 * is nonempty, we will first compute the
upper right Dini derivative of the objective function c. Since the denominator
in (1) is positive and continuously differentiable on (0, o), and since the
numerator is a continuous function, we obtain by the calculus rules for
upper Dini derivatives [see formula (2a) of Ref. 7] that, for every 7> 0, the
upper Dini derivative equals

(D*e)(T)=(1~FT)m(T) = o(T)) /(KT A X))).

Observe that this result holds irrespective of whether m(T) is finite or not,
and so we might encounter situations where the above formula holds, but
the function ¢ does not have the representation of Theorem 2.2. Using the
above formula, it is relatively easy to derive sufficient conditions for 2* to
be empty or not. These conditions are known under the additional assump-
tion that the marginal cost function m is continuous on (0, o) ; see Refs. 1,
10, 11.

Lemma 2.1. If ¢(o0):=lim,;,c(?) exists and c(o0) =0, then £* is a
nonempty compact subset of (0, o). Moreover, if c(w0) is finite and
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lim inf, ;o m(#) > c(0), then 2* is also a nonempty compact subset of
(0, 0).

Proof. The first part is trivial to prove. To verify the second part, we
observe that
lim inf m(¢) > c(0)
tT oo

implies the existence of some finite T, such that, for every T> T, it follows
that m(T)>¢(T). This implies that

(D*e)(T) >0, forevery T>T,;

and since ¢ is continuous, we may conclude from Theorem 1.14 of Ref. 7
that c is strictly increasing on (T, <0). By this observation, the desired result
follows. O

We will now introduce a class of marginal cost functions for which it
is easy to compute the optimal age replacement policy.

Definition 2.3. See Ref. 12. A function g: [0, c0) = [—00, o] is called
unimodal with parameter 0 <b < oo if the function g is decreasing on {0, 5]
and increasing on (b, o).

In the sequel, it will be assumed that the marginal cost function m is
finite-valued and unimodal with parameter 0<b<oo. This implies by
Theorem 2.2 that the representation for the function ¢ holds. Moreover, by
Theorem 4.1.2 of Ref. 13, the function m is continuous almost everywhere
with respect to the Lebesgue measure, and so the integral in Theorem 2.1
can be interpreted as a Riemann integral. It is now possible to prove the
following result.

Lemma 2.2. If the optimal solution set 2* is nonempty, and if m is
finite-valued and unimodal with parameter 0 <b < oo, then 2* is contained
in [b, ©).

Proof. Clearly the result follows for b=0. Assume therefore that
0<b< 0. Since m is decreasing on [0, b], it follows that, for every ¢t <b,

m(1) f (1-F(y) dy—f m(y)(1—F(y)) dy ~k(0) <0.
0 [
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This yields by Theorem 2.2 that
m(t) —c(1) <0,
or equivalently,
(D*e)(r)<0,  forevery t<b.
Hence, by the continuity of ¢ and the remark after Theorem 1.14 of Ref. 7,

the function c is strictly decreasing on (0, b), implying that 2* < [b, o).

Under the additional assumption that the marginal cost function m is
continuous, the same result is also shown in Ref. 11. Clearly, by the above
observation, we can restrict our search for an optimal policy to the interval
[b, 0). Finally, we will show under the assumption of unimodality of the
marginal cost function that a simple bisection locates an optimal age replace-
ment policy.

Theorem 2.3. If the optimal solution set 2* is nonempty, and if the
marginal cost function m is finite-valued and unimodal with parameter
0 <b < o0, then it follows that m(T) = ¢(T) if and only if the intersection of
2* and [b, T is nonempty.

Proof. If m(T)=c(T), and if m is unimodal with parameter 0 <b< o0,
it is shown in the proof of Lemma 2.2 that T>5. Since m is increasing on
(b, ©) and T=b, we obtain that, for every 1> T,

' T
J (m(t) —m(y))(1 ~ F(y)) dy + (m() —m(T)) f (1-F(y)) dy20.
T 0
By Theorem 2.2, it follows that, for every ¢ > 7, the following identity holds:
(m(8) — (1)) f (1=F(y)) dy=(m(T)~c(T)) J (1=F(y)) dy
0 [

+ f (m(D)—=m(y))(1 — F(y)) dy

+(m())—m(T)) J (1~ F(y)) dy,
0

and so

m(t) = (1), forevery (> T, if m(T)=c(T).
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This yields
(DTe)(1)=0, foreveryt>T;

and since c is a continuous function, we obtain that ¢ is increasing on (7, ),
implying the desired result. To prove the converse implication, we observe
that a nonempty intersection of the sets 2* and [b, T'] implies the existence
of an optimal solution T* of (P) within the interval [b, T']. This yields

(De)(T*) 20,
or equivalently,
m(T*)=c(T*).

Since m is increasing on (b, ) and T*<T, this implies by the same
arguments as in the first part that m(7)>¢(T), and this shows the reverse
implication. O

By Theorem 2.3, it is clear that one has to compare the values m(t) and
¢(?) in order to determine which part of the positive axis will contain with
certainty an optimal solution. By Theorem 2.3, observe that one has to
assume that the marginal cost function is finite-valued and unimodal, and
so continuity of the function m is not required. This result also covers
unimodal finite-valued cost functions which are almost everywhere continu-
ous. Under the above conditions, it is also not difficult to verify that m(T) =
¢(T) implies that T is an optimal policy, but the reverse implication might
not hold due to the absence of continuity everywhere of the function m.
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