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On the Marginal Distribution of the
Eigenvalues of Wishart Matrices

Alberto Zanella, Member, IEEE, Marco Chiani, Senior Member, IEEE, and Moe Z. Win, Fellow, IEEE

Abstract—Random matrices play a crucial role in the design
and analysis of multiple-input multiple-output (MIMO) systems.
In particular, performance of MIMO systems depends on the
statistical properties of a subclass of random matrices known as
Wishart when the propagation environment is characterized by
Rayleigh or Rician fading. This paper focuses on the stochastic
analysis of this class of matrices and proposes a general method-
ology to evaluate some multiple nested integrals of interest. With
this methodology we obtain a closed-form expression for the joint
probability density function of k consecutive ordered eigenvalues
and, as a special case, the PDF of the �th ordered eigenvalue of
Wishart matrices. The distribution of the largest eigenvalue can
be used to analyze the performance of MIMO maximal ratio
combining systems. The PDF of the smallest eigenvalue can be
used for MIMO antenna selection techniques. Finally, the PDF
the kth largest eigenvalue finds applications in the performance
analysis of MIMO singular value decomposition systems.

Index Terms—Multiple-input multiple-output (MIMO),
Wishart matrices, eigenvalue distribution, marginal distribution

I. INTRODUCTION

THE increasing demand for higher capacity has generated
interest in multiple antenna systems [1], [2] and, more

recently, in multiple-input multiple-output (MIMO) systems
[3]–[10]. Such systems can provide high spectral efficiency
in rich and quasi-static scattering environments for which
the elements of the channel gain matrix H are random vari-
ables1 [3]–[10]. In particular, performance of MIMO systems
depends on the distribution of the eigenvalues of Hermitian
matrices of the form HH†, where the superscript † denotes
conjugation and transposition. In general the distribution of
the eigenvalues is known, or can be expressed in a tractable
form, only for some special cases. Fortunately, in several
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1The matrix H is a NR × NT matrix, where NR and NT indicate the

number of receive and transmit antennas, respectively.

practical situations, the elements of the channel matrix can
be modelled as complex Gaussian random variables; this is
the case, for example, when the propagation environment is
characterized by Rayleigh or Rician fading. Under these con-
ditions, HH† represents a particular case of random matrix,
known as Wishart [11]–[13], whose joint probability density
function (PDF) of the eigenvalues can be written in terms of
hypergeometric functions [14]. The knowledge of the joint
PDF of the eigenvalues of HH† has been used extensively
to analyze the performance of MIMO systems in terms of
capacity [7], [8], [15] and symbol error probability [16].

The ergodic capacity of MIMO systems can be expressed in
terms of the joint PDF of the generic (unordered) eigenvalues
of HH† [7]. Therefore, the knowledge of this PDF for a
given propagation environment enables the evaluation of the
expected value of the MIMO capacity [7], [8]. However,
further analysis of this joint PDF is necessary to investigate the
performance of some MIMO systems. For example, in MIMO
maximal ratio combining (MIMO-MRC), the instantaneous
(with respect to fading) signal-to-noise ratio (SNR) at the
output of the combiner is proportional to the largest eigenvalue
of HH† [17], [18].2 The cumulative density function (CDF) of
this eigenvalue has been known for nearly four decades [19],
[20] and has been recently applied to performance analysis
of MIMO-MRC systems [18]. These examples reveal that
the distribution of the eigenvalues of Wishart matrices has
been investigated in the literature for a few special cases,
specifically for the joint PDF of all the eigenvalues, or for
the PDF of the largest eigenvalue [8], [18]–[20]. Results on
the joint PDF of the eigenvalues for the case of fully correlated
Wishart (with correlation among both rows and columns)
are given in [21]. Although the knowledge of the joint PDF
allows, in principle, the derivation of any marginal distribution,
analysis of Wishart matrices can be challenging.

In the paper, we propose a general methodology to evaluate
some multiple nested integrals with an integrand expressed
as the product of two determinants. Since the expression for
the joint PDF of the eigenvalues of a Wishart matrix can be
written as a product of two determinants, we obtain closed-
form expressions for the joint PDF of k consecutive eigen-
values, as well as for the �th largest eigenvalue in the cases
of uncorrelated (both central and noncentral) and correlated
(central) Wishart matrices.3 These distributions enable the
investigation of MIMO systems in the presence of Rayleigh
(central Wishart) and Rician (noncentral Wishart) fading.

2MIMO-MRC is equivalent to maximum ratio transmission.
3Note that the CDF of the �th largest eigenvalue was also studied in [19],

but the final expression given there still requires the evaluation of an infinite
sum.

0090-6778/09$25.00 c© 2009 IEEE
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TABLE I
CONSTANTS AND MATRICES IN (1) FOR UNCORRELATED CENTRAL, UNCORRELATED NONCENTRAL AND CORRELATED CENTRAL WISHART

K Φ(x) Ψ(x) ξ(x)

uncorrelated central Kuc =
[∏q

i=1(p− i)!
∏q

j=1(q − j)!
]−1

V1(x) V1(x) xp−qe−x

uncorrelated noncentral Kun =
∏q

i=1 e−μi

[(p−q)!]q |V1(μ)| V1(x) F(x,μ) xp−qe−x

correlated central Kcc = Kuc
∏q

i=1(i− 1)! |Σ|−p

|V2(σ)| V1(x) E(x,σ) xp−q

The main contributions of the paper are as follows:

• derivation of the exact expression for the joint PDF of k
consecutive ordered eigenvalues;

• derivation of the PDF of the �th ordered eigenvalue;
• a concise representation for the PDF of the largest and

smallest eigenvalue.

These results, which extend the continuous analog of
Cauchy-Binet formulas [8], can be applied to arbitrary Wishart
matrices (uncorrelated central, correlated central, uncorrelated
noncentral). Note that these results are expressed in closed-
form in the case of central Wishart (both uncorrelated and
correlated) and as an infinite series expansion in the case of
uncorrelated noncentral Wishart. As discussed previously, the
distribution of the largest eigenvalue can be used to analyze
the performance of MIMO-MRC systems [17], [18], [22]–
[25]. The PDF of the smallest eigenvalue can be used for
MIMO antenna selection techniques [26]. Finally, the PDF
the �th largest eigenvalue finds applications in the performance
analysis of MIMO systems with singular value decomposition
(MIMO-SVD) [7], [24].

The paper is organized as follows: in Sec. II we provide a
brief review of the joint PDF of the eigenvalues of a Wishart
matrix and derive the CDF of the extreme eigenvalues. In
Sec. III we obtain theorems that can be used to evaluate
multiple nested integrals. The results of Sec. III are used in
Sec. IV to obtain a concise representation for the joint PDF of
consecutive eigenvalues of Wishart matrices. Some numerical
examples are shown in Sec. V, and conclusions are given in
Sec. VI.

II. PRELIMINARIES

Throughout the paper, vectors and matrices are indicated
by bold, |A| and tr{A} denote the determinant and the trace
of a matrix A, respectively. Let us define the (q × p), with
q ≤ p, complex matrix A, with a common covariance matrix
Σ = E

{
aj a†

j

}
∀j, where aj is the jth column vector of

A. The elements of two columns ai and aj are considered
to be mutually independent. If the elements of A, aij , are
complex valued with real and imaginary part each belonging
to a normal distribution N (0, 1/2) so that E {A} = 0, then
the Hermitian matrix Wq(p,Σ) = AA† is called central
Wishart [27]. When E {A} = M �= 0, the matrix is called
noncentral Wishart. We will denote the cases Σ = I and
Σ �= I as uncorrelated and correlated Wishart, respectively.
It has been known (for more than four decades [14]) that the
joint PDF of the eigenvalues of Wq(p,Σ) can be expressed

in terms of hypergeometric functions of Hermitian matrices.
More recently, a simpler form of this joint PDF was derived
in terms of the product of two determinants [8].

Specifically, the joint PDF of the ordered eigenvalues for
the cases of uncorrelated (both central and noncentral) and
correlated (central) Wishart matrices can be written in the form

fλ(x) = K|Φ(x)| · |Ψ(x)|
q∏

l=1

ξ(xl) (1)

where x = [x1, . . . , xq]T and λ = [λ1, . . . , λq]T is the
vector of the ordered (λ1 ≥ · · · ≥ λq) eigenvalues. The
values of the normalizing constant K , Φ(x), Ψ(x), and ξ(x)
for uncorrelated central, correlated central, and uncorrelated
noncentral are due to [14], [8], and [18], respectively, and
are summarized in Table I. In this Table, V1(x) denotes a
Vandermonde matrix [28, pp. 29] whose (i, j)th element is
xi−1

j ; μ1 > μ2 > · · · > μq are the eigenvalues of M†M
with μ = [μ1, . . . , μq]T , and σ1 > σ2 > · · · > σq are
the eigenvalues of Σ with σ = [σ1, . . . , σq]T . The (i, j)th

elements of the matrices V2(σ), F(x,μ), and E(x,σ) are
−σ1−i

j , 0F1(p−q+1;xiμj), and e−xj/σi , respectively, where
0F1 is the Confluent hypergeometric function. Now, let us
discuss some special cases.

A. Pseudo Wishart matrices

When the correlation is among the elements of the rows
of A instead of the columns, the matrix is usually referred
to non full rank Wishart or pseudo Wishart. In that case, the
distribution of the eigenvalues can still be written in the form
of (1), but now either Φ(x) or Ψ(x) are (p × p) matrices.
For instance, if Φ(x) is a (p×p) matrix (similarly for Ψ(x)),
then the (i, j)th element is given by [9]

{Φ(x)}i,j =
{
φi,j j = 1, . . . p− q
φi(xj) j = p− q + 1, . . . , p. (2)

Although in this paper we focus on the distribution of the
eigenvalues of full rank Wishart matrices, the results of Sec.
III can be easily extended to matrices having the form of (2),
and all the results of this paper can be extended to the pseudo
Wishart case.

B. Covariance matrix Σ with coincident eigenvalues

In the case of correlated central Wishart, the joint PDF of
the eigenvalues takes the form of (1) with K , Φ(x), Ψ(x)
and ξ(x) replaced by Kcc, V1(x), E(x,σ), and xp−q . If
the covariance matrix Σ presents some coincident eigenvalues
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(say σ1 = σ2 = · · · = σ�), we need to calculate the following
limit

lim
σ2···σ�→σ1

|E(x,σ)|
|V2(σ)| (3)

which can be evaluated by means of Lemma 2 of [29], [30].
Note that (3) has an impact only on the constant Kcc and on
E(x,σ). In particular, the (i, j)th element of E(x,σ) becomes

{E(x,σ)}i,j =
{
e−xj/σi i = 1, . . . , q − �

xq−i
j i = q − �+ 1, . . . , q.

(4)

It is straightforward to observe that the (i, j)th element of
E(x,σ) is still in the form of φi(xj), and therefore all the
results of the paper can be applied.

C. Matrix M†M with arbitrary rank

The joint PDF of the eigenvalues of an uncorrelated non-
central Wishart matrix when M†M is allowed arbitrary rank
(say m) is given by [31]

fλ(x) = K
′
un|W(x)| · |G(x)|

q∏
l=1

xp−q
l e−xl (5)

where K
′
un is a normalizing constant, the (i, j)th element of

W(x) is xq−j
i , and the (i, j)th element of G(x) is

{G(x)}i,j =

{
0F1(p−q+1,μjxi)

(p−q)! j = 1, . . . ,m
xq−j

i j = m+ 1, . . . , q.
(6)

It is straightforward to observe that (5) is in the form of (1).
Finally, since K

′
un contains the factor 1/|V1(μ)|, Lemma 2 of

[29], [30] can still be applied to obtain a friendlier expression
for the joint PDF of the eigenvalues in the case of coincident
eigenvalues (for instance when μ1 = μ2 = · · · = μ�).

D. The CDF of the Extreme Eigenvalues

Here, we provide expressions for the CDF’s of the extreme
eigenvalues of a Wishart matrix. The CDF of the smallest
eigenvalue λq in the case of correlated central Wishart can be
derived as follows. We start from (7) shown at the top of the
next page. Now, using Corollary 2 of [8] with ξ(x) = xp−q ,
φi(xj) = e−xj/σi , ψi(xj) = xi−1

j , and ∞ > x1 > x2 >
. . . > xq > u, we get

Fλq (u) = 1 −Kcc

∣∣∣S̃cc(u)
∣∣∣ (8)

whereKcc is given in Table I, and the (i, j)th element of S̃cc(u)
can be derived as

sij(u) =
∫ ∞

u

xp−q+j−1e−x/σidx

= σp−q+j
i Γ

(
p− q + j,

u

σi

)
. (9)

In (9), we have used the following identity∫ ∞

u

xa−1e−x/bdx = ba Γ
(
a,
u

b

)
(10)

which is valid for u > 0, �{a} > 0, and �{b} > 0, with
Γ(k, u) �

∫∞
u xk−1e−xdx [32, pp. 949, 8.350.2].4

4�{x} denotes the real part of x.

In the case of uncorrelated noncentral Wishart (Σ = I and
E {A} �= 0), we can follow similar steps as above to obtain
the following

Fλq (u) = 1 −Kun

∣∣∣S̃un(u)
∣∣∣ (11)

where Kun is given in Table I, and the (i, j)th element of
S̃un(u) can be derived as

sij(u) =
∫ ∞

u

xp−q+i−1e−x
0F1(p− q + 1;xμj)dx

=
∞∑

l=0

(p− q + 1)l μ
l
j

l!
Γ (p− q + l + i, u) (12)

with (b)� defining the Pochhammer symbol [32]. In (12) we
have used the identity [32, eq. (9.19), pp. 1084].

In the case of uncorrelated central Wishart, the CDF of
the smallest and of the largest eigenvalue of Wq(p, I) has
been derived in [20, eq. (5)] and [20, eq. (6)], respectively.
The distribution of the largest eigenvalue in case of correlated
central Wishart (Σ �= I and E {A} = 0) is given in [19, eq.
(34)]. In the case of uncorrelated noncentral Wishart (Σ = I
and E {A} �= 0), the expression for the CDF of the largest
eigenvalue λ1 is given in [18, eqs. (2-4)].

III. SOME USEFUL THEOREMS

In this Section we provide two theorems which represent the
main contribution of the paper. Theorem 1 is used in Sec. IV.A
to obtain the distribution for k extreme eigenvalues. Theorem
2 is used in Sec. IV.B to obtain the distribution for an arbitrary
number of consecutive eigenvalues.

Theorem 1: Consider two (N × N ) matrices Φ(x) and
Ψ(x) with (i, j)th elements φi(xj) and ψi(xj), respectively,
an arbitrary function ξ(x), and two arbitrary real numbers a,
b, with a ≤ b. Defining ϕ(n,m, x) � φn(x)ψm(x) ξ(x), and
M < N , the three identities (13)-(15), shown at the top of the
next page, hold.

Note that the size of the matrices in the right hand side of
(13)-(15) is (N −M)× (N −M ). The sum given in (13)-(15)
is defined as

∑
n,N,M

�
N∑

n1=1

N∑
n2=1,n2 �=n1

· · ·
N∑

nM=1,nM �={n1,...,nM−1}
.

(16)
The function s(n,m) takes values in the set {−1,+1} and
can be evaluated using the following formula

s(n,m) = (−1)
∑M

l=1(inl
+iml) (17)

where inl
and iml

give the position of the elements nl and
ml in the ordered sets A(l−1)

n = {1, · · · , N}\{n1, · · · , nl−1}
and A(l−1)

m = {1, · · · , N} \ {m1, · · · ,ml−1}, respectively.
The (i, j)th element of Ξ(n,m, a, xM ) is

ωij(n,m, a, xM ) =
∫ xM

a

ϕ(ri,n, rj,m, x) dx (18)

and ri,n is the ith element of the ordered set A(M)
n . Note that

ri,n is invariant with respect to a permutation of n; that is,
if ñ contains the same elements of n (although in a different
order) we have ri,n = ri,ñ.
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Fλq (u) = 1 − P{λq > u} = 1 −
∫ ∞

u

∫ ∞

xq

· · ·
∫ ∞

x2

fλ(x)dx1 · · ·dxq−1dxq (7)

= 1 −Kcc

∫ ∞

u

∫ ∞

xq

· · ·
∫ ∞

x2

|E (x,σ)| · |V1(x)|
q∏

j=1

xp−q
j dx1 · · · dxq−1dxq

∫ xM

a

· · ·
∫ xN−2

a

∫ xN−1

a

|Φ(x)| · |Ψ(x)|
N∏

l=1

ξ(xl) dxNdxN−1 · · · dxM+1

=
∑

n,N,M

∑
m,N,M

s(n,m) |Ξ(n,m, a, xM )|
M∏
l=1

ϕ(nl,ml, xl) for b ≥ xM ≥ xM+1 ≥ · · · ≥ xN ≥ a (13)

∫ b

xN−M+1

· · ·
∫ b

x3

∫ b

x2

|Φ(x)| · |Ψ(x)|
N∏

l=1

ξ(xl) dx1dx2 · · · dxN−M

=
∑

n,N,M

∑
m,N,M

s(n,m) |Ξ(n,m, xN−M+1, b)|
N∏

l=N−M+1

ϕ(nl,ml, xl) for b ≥ x1 ≥ · · · ≥ xN−M ≥ xN−M+1

(14)

∫ b

a

· · ·
∫ b

a

∫ b

a

|Φ(x)| · |Ψ(x)|
N∏

l=1

ξ(xl)dxM+1dxM+2 · · ·dxN

= (N −M)!
∑

n,N,M

∑
m,N,M

s(n,m) |Ξ(n,m, a, b)|
M∏
l=1

ϕ(nl,ml, xl) for b ≥ xM+1 ≥ a, · · · , b ≥ xN ≥ a (15)

Proof: The proof of Theorem 1 is given in the Appendix.

Corollary 1: Consider two (N × N) matrices Φ(x) and
Ψ(x) with (i, j)th elements φi(xj) and ψi(xj), respectively,
an arbitrary function ξ(x), and a, b two arbitrary real numbers
with a ≤ b. The following three (N −1)-fold integrals can be
simplified as

∫ x1

a

· · ·
∫ xN−2

a

∫ xN−1

a

|Φ(x)| · |Ψ(x)|
N∏

l=1

ξ(xl) dxNdxN−1 · · · dx2

=
N∑

n=1

N∑
m=1

(−1)n+mϕ(n,m, x1) |Ξ(n,m, a, x1)| (19)

∫ b

xN

· · ·
∫ b

x3

∫ b

x2

|Φ(x)| · |Ψ(x)|
N∏

l=1

ξ(xl) dx1dx2 · · ·dxN−1

=
N∑

n=1

N∑
m=1

(−1)n+mϕ(n,m, xN ) |Ξ(n,m, xN , b)| (20)

and

∫ b

a

· · ·
∫ b

a

∫ b

a

|Φ(x)| · |Ψ(x)|
N∏

l=1

ξ(xl) dx2dx3 · · ·dxN

= (N − 1)!
N∑

n=1

N∑
m=1

(−1)n+mϕ(n,m, x1) |Ξ(n,m, a, b)|
(21)

where the size of the matrices in (19)-(21) are (N−1)×(N−1)
and

rn,m �
{
n if n < m
n+ 1 if n ≥ m.

(22)

Proof: See Theorem 1 with M = 1.

Lemma 1: Let g(x1, . . . , xN ) be a symmetric function in
the variables x1, x2, . . . , xL and let D be a domain of integra-
tion for xM+1, xM+2, . . . , xN , with L < M < N . Then, the
function h(x1, x2, . . . , xL, . . . , xM ) shown in (23) at the top
of the next page is symmetric in the variables x1, x2, . . . , xL.
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h(x1, x2, . . . , xL, . . . , xM ) �
∫ ∫

· · ·
∫
D
g(x1, x2, . . . , xN )dxM+1 dxM+2 · · · dxN (23)

Proof: Since g(·) is a symmetric function, ∀�, k ≤ L, we
can write (23) as

h( . . . , x�, . . . , xk, . . . , xL, . . . , xM )

=
∫

· · ·
∫
D
g(. . . , x�, . . . , xk, . . .)dxM+1 · · · dxN

=
∫

· · ·
∫
D
g(. . . , xk, . . . , x�, . . .)dxM+1 · · · dxN

= h(. . . , xk, . . . , x�, . . . , xL, . . . , xM ). (24)

Thus, the function h(x1, x2, . . . , xL, . . . , xM ) in (23) is sym-
metric in the variables x1, x2, . . . , xL.

Theorem 2: Define the multiple integral (25) as shown at
the top of the next page, where

g(n)(m)(x1, . . . , xM ) � s(n,m) |D(xM )|
M∏
l=1

ϕ(nl,ml, xl)

(26)
and the (i, j)th element of D(xM ) is given by

d
(n)(m)
i,j (xM ) �

∫ xM

a

ϕ(ri,n, rj,m, x) dx (27)

with b ≥ x1 ≥ x2 ≥ · · · ≥ xL ≥ α and L < M . (25) can be
simplified as

J =
1
L!

∑
n,N,M

∑
m,N,M

s(n,m) |D(xM )| (28)

×
M∏

l=L+1

ϕ(nl,ml, xl)
L∏

l=1

∫ b

α

ϕ(nl,ml, x) dx.

Proof: Note that the integrand in (25) is the result of
(13). Since the integrand in (13) is symmetric in the variables
x1, x2, . . . , xN , by Lemma 1 the integrand in (25) is also
symmetric in x1, x2, . . . , xL. Therefore, (25) becomes (29),
shown at the top of the next page, which gives (28).

Theorems 1 and 2 can be applied to matrices in the form of
(2). In this case, the proof of Theorem 1 is essentially the same
except for the use of Lemma 2 of [10] instead of Corollary 2
of [8].

IV. ANALYSIS OF SOME DISTRIBUTIONS OF INTEREST

A. Marginal PDF for the Extreme Eigenvalues

The expressions for the CDF of λ1 and λq seen in Sec. II-D
can be used to obtain the corresponding PDF. Recalling that
these CDF’s are in the form K|A(u)| and that the derivative
of the determinant of a matrix can be written as [28], [33]

d

du
|A(u)| = |A(u)| · tr

{
A−1(u)

d

du
A(u)

}
(30)

one can obtain the expressions for the PDF of λ1 and λq . This
approach has been used for example in [22] to derive the PDF
of λ1 for uncorrelated noncentral Wishart. Unfortunately, the
expression obtained by such approach does not lend itself for
further analysis. To alleviate this problem, in the following
we propose an alternative approach, leading to friendlier

expressions. Specifically, using the theorems in Sec. III, we
derive the PDF of the extreme eigenvalues as well as that of
an unordered eigenvalue of a Wishart matrix.

Let us start with fλ1(x1): it can be obtained by integrating
the joint PDF of λ over λ2, . . . , λq

fλ1(x1) =
∫ x1

0

∫ x2

0

. . .

∫ xq−1

0

fλ(x) dxq . . . dx3dx2. (31)

By substituting (1) in (31) and applying (19) of Corollary 1
with a = 0, we get

fλ1(x1) = K

q∑
n=1

q∑
m=1

(−1)n+mϕ(n, n, x1) |Ξ(n,m, 0, x1))| .
(32)

To derive fλq(xq), we recall that

fλq(xq) =
∫ ∞

xq

. . .

∫ ∞

x3

∫ ∞

x2

fλ(x) dx1dx2 . . . dxq−1 (33)

and applying (20) of Corollary 1 with b→ ∞ we get

fλq(xq) = K

q∑
n=1

q∑
m=1

(−1)n+mϕ(n,m, xq) |Ξ(n,m, xq,∞)| .
(34)

Note that in the case of unordered eigenvalues, the PDF of a
generic eigenvalue λ can be written as

fλ(u) =
∫ ∞

0

∫ ∞

0

. . .

∫ ∞

0

fλ(x)
q!

dxq . . . dx3dx2 (35)

where fλ(x)/q! is the joint PDF of the unordered eigenvalues.
In (35), we have used the property that the normalizing
constant for the case of the ordered eigenvalues is q! times
that of the unordered eigenvalues. Applying (21) of Corollary
1 with a = 0 and b→ ∞, we get

fλ(u)

= (q − 1)!K
q∑

n=1

q∑
m=1

(−1)n+mϕ(n,m, u) |Ξ(n,m, 0,∞)| .
(36)

In general, (32), (34), and (36) are valid when the joint
PDF of the eigenvalues can be written in the form of (1).
These expressions can be specialized for the following cases:

1) Uncorrelated Central Wishart: In the case of uncor-
related central Wishart φi(xj) = ψi(xj) = xi−1

j and
ξ(x) = e−xxp−q . It is straightforward to show that the product

φri,n(x)ψrj,m(x) is equal to xα
(n)(m)
i,j , where

α
(n)(m)
i,j �

⎧⎨
⎩

i+ j − 2 if i < n and j < m
i+ j if i ≥ n and j ≥ m
i+ j − 1 otherwise.

(37)

Using (37) and the identities [32, eqs. 3.381.1 and 3.381.3],
(32), (34), and (36) can be simplified and the PDF’s of λ1,
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J =
∫ b

α

· · ·
∫ b

x3

∫ b

x2

∑
n,N,M

∑
m,N,M

g(n)(m)(x1, . . . , xM ) dx1dx2 · · · dxL (25)

1
L!

∫ b

α

· · ·
∫ b

α

∫ b

α

∑
n,N,M

∑
m,N,M

g(n)(m)(x1, . . . , xM ) dx1dx2 · · ·dxL (29)

=
1
L!

∑
n,N,M

∑
m,N,M

s(n,m) |D(xM )|
M∏

l=L+1

ϕ(nl,ml, xl)
∫ b

α

· · ·
∫ b

α

∫ b

α

L∏
l=1

ϕ(nl,ml, xl) dx1dx2 · · · dxL

λq , and λ can be written in the following concise way

fλ(·)(u) = Kuc

q∑
n=1

q∑
m=1

(−1)n+mun+m−2+p−qe−u
∣∣∣Ω(uc)

(·)
∣∣∣

(38)
where λ(·) ∈ {λ1, λq, λ}, and the (i, j)th element of Ω(uc)

(·) is
given by

ω
(uc)
i,j =

⎧⎪⎪⎨
⎪⎪⎩
γ
(
α

(n)(m)
i,j + p− q + 1, u

)
for λ(·) = λ1

Γ
(
α

(n)(m)
i,j + p− q + 1, u

)
for λ(·) = λq(

α
(n)(m)
i,j + p− q

)
! ζq,1 for λ(·) = λ

(39)
and

ζa,b �
b−1∏
�=0

(a− �)−
1

a−b (40)

with γ(k, u) �
∫ u

0 x
k−1e−xdx denoting the incomplete

Gamma function [32, pp. 949, 8.350.1].
Note that a first expression for the PDF of an unordered

eigenvalues was obtained in [7] in terms of Laguerre polyno-
mials. That expression was then simplified by [34] to avoid
the necessity to compute Laguerre polinomials.

2) Correlated Central Wishart: In the case of correlated
central Wishart, φi(xj) = xi−1

j , ψi(xj) = e−xj/σi and ξ(x) =
xp−q . The PDF’s λ1, λq , and λ can be written as

fλ(·)(u) = Kcc

q∑
n=1

q∑
m=1

(−1)n+mup−q+n−1e−u/σm

∣∣∣Ω(cc)
(·)
∣∣∣

(41)
where the (i, j)th element of Ω(cc)

(·) is given by

ω
(cc)
i,j

=

⎧⎪⎪⎨
⎪⎪⎩
(
σrj,m

)p−q+ri,n
γ
(
p− q + ri,n,

u
σrj,m

)
for λ(·) = λ1(

σrj,m

)p−q+ri,n Γ
(
p− q + ri,n,

u
σrj,m

)
for λ(·) = λq(

σrj,m

)p−q+ri,n (p− q + ri,n − 1)! ζq,1 for λ(·) = λ.
(42)

To give an example, when q = 2, the PDF of λ1 for correlated
central Wishart can be written as a sum of four incomplete
Gamma functions as shown in (43) at the top of the next page.5

This can be used to derive a closed-form expression for the
moment generating function of λ1.

5A similar expression for the uncorrelated central Wishart with q = 2 can
be found in [22, eq. (12)].

To the best of the authors’ knowledge the PDF’s for the
largest and smallest eigenvalues provided here are new. For
the unordered case only, an alternative expression for fλ(u)
has been obtained, using a different approach, in [35].

3) Uncorrelated Noncentral Wishart: In the case of un-
correlated noncentral Wishart, φi(xj) = xi−1

j , Ψi(xj) =
0F1(p − q + 1;xjμi) and ξ(x) = xp−qe−x. The PDF’s of
λ1, λq , and λ can be written as (44), shown at the top of the
next page, where the (i, j) element of Ω(un)

(·) is given by

ω
(un)
i,j

=

⎧⎨
⎩

I(I)(μrj,m , p− q + 1, p− q + ri,n, u) for λ(·) = λ1

I(II)(μrj,m , p− q + 1, p− q + ri,n, u) for λ(·) = λq

I(III)(μrj,m , p− q + 1, p− q + ri,m) ζq,1 for λ(·) = λ
(45)

with

I(I)(a, b, c, u) �
∞∑
l=0

alγ(c+ l, u)
(b)l l!

(46)

I(II)(a, b, c, u) �
∞∑

l=0

alΓ(c+ l, u)
(b)l l!

(47)

and
I(III)(a, b, c) � (c− 1)!1F1(c, b, a). (48)

In deriving fλ(u) we have used the identity in [32, eq.
(7.522.5), pp. 855].6

B. Joint PDF of an Arbitrary Number of Consecutive Eigen-
values

To evaluate the joint PDF of k consecutive eigenvalues (i.e.,
from λ� to λ�+k−1), we can use Theorems 1 and 2 with N =
q, M = �+ k − 1, L = �− 1, α = x�, a = 0, b→ ∞ to get

fλ�···λ�+k−1(x�, . . . , x�+k−1)

=
K

(�− 1)!

∑
n,q,�+k−1

∑
m,q,�+k−1

s(n,m) |D(x�+k−1)|

×
[

�+k−1∏
l=�

ϕ(nl,ml, xl)

]
�−1∏
l=1

∫ ∞

x�

ϕ(nl,ml, x) dx

(49)

where the elements of D(·) are defined in (27).

6The PDF’s of the unordered and the largest eigenvalue for the uncorrelated
noncentral Wishart have also been obtained in [36] and [18], respectively.
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fλ1(u) = Kcc

2∑
n=1

2∑
m=1

(−1)n+m
(
σr1,m

)p−2+r1,n
up−3+ne−u/σmγ

(
p− 2 + r1,n,

u

σr1,m

)
(43)

fλ(·)(u) = Kun

q∑
n=1

q∑
m=1

(−1)n+mup−q+n−1e−u
0F1(p− q + 1;uμm)

∣∣∣Ω(un)
(·)
∣∣∣ (44)

As a special case, we can derive the PDF of the �th

eigenvalue:

fλ�
(x�) =

K

(�− 1)!

∑
n,q,�

∑
m,q,�

s(n,m) |D(x�)|

× ϕ(n�,m�, x�)
�−1∏
l=1

∫ ∞

x�

ϕ(nl,ml, x) dx. (50)

In the case of a Wishart matrix, the distribution of λ� can be
written as

fλ�
(x�) =

K

(�− 1)!

∑
n,q,�

∑
m,q,�

s(n,m) (51)

× detΔ xp−q+n�+ε
� e−�

�−1∏
l=1

η

where K, ε, � and η are given by

K =

⎧⎨
⎩

Kuc for UCW
Kcc for CCW
Kun for UNW

(52)

ε =

⎧⎨
⎩

mk − 2 for UCW
−1 for CCW
−1 for UNW

(53)

� =

⎧⎨
⎩

1 for UCW
1/σmk

for CCW
1 for UNW

(54)

η =

⎧⎪⎨
⎪⎩

Γ(p− q + nl +ml − 1, xk) for UCW

(σml
)p−q+nl Γ

(
p− q + nl,

xk

σml

)
for CCW

I(II)(μml
, p− q + 1, p− q + nl, xk) for UNW

(55)
with UCW, CCW and UNW denoting uncorrelated central
Wishart, correlated central Wishart and uncorrelated noncen-
tral Wishart, respectively. The (i, j)th element of the matrix
Δ is given by

δi,j =

⎧⎪⎨
⎪⎩
γ (p− q + ri,n + rj,m − 1, xk) for UCW(
σrj,m

)p−q+ri,n
γ
(
p− q + ri,n,

xk

σrj,m

)
for CCW

I(I)(μrj,m , p− q + 1, p− q + ri,n, xk) for UNW.
(56)

To give an example, let us consider the uncorrelated non-
central case with q = 3 and k = 2. In this case the matrix
D(xk) in (50) is a scalar and r1,n = 6 − n1 − n2. The PDF
of λ2 becomes (57) as shown at the top of the next page.
Expressions for the CDF of the �th eigenvalue are given in [37,
eq. (4.31)] for the correlated central and in [37, eq. (4.33)] for
the uncorrelated central case. In both cases the expressions
are written in recursive form and do not lead to an easy
derivation of the corresponding PDF apart from numerical

TABLE II
THE ELEMENTS OF THE MATRIX Ω

(·) FOR EACH CASE

λ1

ω(uc)
i,j γ

(
α

(n)(m)
i,j + p− q + 1, u

)
ω(cc)

i,j

(
σrj,m

)p−q+ri,n
γ
(
p− q + ri,n,

u
σrj,m

)
ω(nc)

i,j I(I)(μrj,m , p− q + 1, p− q + ri,n, u)
λq

ω(uc)
i,j Γ

(
α

(n)(m)
i,j + p− q + 1, u

)
ω(cc)

i,j

(
σrj,m

)p−q+ri,n Γ
(
p− q + ri,n,

u
σrj,m

)
ω(nc)

i,j I(II)(μrj,m , p− q + 1, p− q + ri,n, u)
λ

ω(uc)
i,j

(
α

(n)(m)
i,j + p− q

)
! ζq,1

ω(cc)
i,j

(
σrj,m

)p−q+ri,n (p− q + ri,n − 1)! ζq,1

ω(un)
i,j I(III)(μrj,m , p− q + 1, p− q + ri,m) ζq,1

differentiation. Furthermore, the expression [37, eq. (4.31)]
contains an infinite series and is written in terms of zonal
polynomials. An expression for the CDF of the �th eigenvalue
can be found in a recursive form [24, eq. (17)]. Due to the
inherent complexity of the recursive expression, only a first
order expansion of the marginal PDF was obtained in [24, eq.
(22)]. An alternative expression for the joint PDF of a subset
of eigenvalues of a Wishart matrix has been recently given in
[38].

As a special case of (49), we can also obtain simplified ex-
pressions for the joint PDF of k largest or smallest eigenvalues
of a Wishart matrix. For brevity this derivation is omitted here.

All the functions included in this section can be easily
computed by using standard software packages such as Matlab
or Mathematica. For the reader’s convenience, the elements of
Ω(·), Δ and ε, � and η are reported in Tables II and III for
the different cases.

V. NUMERICAL EXAMPLES

In this section we give some numerical examples related
to the PDF of the largest, of the smallest, and of a randomly
chosen eigenvalue of a Wishart matrix. Fig. 1 shows the PDF
of the largest eigenvalue of a correlated central Wishart matrix
with p = q = 5. The (i, j)th element of the correlation
matrix Σ is taken here as ρ|i−j| with ρ ∈ [0, 1) (exponential
correlation case). The figure, where the correlation coefficient
ρ ranges from 0 to 1, clearly shows that the correlation
increases the spread of the random variable around the mean



ZANELLA et al.: ON THE MARGINAL DISTRIBUTION OF THE EIGENVALUES OF WISHART MATRICES 1057

fλ2(x2) = Kuc

∑
n,3,2

∑
m,3,2

s(n,m) γ (p+ 8 − n1 − n2 −m1 −m2, x2)

× xp−5+n2+m2
2 e−x2Γ (p− 4 + n1 +m1, x2) (57)

TABLE III
THE ELEMENTS OF THE MATRIX Δ AND ε, � AND η FOR THE EACH CASE

Uncorrelated Central Correlated Central Uncorrelated Noncentral

δi,j γ (p − q + ri,n + rj,m − 1, xk)
(
σrj,m

)p−q+ri,n γ
(
p − q + ri,n, xk

σrj,m

)
I(I)(μrj,m , p − q + 1, p − q + ri,n, xk)

ε mk − 2 −1 −1
o 1 1/σmk 1

η Γ(p − q + nl + ml − 1, xk) (σml )
p−q+nl Γ

(
p − q + nl,

xk
σml

)
I(II)(μml , p − q + 1, p − q + nl, xk)
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p = q = 5

Fig. 1. Probability density function of λ1 of the correlated central Wishart
matrix, parametrized by ρ.

value. These results have direct application to the performance
analysis of MIMO-MRC systems. In particular, the role played
by correlation on the error probability has been investigated
in [25].

The next three figures show the PDF’s of the eigenvalues
for central uncorrelated (Fig. 2), and central correlated Wishart
(Figs. 3 and 4). These results have direct application to the
analysis of MIMO-SVD systems [7], [24]. Furthermore, the
distribution of the generic unordered eigenvalue has been
extensively used in the past to analyze the MIMO capacity
[7], [35]. Fig. 2 shows the PDF’s of the various eigenvalues of
an uncorrelated central Wishart matrix W3(5, I). We observe
that the distribution of λ3 is concentrated around its mean
(E {λ3} = 1.32), whereas λ1 is quite spread around its mean
(E {λ1} = 9.52). The comparison between their variances
confirms this behavior: V{λ1} = 7.57, V{λ2} = 2.18 and
V{λ3} = 0.53.

Similarly, in Figs. 3 and 4 we consider the correlated central
Wishart with ρ = 0.3 and ρ = 0.9, respectively. Comparing
Figs. 2 and 3 we see, as expected, that the PDF of the
eigenvalues for correlated central Wishart behaves similarly
as that of the uncorrelated case when the correlation is low.

0 2 4 6 8 10 12 14 16 18 20
x

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

f(
x)

q = 3, p = 5

fλ1
(x)

fλ2
(x)

fλ3
(x)

fλ(x)

Fig. 2. Probability density function of λ1, λ2, λ3 and λ (unordered case)
of the uncorrelated central Wishart matrix.

On the contrary, a large value of the correlation coefficient ρ
strongly reduces both the mean (E {λq} = 0.175) and variance
(V{λq} = 9.8 · 10−3) of the smallest eigenvalue.

VI. CONCLUSIONS

In this paper, we first proposed a general methodology
for the evaluation of multiple nested integrals that can be
applied to eigenvalues of Wishart matrices. We then derived
the cumulative density function of the smallest eigenvalue, a
concise representation for the PDF of the extreme eigenvalues,
the joint PDF of k unordered eigenvalues, the joint PDF of
k consecutive ordered eigenvalues, and the PDF of the �th

ordered eigenvalue.
The results, obtained in closed-form for the cases of both

uncorrelated and correlated central, as well as uncorrelated
noncentral Wishart matrices, can be used to investigate the
performance of MIMO systems in the presence of Rayleigh
(both correlated and uncorrelated) as well as uncorrelated
Rician fading.

For brevity, this paper focused on the analysis of full-rank
Wishart matrices. Nonetheless, our results can be applied to
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Fig. 3. Probability density function of λ1, λ2, λ3 and λ (unordered case)
of the correlated central Wishart matrix with ρ = 0.3.
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Fig. 4. Probability density function of λ1, λ2, λ3 and λ (unordered case)
of the correlated central Wishart matrix with ρ = 0.9.

all cases in which the joint probability density function can be
written in the form of (1), in particular this includes non-full
rank (also denoted as singular) Wishart matrices.

APPENDIX: PROOF OF THEOREM 1

Proof: Let A(x) be a (N × N ) complex matrix with
(i, j)th element denoted by ai(xj). It is straightforward to see
that [28, pp. 7]

|A(x)| =
N∑

n=1

(−1)n+kan(xk)|A(n)(k)(x)| ∀ k ∈ {1, . . . , N}
(58)

where A(n)(k)(x) is the (N − 1×N − 1) matrix obtained by
deleting of the nth row and kth column of the matrix A(x).
The previous equation can be easily generalized as shown
in (59) at the top of the next page, where now Â(n)(M)(x)
represents the matrix we obtain from A(x) by deleting the
first M columns and the rows n1, n2, . . . , nM . The function

sgn(n) = sgn(n1, . . . , nM ) gives 1 or −1 according to the
position assumed by the terms anl

(xl) in the corresponding
submatrix and can be derived as sgn(n) = (−1)M+

∑M
l=1 inl ,

where inl
is defined as (17). The (i, j)th element of the

submatrix Â(n)(M)(x) can be written as ari,n (xj+M ) where
ri,n has been defined previously in Sec. III. Below we will
consider the three cases separately.

• Proof of eq. (13): by using (59) and the definition (16),
the left hand side of (13) can be written as shown in
(60). Now, using zj = xj+M with j = 1, . . . , N −M ,
b
(n)
i (zj) � φri,n(zj), c

(m)
i (zj) � ψri,m(zj), the right

hand side of (60) becomes (61) where the (i, j)th ele-
ments of B(n)(z) and C(m)(z) are b(n)

i (zj) and c(m)
i (zj),

respectively. Applying the results of Corollary 2 of [8] to
the N −M multiple nested integrals of (61), we obtain
(13).

• Proof of eq. (14): Recalling that

|A(x)| =
N∑

n1=1

N∑
n2=1,n2 �=n1

· · ·
N∑

nM=1,nM �=n1,...nM �=nM−1

sgn(n)

×
(

N∏
l=N−M+1

anl
(xl)

)
|Ã(n)(M)(x)| (62)

where now Ã(n)(M)(x) is the submatrix we obtain from
A(x) by deleting the last M columns and the rows
n1, n2, . . . , nM , and sgn(n) can be evaluated by means
of the following relation

sgn(n) = (−1)
∑M

l=1 inl
+
∑M

l=1(N−l+1)

= (−1)
∑M

l=1 inl
+ M(2N−M+1)

2 . (63)

The (i, j) element of Ã(n)(M)(x) can be written as
ari,n (xj). Using (62) and (63), the left part of (14)
becomes (64). Again, using Corollary 2 of [8] we thus
prove the second part of Theorem 1.

• Proof of eq. (15): The proof is the same as for the proof
of (13) but here we use Corollary 1 of [8] which is valid
for the domain of integration D = {a ≤ z1 ≤ b, · · · , a ≤
zN−M ≤ b}.
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|A(x)| =
N∑

n1=1

N∑
n2=1,n2 �=n1

· · ·
N∑

nM=1,nM �=n1,...nM �=nM−1

sgn(n)

(
M∏
l=1

anl
(xl)

)
|Â(n)(M)(x)| (59)

∑
n,N,M

∑
m,N,M

(−1)M+
∑M

l=1 inl (−1)M+
∑M

l=1 iml

M∏
l=1

ϕ(nl,ml, xl)

×
∫ xM

a

· · ·
∫ xN−2

a

∫ xN−1
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