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1. Introduction

Let X = {Xi : i = 0, 1, 2, . . .} be a Harris ergodic Markov chain on a general
space X with invariant probability distribution π having support X. Let f be
a Borel function and define f̄n := n−1

∑n
i=1 f(Xi) and Eπf :=

∫
X f(x)π(dx).

When Eπ|f | < ∞ the ergodic theorem guarantees that f̄n → Eπf with prob-
ability 1 as n → ∞. The main goal here is to describe conditions on X and f
under which a central limit theorem (CLT) holds for f̄n; that is,

√
n(f̄n − Eπf)

d→ N(0, σ2
f ) (1)

as n → ∞ where σ2
f := varπ{f(X0)} + 2

∑∞
i=1 covπ{f(X0), f(Xi)} < ∞. Al-

though all of the results presented in this paper hold more generally, the primary
motivation is found in Markov chain Monte Carlo (MCMC) settings where the
existence of a CLT is an extremely important practical problem. Often π is high
dimensional or known only up to a normalizing constant but the value of Eπf
is required. If X can be simulated then f̄n is a natural estimate of Eπf . The
existence of a CLT then allows one to estimate σ2

f in order to decide if f̄n is a

good estimate of Eπf . (Estimation of σ2
f is challenging and requires specialized

techniques that will not be considered further here; see [32] and [21] for an in-
troduction.) Thus the existence of a CLT is crucial to sensible implementation
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of MCMC; see [33] for more on this point of view. The following simple example
illustrates one of the situations common in MCMC settings.

Example 1. Consider a simple hard-shell (also known as hard-core) model. Sup-
pose X = {1, . . . , n1} × {1, . . . , n2} ⊆ Z2. A proper configuration on X consists
of coloring each point either black or white in such a way that no two adja-
cent points are white. Let X denote the set of all proper configurations on X ,
NX(n1, n2) be the total number of proper configurations and π be the uniform
distribution on X so that each proper configuration is equally likely. Suppose our
goal is to calculate the typical number of white points in a proper configuration;
that is, if W (x) is the number of white points in x ∈ X then we want the value
of

EπW =
∑

x∈X

w(x)

NX(n1, n2)
.

If n1 and n2 are even moderately large then we will have to resort to an ap-
proximation to EπW . Consider the following Markov chain on X. Fix p ∈ (0, 1)
and set X0 = x0 where x0 ∈ X is an arbitrary proper configuration. Randomly
choose a point (x, y) ∈ X and independently draw U ∼ Uniform(0, 1). If u ≤ p
and all of the adjacent points are black then color (x, y) white leaving all other
points alone. Otherwise, color (x, y) black and leave all other points alone. Call
the resulting configuration X1. Continuing in this fashion yields a Harris er-
godic Markov chain {X0, X1, X2, . . .} having π as its invariant distribution. It
is now a simple matter to estimate EπW with w̄n. Also, since X is finite (albeit
potentially large) it is well known that X will converge exponentially fast to π
which implies that a CLT holds for w̄n.

Following the publication of Meyn and Tweedie’s influential book [41] the use
of drift and minorization conditions has become a popular method for establish-
ing the existence of a CLT. Indeed without this constructive methodology it is
difficult to envision how one would deal with complicated situations encountered
in MCMC. In turn, this has led much of the recent work on general state space
Markov chains to focus on the implications of drift and minorization. Another
outcome of this approach is that classical results in mixing processes have been
somewhat neglected. For example, two recent reviews of Markov chain theory
and its connection to MCMC ([47], [57]) consider CLTs for Markov chains but
neither contains any substantive discussion of the results from mixing processes.
On the other hand, work on mixing processes rarely discusses their applicability
to the important Markov chain setting outside of the occasional discrete state
space example. For example, in [5] there is a recommended review of CLTs for
mixing processes but no mention of the connections with Markov chains. Also,
Robert gave a brief discussion of the implication of mixing conditions for Markov
chain CLTs in [50] but failed to connect them to the use of drift conditions. Thus
one of the main goals of this article is to consider the connections between drift
and minorization and mixing conditions and their implications for the CLT for
general state space Markov chains.
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2. Markov Chains and Examples

Let P (x, dy) be a Markov transition kernel on a general space (X,B(X)) and
write the associated discrete time Markov chain as X = {Xi : i = 0, 1, 2, . . .}.
For n ∈ N := {1, 2, 3, . . .}, let P n(x, dy) denote the n-step Markov transition
kernel corresponding to P . Then for i ∈ N, x ∈ X and a measurable set A,
Pn(x,A) = Pr (Xn+i ∈ A|Xi = x). Let f : R → R be a Borel function and
define Pf(x) :=

∫
f(y)P (x, dy) and ∆f(x) := Pf(x) − f(x). Always, X will

be assumed to be Harris ergodic, that is, aperiodic, ψ-irreducible and positive
Harris recurrent; for definitions see [41] or [46]. These assumptions are more than
enough to guarantee a strong form of convergence: For every initial probability
measure λ(·) on B(X)

‖Pn(λ, ·)− π(·)‖ → 0 as n→∞ (2)

where Pn(λ,A) :=
∫

X P
n(x,A)λ(dx) and ‖ · ‖ is the total variation norm.

Throughout we will be concerned with the rate of this convergence. Let M(x)
be a nonnegative function and γ(n) be a nonnegative decreasing function on Z+

such that
‖Pn(x, ·)− π(·)‖ ≤M(x)γ(n) . (3)

When X is geometrically ergodic (3) holds with γ(n) = tn for some t < 1. Uni-
form ergodicity means M is bounded and γ(n) = tn for some t < 1. Polynomial
ergodicity of order m where m ≥ 0 corresponds to γ(n) = n−m.

Establishing (3) directly may be difficult when X is a general space. How-
ever, some constructive methods are given in the following brief discussion; the
interested reader should consult [31] and [41] for a more complete introduction
to these methods.

A minorization condition holds on a set C if there exists a probability mea-
sure Q on B(X), a positive integer n0 and an ε > 0 such that

Pn0(x,A) ≥ εQ(A) ∀x ∈ C , A ∈ B(X) . (4)

In this case, C is said to be small. If (4) holds with C = X then X is uniformly
ergodic and, as is well-known,

‖Pn(x, ·) − π(·)‖ ≤ (1− ε)bn/n0c .

Uniformly ergodic Markov chains are rarely encountered in MCMC unless X is
finite or bounded.

Geometric ergodicity may be established via the following drift condition:
Suppose that for a function V : X → [1,∞) there exist constants d > 0, b <∞
such that

∆V (x) ≤ −dV (x) + bI(x ∈ C) x ∈ X (5)

where C is a small set and I is the usual indicator function.
Polynomial ergodicity may be established via a slightly different drift con-

dition: Suppose that for a function V : X → [1,∞) there exist constants d > 0,
b <∞ and 0 ≤ τ < 1 such that

∆V (x) ≤ −d[V (x)]τ + bI(x ∈ C) x ∈ X (6)
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where C is a small set. In [31] it is shown that (6) implies that X is polynomially
ergodic of degree τ/(1− τ). Recently, this drift condition has been generalized
to other subgeometric (slower than geometric) rates of convergence in [16].

Remark 1. Either of the drift conditions (5) or (6) imply that in (3) we can take
M(x) ∝ V (x). Moreover, Theorem 14.3.7 in [41] shows that if (5) holds then
EπV < ∞. Since the stronger property of V -uniform ergodicity is equivalent
to (5) [41, Chapter 16] we conclude that geometrically (and uniformly) ergodic
Markov chains satisfy (3) with EπM < ∞ (Also, see Fact 10 in [57]). On the
other hand, the polynomial drift (6) only seems to imply that EπV

τ <∞ where
τ < 1. Thus, when (6) holds, one way to ensure that EπM <∞ is to show that
EπV <∞.

Beyond establishing a rate of convergence, drift conditions also immediately
imply the existence of a CLT for certain functions.

Theorem 1. Let X be a Harris ergodic Markov chain on X having station-
ary distribution π. Suppose f : X → R and assume that one of the following
conditions hold:

1. The drift condition (5) holds and f2(x) ≤ V (x) for all x ∈ X.

2. The drift condition (6) holds and |f(x)| ≤ V (x)τ+η−1 for all x ∈ X where
1− τ ≤ η ≤ 1 is such that EπV

2η <∞.

Then σ2
f ∈ [0,∞) and if σ2

f > 0 then for any initial distribution

√
n(f̄n − Eπf)

d→ N(0, σ2
f )

as n→∞.

Remark 2. The first part of the theorem is Theorem 17.0.1 in [41] while the
second part is Theorem 4.2 in [31].

Remark 3. The rate of convergence in the CLT when the drift condition (5)
holds has been investigated in [36].

There has been a substantial amount of effort devoted to establishing drift
and minorization conditions in MCMC settings. For example, Gibbs samplers
were examined in [26], [34], [39], [50], [53], [60, 61] and [62]. While Metropolis-
Hastings-Green (MHG) algorithms were considered in [8], [16], [18], [19], [22],
[30], [31], [42], and [40]. Also, slice samplers were analyzed in [43] and [55].

In the next section three simple examples are presented in order to give
the reader a taste of using these results in specific models and to demonstrate
the application of Theorem 1. More substantial examples will be considered in
Section 5.

2.1. Examples

Example 1 continued. Since X is finite it is easy to see that (4) holds with C = X
and hence the Markov chain described in Example 1 is uniformly ergodic. Of
course, if n1 and n2 are reasonably large ε may be too small to be useful.
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Example 2. Suppose X lives on X = Z such that if x ≥ 1 and 0 < θ < 1 then

P (x, x+ 1) = P (−x,−x− 1) = θ , P (x, 0) = P (−x, 0) = 1− θ ,

P (0, 1) = P (0,−1) =
1

2
.

This chain is Harris ergodic and has stationary distribution given by π(0) =
(1− θ)/(2− θ) and for x ≥ 1

π(x) = π(−x) = π(0)
θx−1

2
.

In Appendix A the drift condition (5) is verified with V (x) = a|x| for a > 1
satisfying aθ < 1 and (aθ − 1)a + 1− θ < 0 and C = {0}. Hence a CLT holds
for f̄n if f2(x) ≤ a|x| ∀x ∈ Z.

Example 3. A polynomial rate of convergence is established in both [31] and
[63] for the random walk on [0,∞) determined by

Xn+1 = (Xn +Wn+1)+

where W1,W2, . . . is a sequence of independent and identically distributed real-
valued random variables. As long as E(W1) < 0 this chain will be Harris ergodic.
When E(W+

1 )m < ∞ for some m ≥ 2 the drift condition (6) is established in
[31] with V (x) = (x+1)m, τ = (m−1)/m and C = [0, k] for some k <∞. Hence
a CLT holds for f̄n if |f(x)| ≤ (x+ 1)m(τ+η−1) for all x ≥ 0 where 1− τ ≤ η ≤ 1
is such that Eπ(x + 1)2mη < ∞. Note that this moment condition also implies
that EπV <∞ as long as η ≥ 1/2. Hence by an earlier remark EπM <∞ with
M as in (3).

Two things are clear: (i) drift and minorization provide powerful constructive
tools for establishing a rate of convergence in total variation; and (ii) they are
less impressive (but often useful!) tools for establishing CLTs in that the results
in Theorem 1 depend on the non-unique function V .

3. Mixing Sequences

The goal of this section is to introduce three types of mixing conditions and
discuss some of the connections with the total variation convergence in (2) and
(3). There are a variety of mixing conditions (e.g. absolute regularity) that will
not be considered here since they don’t seem to have much impact on the CLT.
Roughly speaking, mixing conditions are all attempts to quantify the rate at
which events in the distant future become independent of the past.

Let Y := {Yn} denote a general sequence of random variables on a proba-
bility space (Ω,F ,P) and let Fmk = σ(Yk , . . . , Ym).

Definition 1. The sequence Y is said to be strongly mixing (or α–mixing) if
α(n)→ 0 as n→∞ where

α(n) := sup
k≥1

sup
A∈Fk1 ,B∈F∞k+n

|P(A ∩ B)−P(A)P(B)| .
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Harris ergodic Markov chains are strongly mixing. Recall the coupling in-
equality [37, p. 12]:

‖Pn(x, ·)− π(·)‖ ≤ Pr(T > n) (7)

where T is the usual coupling time of two Markov chains; one started in sta-
tionarity and one started arbitrarily. Under our assumptions the coupling time
is almost surely finite and Pr(T > n) → 0 as n → ∞. Let A and B be Borel
sets so that by (7)

|Pn(x,A)− π(A)| ≤ Pr(T > n)

and

Pr(T > n) ≥
∫

B

|Pn(x,A)− π(A)|π(dx)

≥ |
∫

B

[Pn(x,A)− π(A)]π(dx)|

= |Pr(Xn ∈ A and X0 ∈ B)− π(A)π(B)| .

Then α(n) ≤ Pr(T > n) and hence α(n) → 0 as n → ∞. Moreover, the rate
of total variation convergence bounds the rate of α–mixing: If (3) holds with
EπM <∞, a similar argument shows that α(n) ≤ γ(n)EπM and hence α(n) =
O(γ(n)). For example, geometrically ergodic Markov chains enjoy exponentially
fast strong mixing.

Suppose the process Y is strictly stationary and let f : R → R be a Borel
function. Define the process W := {Wn = f(Yn)}. Set Gmk := σ(Wk , . . . ,Wm);
hence Gmk ⊆ Fmk . Let αW and αY be the strong mixing coefficients for the
processes W and Y , respectively. Then αW (n) ≤ αY (n). Similar comments
apply to the mixing conditions given below. This elementary observation is
fundamental to the proofs of the Markov chain CLTs considered in the sequel.

Definition 2. The sequence Y is said to be asymptotically uncorrelated (or ρ–
mixing) if ρ(n)→ 0 as n→∞ where

ρ(n) := sup{corr(U, V ), U ∈ L2(Fk1 ) , V ∈ L2(F∞k+n) k ≥ 1}.

It is standard that ρ-mixing sequences are also strongly mixing and, in fact,
4α(n) ≤ ρ(n). It is a consequence of the strong Markov property that if a Harris
ergodic Markov chain is ρ-mixing then it enjoys exponentially fast ρ-mixing [4,
Theorem 4.2] in the sense that there exists a θ > 0 such that ρ(n) = O(e−θn).

A necessary and sufficient condition for a Markov chain to be ρ–mixing is
developed in [59] but before stating it a slight digression is required. Define
the Hilbert space L2(π) := {f : X → R ; Eπf

2 < ∞} with inner product
(f, g) = Eπ[f(x)g(x)] and norm ‖ · ‖2. Let L2

0(π) := {f ∈ L2(π) ; Eπf = 0}
and note that if f, g ∈ L2

0(π) then (f, g) = covπ(f, g). The kernel P defines an
operator T : L2(π)→ L2(π) via

(Tf)(x) =

∫
P (x, dy)f(y) .
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It is easy to show that T is a contraction (i.e., ‖T‖ ≤ 1). Also, T is self-adjoint
if and only if the kernel P satisfies detailed balance with respect to π:

π(dx)P (x, dy) = π(dy)P (y, dx) ∀x, y ∈ X . (8)

A Harris ergodic Markov chain is ρ–mixing if and only if

lim
n→∞

sup
f∈L2

0
(π)

‖f‖2=1

‖Tnf‖2 = 0 . (9)

There has been some work done on establishing sufficient conditions for Markov
chains to be ρ-mixing. For example, in [38] it is shown that if the operator
induced by a Gibbs sampler satisfies a Hilbert–Schmidt condition then it is ρ-
mixing. However, the most interesting case is given in [54] whose Theorem 2.1
shows that if X is geometrically ergodic and (8) holds then there exists a c < 1
such that ‖Tf‖2 ≤ c2 and ‖Tnf‖2 = ‖Tf‖n2 hence (9) holds. We conclude that if
X is geometrically ergodic and (8) holds then X is asymptotically uncorrelated.

Remark 4. Many Markov chains satisfy (8), indeed the MHG algorithm satisfies
(8) by construction. However, (8) does not hold for those Markov chains associ-
ated with systematic scan Gibbs samplers and the Markov chain in Example 2,
for example.

Definition 3. The sequence Y is said to be uniformly mixing (or φ–mixing) if
φ(n)→ 0 as n→∞ where

φ(n) := sup
k≥1

sup
A∈Fk1 ,P(A)6=0

B∈F∞k+n

|P(B|A)−P(B)| .

Uniformly mixing sequences are also asymptotically uncorrelated and strongly
mixing. Moreover, ρ(n) ≤ 2

√
φ(n). A Harris ergodic Markov chain is uniformly

ergodic if and only if it is uniformly mixing; see pp 367–368 in [28].
As with asymptotically uncorrelated sequences it is a consequence of the

strong Markov property that if a Harris ergodic Markov chain is φ-mixing then
it enjoys exponentially fast φ-mixing [4, Theorem 4.2] in the sense that there
exists a θ > 0 such that φ(n) = O(e−θn).

We collect and concisely state the main conclusions of this section.

Theorem 2. Let X be a Harris ergodic Markov chain with stationary distrib-
ution π.

1. X is strongly mixing, i.e., α(n)→ 0.

2. If (3) holds with EπM <∞ then α(n) = O(γ(n)).

3. If X is geometrically ergodic and (8) holds then X is asymptotically un-
correlated, in which case there exists a θ > 0 such that ρ(n) = O(e−θn).

4. X is uniformly ergodic if and only if X is uniformly mixing, in which case
there exists a θ > 0 such that φ(n) = O(e−θn).
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4. Central Limit Theorems

We begin with a characterization of the CLT for strongly mixing processes.
Define Sn =

∑n
i=1 Yi and σ2

n = ES2
n.

Theorem 3. [9, 14, 45] Let Y be a centered strictly stationary strongly mixing
sequence such that EY 2

0 < ∞. If σ2
n → ∞ as n → ∞ then the following are

equivalent:

1. Sn/σn
d→ N(0, 1).

2. {S2
n/σ

2
n , n ≥ 1} is uniformly integrable.

Remark 5. Since Harris ergodic Markov chains are strongly mixing this result
is applicable in MCMC settings.

Remark 6. The assumption of stationarity is not an issue for Harris ergodic
Markov chains since if a CLT holds for any one initial distribution then it holds
for every initial distribution [41, Proposition 17.1.6].

Theorem 4. [7] Let X be a Harris ergodic Markov chain and f be a function
such that Eπf = 0 and Eπf

2 <∞. Then the following are equivalent:

1.
√
nf̄n

d→ N(0, σ2) for some σ2 ≥ 0.

2. {√nf̄n , n ≥ 1} is bounded in probability.

Remark 7. Another equivalence is given in [7] in terms of quantities based on
the so-called split chain. But this is not germane to the current discussion.

4.1. Sufficient Conditions

Theorem 5. [27, 28] Let Y be a centered strictly stationary strongly mixing
sequence. Suppose at least one of the following conditions:

1. There exists B <∞ such that |Yn| < B a.s. and
∑
n α(n) <∞ ; or

2. E|Yn|2+δ <∞ for some δ > 0 and

∑

n

α(n)δ/(2+δ) <∞ . (10)

Then

σ2 = E(Y 2
0 ) + 2

∞∑

j=1

E(Y0Yj) <∞

and if σ2 > 0, as n→∞,

n−1/2Sn
d→ N(0, σ2) .



G.L. Jones/Markov chain CLT 307

Corollary 1. Let f : X → R be a Borel function such that Eπ|f(x)|2+δ < ∞
for some δ > 0 and suppose X is a Harris ergodic Markov chain with stationary
distribution π. If (3) holds such that EπM <∞ and γ(n) satisfies

∑

n

γ(n)δ/(2+δ) <∞ (11)

then for any initial distribution, as n→∞
√
n(f̄n − Eπf)

d→ N(0, σ2
f ) .

Later, CLTs for φ-mixing and ρ-mixing Markov chains will be presented.
However, the proofs of these results are similar to the proof of Corollary 1.
Hence only the following proof is included.

Proof. Let α(n) and αf (n) denote the strong mixing coefficients for the Markov
chain X = {Xn} and the functional process {f(Xn)}, respectively. By an earlier
remark αf (n) ≤ α(n) for all n ≥ 1. Moreover, we have that α(n) ≤ γ(n)EπM
where γ(n) and M are given in (3). Hence (11) guarantees that

∑

n

αf (n)δ/(2+δ) <∞

and the result follows from the Theorem and Remark 6.

Corollary 1 immediately yields some special cases which have proven to be
useful in MCMC settings.

Corollary 2. Suppose X is a Harris ergodic Markov chain with stationary
distribution π and let f : X→ R be a Borel function. Assume one of the following
conditions:

1. [6] X is geometrically ergodic and Eπ|f(x)|2+δ <∞ for some δ > 0;

2. X is polynomially ergodic of order m, EπM < ∞ and Eπ|f(x)|2+δ < ∞
where mδ > 2 + δ; or

3. X is polynomially ergodic of order m > 1, EπM < ∞ and there exists
B <∞ such that |f(x)| < B π-almost surely.

Then for any initial distribution, as n→∞
√
n(f̄n − Eπf)

d→ N(0, σ2
f ) .

For geometrically ergodic Markov chains the moment condition can not be
weakened to a second moment (i.e., Eπf

2(x) <∞) without additional assump-
tions. See [24] for a construction that establishes the existence of a geometrically
ergodic Markov chain and a function f such that Eπf

2(x) <∞ yet a CLT fails
for any choice of σ2. Also, see [2] for a counterexample with the same conclusion.
These results are not too surprising since there are non-trivial counterexamples
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that indicate that the conditions of Theorem 5 are nearly as good as can be
expected. For example, in [25] there is a construction of a strictly stationary
sequence of uncorrelated random variables, {Yn}, that have an arbitrarily fast
strong mixing rate and 0 < EY 2

1 < ∞ yet the CLT fails. Further counterex-
amples have been given in [12] and [3]. However, a slightly weaker moment
condition is available if the sequence enjoys at least exponentially fast strong
mixing which is the case for geometrically ergodic Markov chains. The following
theorem is a special case of a result in [17].

Theorem 6. [17] Let Y be a centered strictly stationary strongly mixing se-
quence. If the strong mixing coefficients satisfy α(n) = O(an) for some 0 < a < 1
and E[Y 2

0 (log+ |Y0|) <∞ then

σ2 = EY 2
0 + 2

∞∑

k=1

E(Y0Yk)

converges absolutely and if σ2 > 0, as n→∞

n−1/2Sn
d→ N(0, σ2) .

Corollary 3. Suppose X is a Harris ergodic Markov chain with stationary
distribution π and let f : X → R be a Borel function. If X is geometrically
ergodic and Eπ[f2(x)(log+ |f(x)|)] < ∞ then for any initial distribution, as
n→∞ √

n(f̄n − Eπf)
d→ N(0, σ2

f ) .

A weaker moment condition is available for ρ–mixing sequences.

Theorem 7. [29] Let Y be a centered strictly stationary ρ–mixing sequence with
EY 2

0 <∞. Suppose
∞∑

n=1

ρ(n) <∞ . (12)

Then

σ2 = EY 2
0 + 2

∞∑

k=1

E(Y0Yk)

converges absolutely and if σ2 > 0, as n→∞

n−1/2Sn
d→ N(0, σ2) .

Recall that if the Markov chain X is geometrically ergodic and satisfies detailed
balance, it enjoys exponentially fast ρ–mixing and hence (12) obtains.

Corollary 4. [54] Let X be a geometrically ergodic Markov chain with station-
ary distribution π. Suppose X satisfies (8) and that Eπf

2(x) < ∞. Then for
any initial distribution, as n→∞

√
n(f̄n − Eπf)

d→ N(0, σ2
f ) .
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Remark 8. In [54] this result is obtained via Corollary 1.5 in [35]. We have thus
provided an alternative derivation.

An accessible proof of the following result may be found in [1] and [28]. Also
see Chapter 5 of [15] and Lemma 3.3 in [10].

Theorem 8. Let Y be a centered strictly stationary uniformly mixing sequence
with EY 2

0 <∞. If ∑

n

√
φ(n) <∞ (13)

then

σ2 = EY 2
0 + 2

∞∑

k=1

E(Y0Yk)

converges absolutely and if σ2 > 0 then as n→∞

n−1/2Sn
d→ N(0, σ2) .

If X is uniformly ergodic the coefficients φ(n) decrease exponentially and (13)
is obvious.

Corollary 5. [28, 62] Let X be a uniformly ergodic Markov chain with station-
ary distribution π. Suppose Eπf

2(x) <∞. Then for any initial distribution, as
n→∞ √

n(f̄n − Eπf)
d→ N(0, σ2

f ) .

The main conclusions of this section can be concisely stated as follows.

Theorem 9. Let X be a Harris ergodic Markov chain on X with invariant
distribution π and let f : X→ R is a Borel function. Assume one of the following
conditions:

1. X is polynomially ergodic of order m > 1, EπM < ∞ and there exists
B <∞ such that |f(x)| < B almost surely;

2. X is polynomially ergodic of order m, EπM < ∞ and Eπ|f(x)|2+δ < ∞
where mδ > 2 + δ;

3. X is geometrically ergodic and Eπ|f(x)|2+δ <∞ for some δ > 0;

4. X is geometrically ergodic and Eπ[f2(x)(log+ |f(x)|)] <∞;

5. X is geometrically ergodic, satisfies detailed balance and Eπf
2(x) <∞; or

6. X is uniformly ergodic and Eπf
2(x) <∞.

Then for any initial distribution, as n→∞
√
n(f̄n − Eπf)

d→ N(0, σ2
f ) .

Remark 9. Condition 1 of the theorem is interesting for applications of MCMC
in Bayesian settings. In this case, it is often the case that posterior probabilities,
i.e. expectations of indicator functions, are of interest. Since indicator functions
are bounded it follows that a CLT will hold under a very weak mixing condition.
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5. Examples

5.1. Toy Examples Revisited

Example 1 continued. Recall that since X is finite this chain is uniformly ergodic
and uniformly mixing. Hence Corollary 5 implies that a CLT will hold for f̄n if
Eπf

2(x) <∞ which will hold except in unusual cases.

Example 2 continued. This chain is geometrically ergodic but does not satisfy
(8). Hence it is strongly mixing and we can not conclude that it is asymptot-
ically uncorrelated. Thus the best we can do is to appeal to Corollary 3 and
conclude that a CLT will hold for f̄n if Eπ[f(x)2(log+ |f(x)|)] <∞. Recall that
in subsection 2.1 it was shown that a CLT holds for f̄n if f2(x) ≤ a|x| ∀x ∈ Z
when a > 1 satisfies aθ < 1 and (aθ − 1)a+ 1− θ < 0.

Example 3 continued. Let m > 2 and recall that this random walk is poly-
nomially ergodic of order m − 1 and that Theorem 1 says a CLT holds if
f(x) ≤ (x + 1)m(τ+η−1) for all x ≥ 0 where 1 − τ ≤ η ≤ 1 is such that
Eπ(x+ 1)2mη <∞. Alternatively, an appeal to Corollary 2 says that we have a
CLT if Eπ(x+ 1)m <∞ and Eπ|f(x)|2+δ <∞ where δ > 2/(m− 2).

5.2. A Benchmark Gibbs Sampler

The following Gibbs sampler is similar to one used by many authors to analyze
the benchmark pump failure data set in [20]. For example, in [51], [60], and
[62] similar settings are considered and uniform ergodicity of the corresponding
Gibbs samplers is established.

Set y = (y1, y2, . . . , yn)T and let π(x, y) be a joint density on Rn+1 such that
the corresponding full conditionals are

X |y ∼ Gamma (α1, a+ bT y)

Yi|x ∼ Gamma (α2i, βi(x))

for i = 1, . . . , n, b = (b1, . . . , bn)T where a > 0 and each bi > 0 are known. (Say
U ∼ Gamma(α, β) if its density is proportional to uα−1e−uβI(u > 0).) Since,
conditional on x, the order in which the Yi are updated is irrelevant we will use
a two variable Gibbs sampler with the transition rule (x′, y′) → (x, y); that is,
given that the current value is (Xn = x′, Yn = y′) we obtain (Xn+1, Yn+1) by
first drawing x ∼ f(Xn+1|y′) then Yi,n+1 ∼ f(yi|x). A minor modification of
the argument in [62] will show that (4) holds on C = X with n0 = 1 and if for
i = 1, . . . , n there is a function g > 0 such that for all x > 0

βi(x)

bix+ βi(x)
≥ g(x) . (14)

Thus if (14) holds this Gibbs sampler is uniformly ergodic (or uniformly mixing)
and an appeal to Corollary 5 shows that a CLT is assured if Eπf

2(x) <∞.



G.L. Jones/Markov chain CLT 311

5.3. A Gibbs Sampler for a Hierarchical Bayes Setting

Consider the following Bayesian version of the classical normal theory one–way
random effects model. First, conditional on θ = (θ1, . . . , θK)T and λe, the data,
Yij , are independent with

Yij |θ, λe ∼ N(θi, λ
−1
e )

where i = 1, . . . ,K and j = 1, . . . ,mi. Conditional on µ and λθ, θ1, . . . , θK and
λe are independent with

θi|µ, λθ ∼ N(µ, λ−1
θ ) and λe ∼ Gamma(a2, b2),

where a2 and b2 are known positive constants. Finally, µ and λθ are assumed
independent with

µ ∼ N(m0, s
−1
0 ) and λθ ∼ Gamma(a1, b1)

where m0, s0, a1 and b1 are known constants; all of the priors are proper since
s0, a1 and b1 are assumed to be positive and m0 ∈ R. The posterior density of
this hierarchical model is characterized by

π(θ, µ, λ|y) ∝ g(y|θ, λe)g(θ|µ, λθ)g(λe)g(µ)g(λθ) (15)

where λ = (λθ, λe)
T , y is a vector containing all of the data, and g denotes a

generic density. Expectations with respect to π typically require evaluation of
ratios of intractable integrals, which may have dimension K + 3 and typically,
K ≥ 3.

We are interested in the standard Gibbs sampler which leaves the posterior
(15) invariant. Define

v1(θ, µ) =
K∑

i=1

(θi−µ)2 , v2(θ) =
K∑

i=1

mi(θi−yi)2 and SSE =
∑

i,j

(yij−yi)2

where yi = m−1
i

∑mi
j=1 yij . The full conditionals for the variance components are

λθ|θ, µ, λe, y ∼ Gamma

(
K

2
+ a1,

v1(θ, µ)

2
+ b1

)
(16)

and

λe|θ, µ, λθ , y ∼ Gamma

(
M

2
+ a2,

v2(θ) + SSE

2
+ b2

)
(17)

where M =
∑

imi. If θ−i = (θ1, . . . , θi−1, θi+1, . . . , θK)T and θ = K−1
∑

i θi,
the remaining full conditionals are

θi|θ−i, µ, λθ, λe, y ∼ N

(
λθµ+miλeyi

λθ +miλe
,

1

λθ +miλe

)
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for i = 1, . . . ,K and

µ|θ, λθ, λe, y ∼ N

(
s0m0 +Kλθθ

s0 +Kλθ
,

1

s0 +Kλθ

)
.

Our fixed-scan Gibbs sampler updates µ then the θi’s then λθ and λe. Since
the θi’s are conditionally independent given (µ, λ), the order in which they are
updated is irrelevant. The same is true of λθ and λe since these two random
variables are conditionally independent given (θ, µ). A one–step transition of
this Gibbs sampler is (µ′, θ′, λ′) → (µ, θ, λ) meaning that we sequentially draw
from the conditional distributions µ|λ′, θ′ then θi|θ−i, µ, λ′ for i = 1, . . . ,K
then λe|µ, θ then λθ|µ, θ. Assume that m′ = min{m1,m2, . . . ,mK} ≥ 2 and
that K ≥ 3. Let m′′ = max{m1,m2, . . . ,mK}. Define δ1 = (2a1 +K− 2)−1 and
δ2 = (2a1 − 2)−1.

Proposition 1. [34] Assume that a1 > 3/2 and 5m′ > m′′. Fix c1 ∈
(
0,min{b1, b2}

)
.

Then the Gibbs sampler satisfies (5) with the drift function

V (θ, λ) = 1 + ec1λθ + ec1λe +
δ2

Kδ1λθ
+

Kλθ
s0 +Kλθ

(θ − y)2 .

Remark 10. Values for the constants in (5) are given in [34] but in an effort to
keep the notation under control we do not report them here.

Theorem 1 immediately implies a CLT for f̄n for any function f such that
f2(µ, θ, λ) ≤ V (θ, λ) for all (µ, θ, λ). Of course, it is easy to find functions involv-
ing µ or θ that do not satisfy this requirement. On the other hand, Theorem 1
will be useful for many functions of only λθ and λe.

Recall that the drift function may not be unique. Prior to the work of [34],
this Gibbs sampler was also analyzed in [26] wherein (5) was established using a
different drift function and more restrictive conditions on a1 and m′. However,
this drift function can alleviate some of the difficulties with using Theorem 1
for functions involving µ.

Proposition 2. [26] Assume that a1 ≥ (3K−2)/(2K−2) and m′ > (
√

5−2)m′′.
Then the Gibbs sampler satisfies (5) with the drift function

W (µ, θ, λ) =1 + ϑ

(
1

λe
+

K∑

i=1

mi(ȳi − θi)2 + (µ− ȳ)2

)
+

+
1

λθ
+ ec1λθ + ec1λe +

Kλθ
s0 +Kλθ

(θ − y)2 .

where 0 < ϑ < 1 is a constant defined on p. 427 in [26].

Proposition 1 shows that this Gibbs sampler is geometrically ergodic as long
as a1 > 3/2 and 5m′ > m′′. However, it does not satisfy detailed balance. An
appeal to Corollary 2 or 3 shows that functions with a little bit more than a
second moment with respect to (15) will enjoy a CLT.
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5.4. Independence Sampler

The independence sampler is an important special case of the MHG algorithm.
Suppose the target distribution π has support X ⊆ Rk and a density which, in
a slight abuse of notation, is also denoted π. Let p be a proposal density whose
support contains X and suppose the current state of the chain is Xn = x. Draw
y ∼ p and set Xn+1 = y with probability

α(x, y) =
π(y)p(x)

π(x)p(y)
∧ 1 ;

otherwise set Xn+1 = x. This Markov chain is Harris ergodic and it is well-
known [40] that it is uniformly ergodic if there exists κ > 0 such that

π(x)

p(x)
≤ κ (18)

for all x since (18) implies a minorization (4) on X with n0 = 1 and ε = 1/κ.
Hence Corollary 5 implies that a CLT will hold for f̄n if Eπf

2 < ∞. On the
other hand, the independence sampler will not even be geometrically ergodic if
there is a set of positive π-measure where (18) fails to hold. Moreover, in this
case there are conditions given in [52] which ensure a CLT cannot hold.

5.5. An MHG Algorithm for Finite Point Processes

The material in this subsection is adapted from [22] and [44]. Let X be a bounded
region of Rd and let λ be Lebesgue measure. Define X 0 := {∅} and for k ≥ 1,
X k := X × · · · × X (there being k terms in the Cartesian product). Think of
x ∈ X k as a pattern of k points in X , in particular, X 0 denotes the pattern
with no points, and define n(x) to be the cardinality of x so that if x ∈ X k then
n(x) = k. Let the state space X be the union of all X k, that is, X = ∪∞i=0Xi
where Xi = {x : n(x) = i}. The target π is an unnormalized density with
respect to the Poisson process with intensity measure λ on X . The following
MHG algorithm for simulating from π is proposed in [22]:

1. With probability 1/2 attempt an up step

(a) Draw ξ ∼ λ(·)/λ(X ). Set x = x ∪ ξ with probability

1 ∧ λ(X )π(x ∪ ξ)
(n(x) + 1)π(x)

.

2. Else attempt a down step

(a) If x = ∅ skip the down step

(b) Draw ξ uniformly from the points of x. Set x = x\ ξ with probability

1 ∧ n(x)π(x \ ξ)
λ(X )π(x)

.
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This MHG algorithm is Harris recurrent and geometrically ergodic.

Proposition 3. [22] Suppose there exists a real number M such that

π(x ∪ ξ) ≤Mπ(x)

for all x ∈ X and all ξ ∈ X . Then the MHG algorithm started at x∗ ∈ {x :
π(x) > 0} is Harris ergodic and satisfies (5) with the drift function V (x) = An(x)

where A > Mλ(X ) ∨ 1.

Of course, Theorem 1 implies a CLT for f̄n for any function f such that
f2(x) ≤ An(x) for all x. On the other hand, this algorithm was constructed so
as to satisfy (8) (see [22] for a detailed argument) and hence the Markov chain
is asymptotically uncorrelated so that a CLT holds when Eπf

2(x) <∞.

5.6. Random Walk MHG Algorithms

Let π be a target density on Rk and let the proposal density have the form
q(y|x) = q(|y − x|). Now suppose that the current state of the chain is Xn = x.
Draw y ∼ q and set Xn+1 = y with probability

α(x, y) =
π(y)

π(x)
∧ 1 ;

otherwise set Xn+1 = x. Note that this algorithm satisfies (8) by construction.
Random walk-type MHG algorithms are some of the most useful and popu-

lar MCMC algorithms and consequently their theoretical properties have been
thoroughly studied. In [40] it was shown that random walk samplers (on Rk)
cannot be uniformly ergodic (or uniformly mixing) but they do establish that
a random walk MHG algorithm can be geometrically ergodic by verifying (5)
when k = 1 and π has tails that decrease exponentially. This work was extended
in [58] by establishing (5) in the case where k ≥ 1. However, in [30] the drift
(5) was verified with a different drift function than that used in [58] and con-
sequently obtained more general conditions ensuring geometric ergodicity. On
the other hand, if a random walk MHG algorithm is not geometrically ergodic
it may still be polynomially ergodic of all orders; see [18].

Proposition 4. [30] Suppose π is a positive density on Rk having continuous
first derivatives such that

lim
|x|→∞

x

|x| · ∇ logπ(x) = −∞ .

Let A(x) := {y ∈ Rk : π(y) ≥ π(x)} be the region of certain acceptance and
assume that there exist δ > 0 and ε > 0 such that, for every x, |x − y| ≤ δ
implies q(y|x) ≥ ε. Then if

lim inf
|x|→∞

∫

A(x)

q(y|x) dy > 0

the random walk MHG algorithm satisfies (5) with the drift function V (x) =
cπ(x)−1/2 for some c > 0.
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Hence, under the conditions of Proposition 4, Theorem 1 guarantees a CLT
if f(x) satisfies f2(x) ≤ cπ(x)−1/2 for all x ∈ Rk. Alternatively, we conclude
that the random walk MHG is geometrically ergodic, satisfies (8) (and hence
is asymptotically uncorrelated) and an appeal to Corollary 4 establishes the
existence of a CLT if Eπf

2(x) <∞.

6. Final Remarks

The focus has been on some of the connections between recent work on general
state space Markov chains and results from mixing processes and the implica-
tions for Markov chain CLTs. However, this article only scratches the surface of
the mixing process literature that is potentially useful in MCMC. For example,
the existence of a functional CLT or strong invariance principle is required in
order to estimate σ2

f from (1) [11, 23, 32]. There has been much work on these
for mixing processes; a good starting place for strong invariance principles is
[49] while an introduction to the functional CLT is contained in [1].

A. Calculations for Example 2

Define V (z) = a|z| for some a > 1. Then V (z) ≥ 1 for all z ∈ Z and

PV (x) =
∑

y∈Z
a|y|P (x, y) .

Recall that ∆V (x) = PV (x)−V (x). The first goal is to show that if x 6= 0 then
∆V (x)/V (x) < 0 since then there must be a β > 0 such that ∆V (x) < −βV (x).
Suppose Xn = x ≥ 1 then

PV (x) = θax+1 + 1− θ ⇒ ∆V (x)

V (x)
= aθ − 1 +

1− θ
ax

< 0

as long as
(aθ − 1)V (x) + 1− θ < 0 . (19)

Now (19) can hold only if aθ − 1 < 0 and since V (x) ≥ a for all x 6= 0 (19)
will hold when aθ − 1 < 0 and (aθ − 1)a + 1 − θ < 0. A similar argument
shows that this is also the case when Xn = −x ≤ −1. Now suppose Xn = 0.
Then PV (0) = a and ∆V (0) = −V (0) +a. Putting this together yields (5) with
C = {0}.
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