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ABSTRACT

The mass of unresolved young star clusters derived from spectrophotometric data may well be
off by a factor of 2 or more once the migration of massive stars driven by mass segregation is
accounted for. We quantify this effect for a large set of cluster parameters, including variations
in the stellar initial mass function (IMF), the intrinsic cluster mass, and mean mass density.
Gas-dynamical models coupled with the Cambridge stellar evolution tracks allow us to derive
a scheme to recover the real cluster mass given measured half-light radius, one-dimensional
velocity dispersion and age. We monitor the evolution with time of the ratio of real to apparent
mass through the parameter η. When we compute η for rich star clusters, we find non-monotonic
evolution in time when the IMF stretches beyond a critical cut-off mass of 25.5 M�. We also
monitor the rise of colour gradients between the inner and outer volume of clusters: we find
trends in time of the stellar IMF power indices overlapping well with those derived for the
Large Magellanic Cloud cluster NGC 1818 at an age of 30 Myr. We argue that the core region
of massive Antennae clusters should have suffered from much segregation despite their low
ages. We apply these results to a cluster mass function, and find that the peak of the mass
distribution would appear to observers shifted to lower masses by as much as 0.2 dex. The
star formation rate derived for the cluster population is then underestimated by from 20 to
50 per cent.

Key words: methods: numerical – stars: evolution – stars: kinematics – stars: luminosity
function, mass function – galaxies: clusters: individual: NGC 1818 – galaxies: star clusters.

1 I N T RO D U C T I O N

Star clusters are traditionally thought of as old primordial structures
with ages ranging up to a Hubble time, hence the emphasis of the-
oretical modelling on their long-term evolution (e.g. Spitzer 1987;
see Meylan & Heggie 1997 for a review). However, the wealth of
massive young clusters with spectroscopic ages of less than 100 Myr
observed with the Hubble Space Telescope in interacting galaxies
(e.g. the Antennae, M81/82) has driven much interest in recent years
to the understanding of their formation and early evolution. Closer
to us, the Large Magellanic Cloud (LMC) hosts a set of young clus-
ters (Elson, Freeman & Lauer 1989; Elson 1991), of which some
show signs of primordial mass segregation. The cluster NGC 1818
is one such cluster where colour gradients are difficult to account for
other than as a result of their formation history (Hunter et al. 1997).
These issues clearly have bearing on the subsequent dynamical
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evolution and photometric properties of clusters and their imme-
diate surroundings (e.g. Lamers, Anders & de Grijs 2006).

To understand very young clusters in quantitative detail poses a
particular challenge to theorists since realistic models must account
both for the dynamics and the rapidly evolving photometric prop-
erties of a young stellar population. In this contribution, we aim
to identify evolutionary trends that lead potentially to large errors
when measuring the mass of an unresolved cluster with photome-
try and spectroscopy, an effect that bears on all observable cluster
properties.

When in dynamical equilibrium, the virial theorem gives an ex-
act relation between mass M and mean three-dimensional velocity
dispersion σ :

M = |W |
σ 2

≡ rg σ 2

G
, (1)

where W is the gravitational potential energy, G the gravita-
tional constant and rg a radius so defined. All quantities entering
equation (1) must be matched with observables in projection. The
line-of-sight velocity dispersion σ 2

los equals σ 2/3 for an isotropic
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velocity field, while the gravitational radius may be expressed in
terms of the projected half-light radius Rhl

1 as

rg ≈ 5

2
× 4

3
Rhl, (2)

where the numerical factor of 5/2 gives a rough conversion to a wide-
range of clusters fitted with a King mass profile, and the factor of
4/3 comes from projection on the sky (e.g. Spitzer 1987; McCrady,
Gilbert & Graham 2003; section 1.2). Equation (2) applies when
light traces mass throughout the cluster. With this in mind we may
isolate for M in equation (1) to obtain

M = η
Rhl σ

2
los

G
, (3)

where the dimensionless parameter η � 10. Several authors have
used η ≈ 10 combined with spectrophotometric data to derive M
from equation (3). Such mass estimates can be compared to masses
derived from synthetic stellar populations of the same King models
fitted to the data to set constraints on the stellar initial mass function
(IMF). For instance, the stellar population of massive Antennae
clusters appears to be inconsistent with a universal (field) stellar
IMF (Smith & Gallagher 2001; Mengel et al. 2002). And several
clusters in the galaxy M82 are found to be overluminous with respect
to their mass, suggesting a top-heavy stellar IMF in these clusters
(Smith & Gallagher 2001; McCrady et al. 2003).

The above studies have taken a fixed value of η for clusters of ages
up to t = 100 Myr. This simplification, while intuitively appealing,
was shown recently not to be of universal use for massive clusters
(Boily et al. 2005). Dense, populous clusters will fill the entire range
of stellar masses drawn from the IMF. This has the effect of dramat-
ically reducing the mass-segregation time-scale compared with the
relaxation time-scale and driving heavy (bright) stars to the centre
of the cluster. The measurements of Rhl and σ los are then biased
to values associated with a specific stellar population, and not the
cluster as a whole as assumed in deriving equation (3). When the
density of the cluster is low (at a given number of stars), this bias is
reduced and η remains constant over time to a good approximation.
Using theoretical gas-dynamical models, Boily et al. (2005) found
a rough threshold of mean surface density such that when the initial
cluster density is 〈�〉 ≈ 104 M� pc−2 or more, masses derived as-
suming constant η systematically underestimate the real mass by a
factor of a few.

This contribution explores a fuller range of parameters and ad-
dresses other issues (colour gradients, systematics) not covered by
Boily et al. (2005). In the next section, we briefly recall the dynam-
ical time-scales relevant to the problem and show explicitly why a
bias should be anticipated when deriving the mass of rich, dense
clusters. In Section 3, we give details of the numerical approach
used to conduct the study. In Section 4, we discuss how the mod-
els were analysed and quantify numerical and systematic errors.
Section 5 presents the results of our survey. In Section 6, we apply
these results to the profiling of the stellar mass function and colour
gradients in clusters. We also explore their implication for a cluster
mass function, and show that the star formation rate (SFR) inferred
from cluster populations may be strongly biased to lower values.
The concluding section introduces a diagram that relates observed
cluster properties to their underlying potential and draws attention
to future developments.

1 By convention and when possible, projected quantities are denoted with
upper case letters.

2 T H E DY NA M I C S O F M A S S S E G R E G AT I O N

Two conditions have to be met for equation (3) to be applicable. First,
all stellar components should be in dynamical equilibrium, a sensible
assumption whenever the cluster age exceeds the virialization time-
scale, i.e. several system crossing time tcr, where

tcr ≡ 2 rhm

σ
(4)

with rhm being the spherical half-mass radius. The mechanics of
virialization leads to equilibrium velocity distribution functions in-
dependent of stellar masses when all stars have the same radial
distribution. Collisional gravitational dynamics, on the other hand,
sets a trend towards equipartition of kinetic energy between stars
of different masses as the system evolves. The resulting instabil-
ity has been studied by Spitzer (1969); see also Khalisi, Amaro-
Seoane & Spurzem (2006) for a recent work. For two-component
systems of individual masses m1 and m2, this situation is expressed
as
1

2
m1 σ1

2 = 1

2
m2 σ2

2, (5)

and hence the ratio of squared velocities of the stars equals the
inverse ratio of their masses: heavier stars have lower velocities
on the mean, and drop to the centre of the cluster. The state of
dynamical equilibrium is a good approximation to the dynamics
only when the migration of the heavy stars takes place over long
time-scales.

Secondly, the light should trace the mass so that half-light and
half-mass radii are identical. When this is not the case, the mass M
may be derived from either of the two relations

M = η0
Rhm σ 2

m1d

G
and M = η

Rhl σ
2

los

G
, (6)

where σ m1d is the mass-weighted velocity dispersion in projection
along the line of sight, and σ los its light-weighted analogue, i.e. the
line-of-sight velocity dispersion most directly accessible to obser-
vation. η0 ≈ 10 is the reference value mentioned already. These
relations combine to give

η = η0
Rhm σ 2

m1d

Rhl σ
2

los

(7)

and hence η 	= η0 whenever light and mass follow different runs
with R. Since bright stars carry all the light but a small fraction of
the total mass, we expect η > η0 as the massive stars migrate to
the centre, and both Rhm and σ m1d, weighted through the near-static
total mass distribution, remain essentially constant.

2.1 Characteristic time-scales

The total mass distribution of a star cluster evolves slowly over the
relaxation time tr of single-population clusters given by

tr

tcr
� 0.138

2

(
rhm

rg

)1/2
N

ln(0.4 N )
, (8)

which is identical to Meylan & Heggie (1997, section 7) once equa-
tion (4) is taken into account where we used 2r hm in the defini-
tion rather than rg. N is the number of member stars and the ratio
r hm/r g ≈ 0.4 for a wide range of model fits to observed clusters.

With N = 500 000, r hm = 4/3 Rhm = 1.3 pc (suggested from
massive clusters data) and σ = √

3 σlos = 26 km s−1, we find a
relaxation time

tr ≈ 1800 tcr ≈ 180 Myr (9)
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and hence no massive cluster with an age of less than 100 Myr would
be expected to show signs of evolution due to two-body relaxation.
It is this argument that led to the widely used assumption of no
evolution of clusters in young starburst galaxies. However, Farouki
& Salpeter (1982) pointed out that the trend towards equipartition
is accelerated as the mass spectrum {mj} of stars is widened; their
analysis suggests that the mass segregation will take place on a
time-scale tms given by (Spitzer 1987)

tms

tr
� π

3

〈m〉
mmax

ρ

ρ

(
rhm

rg

)3/2

, (10)

where ρ ≡ (M/2)/(4πr 3
hm/3) is the mean density inside the three-

dimensional half-mass radius (an overline denotes averaging over
space, and brackets averaging by mass); and mmax = max{mj},
j = 1, . . . , J . Note that t ms ≈ t r when the mass spectrum is
narrow, i.e. we recover the single-component cluster relaxation
time. The mean mass 〈m〉 ≈ 0.7 M� for a standard Kroupa IMF
(Kroupa 2002). Going back to the numerical example given in the
above, setting mmax = 20 M� in equation (10) already reduces the
mass segregation time-scale tms to a few Myr, suggesting that mass
segregation will be effective over the life of massive stars.

2.2 Example: two-mass component systems

Consider a cluster with two stellar masses, m 1 < m 2, mean surface
density � and mass weighted squared velocity dispersion 〈σ 2〉. Each
component i has a velocity dispersion σ i , a surface density � i and a
surface brightness �i . The equilibrium velocity dispersion assum-
ing equation (5) leads to

〈σ 2〉 = σ1
2 �1

�

(
1 + �2

�1

σ2
2

σ1
2

)
= σ1

2 �1

�

(
1 + �2

�1

m1

m2

)
. (11)

On the other hand, using light to weigh the quantities yields

σ 2
lw = σ1

2 �1

�

(
1 + �2

�1

m1

m2

)
. (12)

Since the stellar IMF is peaked at the low-mass end and m 1 < m 2, the
surface density of the second component �2 < �1 ≈ �. The same
quantities weighted by light yield a different result. Since m 1 < m 2,
the brightness �1 � �2 ≈ �, so that generally �2 m 1 > �1 m 2

for a standard IMF (see Section 4.1.1). This gives the following,
approximate, relations

〈σ 2〉 ≈ σ1
2 and σ 2

lw ≈ σ2
2. (13)

By the same line of arguments, we obtain for the radii

Rhm ≈ Rhm1 and Rhl ≈ Rhm2. (14)

Owing to mass segregation, we anticipate σ 1
2 > σ 2

2 and
Rhm1 > Rhm2. As a result, η computed from equation (7) gives

η = η0
Rhm1 σ1

2

Rhm2 σ2
2

> η0. (15)

This reasoning will hold true for multimass cases in general since
we may replace m1 by 〈m〉 and m2 by mmax: light-weighted quantities
trace positions and velocities of the heavier stars, whereas the global
potential and kinematics are set by the less-massive stars.

3 N U M E R I C A L M E T H O D

3.1 Gas models

Large stellar systems share several thermodynamical properties with
classical gases (Lynden-Bell & Wood 1968). A cluster composed
of stars of different masses may be likened to a set of concentric
spheres of ideal gas satisfying Poisson’s equation. Larson (1970) pi-
oneered a method based on moments of the Boltzmann equation by
which energy (‘heat’) flows through the system as it would in a fluid.
The temperature of a stellar system, then, is identified with the local
square velocity dispersion so that heat may be transported from low
dispersion regions to high-dispersion regions (owing to the nega-
tive heat capacity of gravity). Stellar collisions are treated through
a local heat conduction equation (Lynden-Bell & Eggleton 1980)
which may be calibrated to give evolutionary tracks virtually in-
distinguishable from those obtained from N-body calculations (see
Spurzem & Takahashi 1995).

Bettwieser & Inagaki (1985) give a good insight of the hy-
drodynamical spirit of the model but note that their closure
equation requires modification for agreement with Fokker–Planck
models (Spurzem & Takahashi 1995). A complete and anisotropic
formulation based on moments of the Boltzmann equation can be
found in Louis & Spurzem (1991).

3.2 Integration code

The numerical code SPEDI2 that we use is based largely on the for-
mulation for anisotropic stellar systems due to Louis & Spurzem
(1991). It was developed further by Spurzem & Takahashi (1995).
The equations are set on a logarithmic mesh using a scheme which is
forward-differencing in space and centred in time. Time integration
was performed iteratively using a semi-implicit Newton–Raphson–
Henyey method. The gravitational potential is evaluated from the
updated (total) density profile directly from Poisson’s equation.

SPEDI has been adapted by one of us (Deiters 2001) to include
a model of stellar evolution. We refer to the resulting code as
GASTEL. Stars are evolved according to the Cambridge stellar evo-
lution tracks, which are available in a convenient analytical form
(Pols et al. 1998; Hurley, Pols & Tout 2000). By the end of their
lives, stars have lost a significant fraction of their mass. This mass
lost by stars is expelled instantaneously from the cluster. However,
we may still compute η in the approximation that the total cluster
mass remains constant for short evolution times since in reality the
gas will not leave the cluster instantly (see Section 6.3).

All variables are evaluated on a 200-point grid in the N-body units
given by Heggie & Mathieu (1986). The constant logarithmic width
between two grid points is d ln r ≈ 0.095. Spatial resolution in the
centre is excellent (152 mesh points to the initial half-mass radius at
0.6 numerical units) and the grid extends up to 60 numerical units.

3.3 Calibration, tests

The only free parameter in the equations of the gaseous model is the
value of the conductivity (sometimes denoted λ). It is then adjusted
to be consistent with N-body calculations and to recover the core col-
lapse time in the case of a system of N identical masses (Bettwieser
& Inagaki 1985; Section 2.2; see also Spurzem 1992). Several tests
have been conducted to compare gas cluster models with Fokker–
Planck integrations and direct N-body calculations (Giersz &

2 Further details at http://www.ari.uni-heidelberg.de/gaseous-model/.
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Figure 1. Run of half-mass radius for a three-component Plummer model
versus time. The three stellar masses 2/5, 1 and 5/2 were drawn from a
Salpeter IMF. The symbols are for data points lifted from fig. 1 of Spitzer &
Shull (1975). The dash is an exponential decay ∝ exp(−t/1.57t r).

Heggie 1994; Giersz & Spurzem 1994; Spurzem & Takahashi 1995).
Most of these tests were for two-component models of modest mass
ratios, while the stellar mass range of interest here covers nearly two
decades. We therefore checked explicitly that the numerical set-up
correctly reproduces the dynamics of multimass models with a broad
mass spectrum. Spitzer & Shull (1975) presented results of mass
segregation from Fokker–Planck calculations of three-component
Plummer models. The three masses were in the ratio 2/5:1:5/2
and drawn from a Salpeter IMF. Fig. 1 graphs the time evolu-
tion of the half-mass radius of each component as obtained with
GASTEL (dotted curves) along with the results read off fig. 1 of
Spitzer & Shull (1975). We find very good agreement with their
data. In particular, we find the evolution for the most massive stars
well recovered from an exponential decay of the form Rhm(t) =
Rhm(0) exp(−t/1.57t r).

4 M E T H O D O F A NA LY S I S A N D E R RO R

E S T I M AT E S

GASTEL computes for each dynamical mass group the mass distri-
bution and velocity dispersion on a radial grid. The mass density
ρ(r) and velocity dispersion σ (r) of each group are integrated along
the line of sight to obtain the projected distributions at cylindrical
radius R using the relation r 2 = R2 + z2:

�(R) =
∫ +∞

−∞
ρ(r ) dz, (16)

� σ 2
los(R) =

∫ +∞

−∞
ρ(r ) σ 2(r ) dz. (17)

The half-mass radius and mean velocity dispersion are computed for
each mass group. System averages are then computed by summing
over all groups using either the density or the light flux as statistical
weight. A stand-alone programme is used to pick the most luminous
stellar mass at each output time. This approach allows us to combine
the properties of different stars as desired in the analysis, without
having to rerun the simulation with a different set-up. For example,
it will prove illuminating in the first instance to monitor physical
quantities attached to the most luminous stars alone as function of
time, before profiling the system including contributions from all
the stars (see Section 4.3).

4.1 Mass sampling

Our overall goal is to describe accurately the early evolution of a
cluster. This suggests that we seek out a relation between the spec-
trum of stellar masses and the time-scale for dynamical evolution
given by equation (10), before selecting a set of stellar mass groups.

4.1.1 Stellar IMF

The field stellar IMF in the solar neighbourhood sets a standard
reference (Kroupa 2002). This distribution function of single stars
of mass m is well fitted by a piece-wise power law,

f (m) ∝

⎧⎪⎨⎪⎩
m−α if m < 1 M�,

m−β if 1 M� < m < 10 M�,

m−γ if m > 10 M�,

(18)

where α = 1.30, β = 2.35, and γ = 4.0. The value of α has sig-
nificant uncertainties ±0.7 (Kroupa 2002) whose implications will
be discussed in Section 5.4. Stellar demographics are computed by
integrating f (m) dm up from a lower value which we set above the
brown dwarf limit at 0.10 M�. If the real mass distribution extended
to 0 M� with the same power law, our cut at 0.1 M� would allow
us to account for 80 per cent of the actual mass and 99.9 per cent
of the actual emitted light of the low-mass stars (M < 1 M�). The
mean stellar mass computed from equation (18) is

〈m〉 =
∫ ∞

0.1 M� m f (m) dm∫ ∞
0.1 M� f (m) dm

≈ 0.7 M�. (19)

However, note that due to discrete and non-uniform sampling, in
most of the simulations we have 〈m〉 ≈ 0.85 M�.

4.1.2 The mass spectrum and the importance of stellar evolution

The mean value given by equation (19) is only weakly dependent on
the upper bound of integration. That upper bound should be chosen
so as to reflect the richness of stellar populations of massive clusters,
yet without overwhelming the computational scheme.

The lifetime of a star is a steep function of its mass. We find the
following polynomial to give a good fit to stellar lifetimes in the
mass range [5 M�, 70 M�]:

log tlife = c1 × (log m)2 + c2 × log m + c3, (20)

where c1 ≈ 0.96, c2 ≈ −3.7 and c3 ≈ 4.2; m is expressed in solar
masses, and t life in Myr. A star will take full part in the time evolution
of the cluster through two-body scattering if its lifetime exceeds
the mass-segregation time of equation (10), which we rewrite as
(dropping the subscript max)

tms = K
m

, (21)

where

K ≡ π

3

ρ̄

ρ
〈m〉

(
rhm

rg

)3/2

tr. (22)

Combining the two time-scales allows us to find a reference mass
to satisfy the relation log t ms < log t life. Substituting t life from
equation (20) we obtain

0 < c1 × (log m)2 + (c2 + 1) × log m + c3 − log K , (23)
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a quadratic inequality for log m. Solving for the roots of this
quadratic we obtain

log m± = −c2 − 1

2 c1
±

√
(c2 + 1)2 − 4 c1 (c3 − log K )

2 c1
. (24)

The interpretation of this result is straightforward. All stars with
initial mass m ∈ [m−, m+] will not migrate much to the centre of
the cluster in the course of their lifetime on the main sequence.
Those with masses above m+ and below m−, will. Therefore, to
model accurately the very early stages of clusters we should ideally
include all stars above m+. Recently, Figer (2005) has argued from
Arches cluster data that all stars have initially a mass <150 M�: this
would set an absolute upper limit on the mass spectrum. However,
the impact of such very massive stars on the dynamics is small since
they carry a minute fraction of the total mass and luminosity of the
system. Thus, the most massive stars we have included in some of
the calculations in this paper had m = 70 M� which already exceeds
the mass of Wolf–Rayet stars.

The relation of m± to cluster parameters is summed up in the
constant K: the fraction of all the stars that will contribute more
effectively to mass segregation is, therefore, an implicit function of
the cluster we wish to model. The minimum of equation (23) occurs
for

log m = − c2 + 1

2c1
� 1.41, (25)

or m ≈ 25.5 M�. This is the only root to the quadratic when

K = c3 − (c2 + 1)2

4c1
� 200.0 ≡ Kc, (26)

where the numerical value follows from our choice of fitting param-
eters but is otherwise uniquely defined.

The meaning of K c becomes clear if we recall the definition of
K and tr, equations (21) and (8). Note first that there are no real
roots to equation (23) when K < K c. Whenever that is the case, all
stars drawn from the IMF effectively segregate while on the main
sequence and lose very little mass in the process. When K exceeds
K c, all stars in the interval [m−, m+] must evolve significantly on
their way to the centre.

But since K increases with the relaxation time tr, itself a rising
function of the number of stars N (at a given crossing time), we
may work out a value for N beyond which it is unrealistic to ne-
glect stellar evolution. We find after some algebra that the condition
K � K c reduces to

ρ̄

ρ

〈m〉
M�

tcr

1 Myr

N
ln 0.4N

� 86 Kc, (27)

where we have substituted the numerical factor r hm/r g = 0.4. Any
multimass cluster model (N-body or otherwise) that does satisfy this
inequality and neglects the stellar evolution processes is in error. We
can isolate for N in equation (27) by taking characteristic values for
the crossing time and mean stellar mass to be t cr ≈ 0.5 Myr and
〈m〉 = 0.7 M�. If the stars are not segregated by mass initially then
on average ρ̄/ρ = 1 by definition. With these values inserted in
equation (27) we find N � 6 × 105 ≡ N c, above the census of an
average star cluster in the Galaxy (〈M〉 = 300 000 M�), but not
atypical of clusters in the Antennae (Mengel et al. 2002; table 3).

Note that for a given crossing time, a multimass calculation with
N < N c will correctly reproduce the migration of stars up to a time
of the order of tms even without accounting for stellar evolution.
Portegies Zwart & McMillan (2002) and Gürkan, Freitag & Rasio
(2004) used this argument to model runaway collapse of a cluster
leading to the formation of an intermediate mass black hole. To

perform their simulations, they supposed that the relaxation time of
their cluster was less than 30 Myr so that collapse occurs before the
first stars explode around 3 Myr.

4.1.3 The choice of mass bins

To include very low-mass stars in the computation is costly and
brings little in terms of the time-variation of the light curves, cf.
equation (10). The difficulty resides in having to resolve the light
profile of the high-mass stars, and the potential, dominated by sub-
solar mass stars, simultaneously. We mitigated this problem partly
by selecting a low-mass cut-off of 0.1 M�, well below the mean
mass of equation (19). We then defined the mass ensemble {mj},
j = 1, 2, . . . , J , such that the lifetimes of two successive high-mass
components, mj, m j+1, differ by ≈5 Myr using equation (20). We re-
fer to all stars with initial mass m > 5 M� as ‘massive stars’. In con-
trast, the sampling of the mass spectrum in the interval [0.2, 5] M�
followed a geometric mass-doubling progression: m 1 = 0.2 M�,
m 2 = 0.4 M�, m 3 = 0.8 M�, etc. We define m 1/2 = m 1/2 =
0.1 M�. In short, the ensemble {mj} spans the mass range 0.2 M�
to mJ non-uniformly and allows a much-improved focus on the evo-
lution of the massive stars.

With mass bins so chosen, the IMF is integrated over each inter-
val m j+1/2 − m j−1/2 to distribute the mass within each bin j and
normalized so that∫ m J+1/2

m1/2

f (m) dm = N . (28)

The geometric mean of two successive mass groups has been used to
define the bounds of integration (mj±1/2) for each group (see Fig. 2).

Simulations were done with 7, 14 and 35 mass groups to investi-
gate variations due to a finer sampling of the stellar mass function
(see Fig. 3). The trends in mass segregation are robust to decreasing
or increasing the number of groups, but are more noisy in calcula-
tions performed with on the order of only a few groups. All results
in this article are for runs with J = 35 mass groups unless stated
otherwise.

Figure 2. Generic form of the stellar IMF, equation (18). The reference IMF
(solid line) corresponds to the power index triplet (α, β, γ ) = (1.30, 2.35,
4.00). Changing α changes the slope on the left-hand side of the figure. The
integration algorithm is illustrated for a mass mj: the integration boundaries
are chosen to be the geometric means m j−1/2 = √m j−1 m j and m j+1/2 =√m j m j+1 which are mid-logarithmic intervals.
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Figure 3. Mean value mj of each mass group j for simulations with 7 (×),
14 ( ) and 35 ( ) components. The sampling used for the 500 Myr evolution
simulation (Fig. 12) is also plotted (+).

4.2 Radius determinations and Monte Carlo checks

We may distinguish between the half-mass radius derived for the
continuous density profile of the gas model, and the same radius
derived for an N-body rendition of that continuum.

The half-mass radius for each component of the gas model is
computed by integrating once over the entire plane to obtain the
total mass of the group; the grid is then resampled to identify the
radius Rhm enclosing half of the mass. A linear interpolation at
the grid points bracketing Rhm gives accuracy to second order in the
grid interval. Owing to a very fine meshing up to and beyond the
half-mass radius, errors on this radius are negligible. In practice,
one would like to know what errors are introduced when a finite-
N model is projected on the grid and the same radius evaluated
from star counts. This is particularly important when the number
of stars of a given mass group is low and statistical fluctuations
comparatively large.

To that end, we performed two sets of Monte Carlo (MC) tests.
First, we computed the half-mass radius for an ensemble of N stars
from the surface density of a Plummer sphere projected on the sky.
We call the result Rmc. Looking at the dependence in N of the
fluctuations of Rmc around Rhm, we concluded that they were of a
Poissonian form, mostly due to the random selection of a star in
the given density function. For example, with N = 50 stars, the
dispersion around the mean value is of order 15 per cent, for N =
1000, it is 3 per cent. Second, we perform 1000 MC realizations of
the 500 000 stars reference model (see Table 1) using the density
functions at 10 and 40 Myr to see which are the dispersions of the
fluctuations on the mean value of the half-light radius. In both case,
the dispersion was of order 3 per cent assuring that in a real cluster
of half a million stars the half-light radius is dominated by the 1000
or so (i.e. 0.2 per cent) most luminous stars.

Table 1. Parameters and useful data for the reference Plummer model. J is the total number of groups, N the number of stars, M the initial total mass. Rhm0,
σ los0 and η0 are, respectively, the initial half-mass radius, line-of-sight velocity dispersion and η. �(0) is the central surface density of the cluster, tr and tms its
relaxation and segregation times. Note that for J = 35, we have m1/2 = 0.1 M� and m35+1/2 = 20.6. We also have mmin ≡ m1 and mmax ≡ m35. The indexes
α, β and γ define the IMF (see equation 18). The eight parameters on the left-hand side are adjustable in the code whereas the six on the right-hand side are
derived from them.

Adjustable quantities Derived quantities
J N Rhl0 mmin mmax α β γ M σ los0 η0 �(0) tr tms

(pc) (M�) (M�) (M�) (km s−1) (M� pc−2) (Myr) (Myr)

35 500 000 1 0.2 20.0 1.30 2.35 4.00 418 000 15 8.6 0.67 × 105 180 2

Figure 4. Global η estimated from the brightest of seven mass groups.
Dashed and dotted curves show η for each group of mass mj as indicated.
The solid line is the visible estimate for η chosen as the brightest component
at any given time. The sudden jumps coincide with the stellar life time of
individual groups.

4.3 Predominant group approximation

Following the latter remark, and in order to have a better under-
standing of what is going on, we decided to restrain our measures to
the most luminous component whose half-mass radius and velocity
dispersion are assumed to be the measured half-light radius Rhl and
velocity dispersion σ los of the whole cluster.

Fig. 4 graphs η for each individual group (thin lines) and the
brightest stars (thick solid line). The individual thin curves all in-
crease from their value at t = 0. The increase is steeper for the
most massive stars, as expected. At t ≈ 10 Myr, these stars become
supernovae and turn to faint stellar remnants thereafter. The η we
compute for the system drops sharply to the underlying value given
by the new most-luminous stellar population. And so on for each
subsequent episode of mass-loss (ML) through supernovae events.
Note that at later times the η of individual stellar groups decreases
as a result of significant ML. This trend is again driven by mass
segregation, when the lighter remnants are expelled from the cen-
tral region by the massive stars. Such remnants behave like point
sources of gravity with no further stellar evolution. The trend where
η decreases is caused mainly by an increase of the half-mass radius,
which is more significant than variations in velocity dispersion.

The value of η computed from the most luminous component
gives an upper limit on the value of η derived from the integrated
light of all stars. An illustration based on bolometric light will be
discussed in Section 6.3 (Fig. 12). Note that the difference between
the two values depends on the wavelength of observation. At the
near-infrared wavelengths often used to study highly reddened star-
burst clusters, both values of η are essentially identical as soon as
the most massive stars have evolved off the main sequence. Indeed,
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short-lived red supergiants or asymptotic giant branch (AGB) stars
overwhelm other sources of light; at each time, their distribution is
that of the currently most massive objects.

4.4 Number of components

The large oscillations seen in Fig. 4 for a model with J = 7 compo-
nents suggested to us to aim for a significantly larger sampling of
the mass function to reduce noise to acceptable levels. Boily et al.
(2005) had found for a different reference model that J = 14 already
gave enough precision to identify global trends. Some uncertainties
remain with J = 14 models in the later stages of evolution and in
particular when the evolution time exceeds 100 Myr. This suggested
to us to increase J to the largest possible value. The computational
time however is quadratic in J and so after some experiments, we
settled for a compromise value of J = 35 mass groups binned inho-
mogeneously as described in Section 4.1. The difference between
J = 14 and 35 models lies mainly in a much smoother transition
at the time when the massive stars undergo rapid ML while the
dynamics for the same mass-component is less affected.

5 PA R A M E T E R S U RV E Y

We now survey different parameter values for N , mmax, Rhm0 and
〈m〉. We tried in each comparison to maintain all but one parameter
fixed to the reference model values given in Table 1. From equations
(10), (8) and (4) coupled with equation (1) to eliminate σ , we get

tms ∝ 〈m〉
mmax

N
ln(0.4 N )

Rhm0√〈m〉 N/Rhm0

∝
√

〈m〉 N R 3
hm0

mmax ln(0.4 N )
. (29)

The survey will highlight dependencies of tms on each quantities.
In all the graphs that follow the solid line indicates the reference
model of Table 1 unless stated otherwise.

5.1 Particle number

We first investigate the behaviour of η when changing the total
number of stars, N while the initial half-mass radius Rhm0 is kept
unchanged. The number N of the survey ranged from 4 to 15 ×
105 stars. These values of N bracket the clusters of mass equal to
the mean mass of Milky Way clusters (some 300 000 M�; Meylan
& Heggie 1997) and the very rich Antennae clusters of more than
106 M� (e.g. Mengel et al. 2002). The models all have identical
mass groups and upper-mass limit. With the main sequence lifetime
of 20 M� stars ≈ 10 Myr we expect from equation (29) a more
segregated profile and larger η at that time for smaller-N systems,
and a similar trend in evolution thereafter. Fig. 5 graphs η for five
values of N in the range indicated. It is clear from that figure that
richer clusters, with a longer segregation time, show a less-rapidly
changing η. This situation carries over beyond t ≈ 10 Myr when
the first supernovae events occur, as the second most heavy stars
continue to converge to the centre on their own segregation time-
scale, also ∝ √

N . As a result, the mass profiles are less segregated
when the stars move off the main sequence in succession for runs
with higher values of N. Overall differences in the profiling of η

at times t > 10 Myr remains small: for instance the average slope
dη/dt is ≈1.20 for the N = 1.5 × 106 model, and ≈1.31 for the
smallest-N model shown here. The differences are without major
implications if we are concerned with clusters of ages <100 Myr
or so.

Figure 5. Evolution of η for different total number of stars N. Note the
very similar slopes of the curves at times t > 10 Myr. The stellar IMF was
truncated at 20 M�.

5.2 Non-monotonic evolution?

Large-N clusters will host a very rich stellar population and very
massive stars. These stars have very large luminosity but are ex-
tremely short lived; their impact on the value of η should there-
fore be more significant on short time-scales. It is interesting, then,
to follow the behaviour of η for individual components when the
mass spectrum includes heavy stars easily identifiable from spec-
troscopy which could be taken as tracers for the global dynamics.
A tracer might be the brightest stellar component at any given time
and we have seen how η can be estimated from the brightest com-
ponent alone (Fig. 4). Would η increase monotonically in time if
such a tracer was used instead of a global value obtained from inte-
grated light? Call η j the value of η computed for a single component
j = 1, 2, . . . , J , of mass mj, and main-sequence lifetime t life j . The
mass of the brightest star is a monotonically decreasing function of
t and if j is the brightest mass group at time t then we would say
η = η j .

From basic stellar evolution models we have t life j+1 < t life j , and
so η = η j in the time interval t life j+1 < t < t life j . Thereafter η =
η j−1, and so on. We noted that η is a growing function of t/t ms while
the stars are on the main sequence. Hence, to find out whether η will
increase or decrease as we switch from η j to η j−1, it is sufficient
to check whether t life/t ms is a decreasing or growing function of
stellar mass. In Section 4, we fitted the logarithm of t life/t ms with
a quadratic function of log m, equation (25). We found a minimum
for the quadratic (i.e. logt life/t ms) at m ≈ 25 M�. Therefore, if the
current brightest stars have a mass that is larger than 25 M�, we
should find η j−1(t life j−1) < η j (t life j ). On the contrary, if the current
brightest mass is < 25 M�, then η j−1(t life j−1) >η j (t life j ) and hence
η(t) measured from tracers would increase with time.

We graph in Fig. 6(a) the curves of η = η j for different cut-offs
of the mass function, ranging from 12 to 70 M�. It is clear that very
large-mass tracers completely bias the value of η to large values,
however they can only do so for very short times running up to
≈10 Myr. We note that η j is non-monotonic with time for a cut-off
exceeding 25 M�, as expected. The mass of a star cluster derived
from massive stellar spectroscopic tracers (>30 M�) is off by a
factor that can exceed ≈2 for the reference set-up (Table 1). Note,
however, that at t ≈ 10 Myr and later, all the curves fall back on
the same profile, to within small fluctuations. For comparison, we
plot in Fig. 6(b) the solid curve of Fig. 6(a) along with the evolution
of η lum, the analogue of η computed from light-weighted integrated
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Dense star clusters in starburst galaxies 1399

Figure 6. Evolution of η for models with different upper-mass cut-off mmax.
(a) We set η = η j of the brightest component at time t (see Section 4.3).
When the stellar mass function is extended beyond M = 25 M�, η j is not
monotonic and becomes rapidly very large at early times. (b) Same as (a) for
mmax = 70 M� (solid line) and η lum computed from summing the light from
all the stars at all times for the same model (dotted line). Note that the first
‘bump’ due to an extended mass range is much attenuated when computed
with total bolometric light curves from MC sampling. The effect of very
bright and short lived stellar states (e.g. AGB) cause many oscillations due
to the random sampling in the profile of η lum.

quantities rather than just from the most luminous component. In
practice, η lum is calculated using MC representations of the sim-
ulated clusters. Clearly, the bolometric η lum < η at all times, as
anticipated from Section 4.3. If a red filter were applied, η lum would
be weighted predominantly by red giant stars, the brightest popu-
lation, and hence the gap between the two curves would close up.
The time derivative at t � 10 Myr is almost unchanged, so that the
trends in time that we will derive in a forthcoming section applies
to either η.

5.3 Mean density via Rhm0

Observed clusters in M82 or the Antennae are compact. They show
averaged surface densities that may exceed the reference value
≈7 × 104 M� pc−2 that we have adopted. Boily et al. (2005) al-
ready noted that the evolution of η is significant only for clusters
with surface density exceeding ∼104 M� pc−2 (at constant number
of stars). In another context, it is known that the mass density of
galactic nuclei may well exceed 107 M� pc−3.

We have therefore explored the evolution of clusters with different
central surface densities by multiplying lengths by a factor chosen
to cover more than a decade in density. The results are plotted in

Figure 7. Evolution of η for models with different projected initial half-
mass radius Rhm0. The denser models have smaller radius. Note that the
low-density model with Rhm0 = 2.0 pc shows hardly any evolution.

Fig. 7 for five values of projected initial half-mass radius, from 0.5
to 2 pc. The low-density model with Rhm0 = 2 pc has a central den-
sity ≈ 2 × 104 M� pc−2 and we find an increase in η of at most
20 per cent after 50 Myr of evolution; by contrast the model with
Rhm0 = 1/2 pc of central density ≈3 × 105 M� pc−2 shows a dra-
matic increase of η by a factor ≈30/8.6 = 3.5 in just 10 Myr of
evolution. The rapid increase of η is driven by the much shorter dy-
namical time of the compact cluster which trickles down to a shorter
tms in equation (29): t cr ∝ R3/2 implies a segregation time 43/2 = 8
times shorter for that model compared with that of the low-density
run.

5.4 Stellar IMF: 〈m〉
There is much on-going debate concerning the universality of the
stellar IMF. The shape of the IMF will fix the mean stellar mass
which enters the definition of the segregation time in equation (29).
We already noted that stars at the high end (>10 M�) of the mass
spectrum carry much light individually but unless their numbers
are greatly enhanced contribute a small fraction of the total mass.
In our exploration of the impact of the shape of the IMF on the
dynamics, we have therefore kept the index γ = 4.0 as for the
reference set-up (Table 1), and focused instead on the effect of
varying the low-mass power index α. As most of the cluster mass
is in low-mass stars, α dominates the mean mass value and bears
directly on η. The same mass range and number of groups were
used in all cases discussed below.

Fig. 2 illustrates the three different IMFs used to perform the
simulations plotted in Fig. 8. To encompass the standard errors of
±0.7 (Kroupa 2002), we varied our parameter α by ±1. The chosen
upper value α = 2.3 = β (〈m〉 = 0.47 M�) corresponds to a Salpeter
profile; it is reasonable to assume that any stellar IMF must flatten
out at the low-mass end to avoid a divergence in mass. When we do
reduce α to 0.3 (〈m〉= 1.3 M�), the shift in the evolution of η is at no
time as dramatic as the one for the Salpeter value. Flattening the IMF
below the reference α = 1.3 profile has not a significant effect on η.

6 O B S E RVAT I O NA L I M P L I C AT I O N S

A N D L O N G - T E R M E VO L U T I O N

6.1 The stellar mass function

The shape of the stellar mass function might be expected to vary with
radius as a result of mass segregation. The central region is rapidly
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Figure 8. Evolution of η for the reference model with different low-mass
power index α for the stellar IMF (see Fig. 2). The mean mass are 〈m〉 =
1.3, 0.85 and 0.43 M�, respectively, for α = 0.3, 1.3 and 2.3.

overstaffed with high-mass stars while the outer parts are depleted of
them. This trend can be quantified through the power indicesα,β and
γ of the mass spectrum, by comparing the mass function inside and
outside a reference radius. Unfortunately, a cluster evolving rapidly
in time offers no fixed reference radius. To palliate this, we computed
the stellar mass function in two concentric surface elements bounded
by the half-light radius from the most massive group. While not
specially meaningful, this choice offers the advantage of a direct
link with an observable quantity.

From the star counts in each of the 35 mass bins, the mass func-
tion is retrieved by summing all the mass within m and m + dm,
and dividing by dm to obtain a density. We then least-squares-fitted
power laws in the ranges [0.1; 1 M�], [1 M�; 10 M�] and [10 M�;
20 M�] as in Table 1. Since the binning is not at constant width,
we worried that the mass discretization would introduce large er-
rors in the values of the power indices retrieved. To check this, we
trained our algorithm on the known IMF from star counts at t = 0
for the reference as well as a coarser binning: the power indices α,
β, γ of Table 1 were recovered to ± 0.01, which we take as s.d.
values.

Fig. 9 compares the initial mass function (solid line) with the mass
function derived inside (dashed line) and outside (dotted line) the
half-light radius at three different times. With the standard model, the
changes in the mass function are small, therefore the model cluster
in this section was initially twice as concentrated (Rhm0 = 0.75 pc)
as the reference Plummer model (Rhm0 = 1 pc) but otherwise the
same. The three curves are trivially identical at t = 0 with slopes
given by the Kroupa IMF. As time increases, the low-mass power
index α remains virtually unchanged in the outer region (varying
from 1.3 to � 1.33) but shows a noticeable decrease in the inner
part of the system, down by ≈ −0.25 after 75 Myr of evolution.
The power index β for the mass range [1 M�; 10 M�] shows the
strongest variations of all, down from its initial value by as much as
−1 inside the half-light radius, and up by +0.4 outside this radius.
The steeper slope in the outer region is a direct consequence of the
outward migration of light stars initially inside the half-light radius,
while heavy stars flow in the opposite sense.

For very massive stars, the situation is made slightly more com-
plicated by the fact that the life-time of these stars is comparable
to, or less than, the evolution times displayed in Fig. 9. The ver-
tical straight line on each panel indicates the mass for which the
life-time equals the time displayed. All stars to the right-hand side
of this line are low-mass remnants from, for example, supernovae

Figure 9. The mass function after 25, 50 and 75 Myr of evolution for a
Plummer model of initial projected half-mass radius 0.75 pc (other param-
eters as in Table 1). The vertical line indicates the brightest group of stars
on each panel. The mass function has been retrieved, first by computing the
projected half-mass radius of the brightest component, and then by binning
stars inside and outside that radius at each t (see text for details). The slopes
α and β were obtained by linear regression of the data on the left-hand side
of the vertical line.

events: these stars therefore do not contribute to the light profile of
the cluster. Stars initially in this mass range are now contributing a
small addition to the census at the low-mass end of the distribution.
The high-mass part of the diagram is therefore completely depleted,
and has not been fitted.

These trends with radius are similar to those measured in young
LMC clusters such as NGC 1818 (Hunter et al. 1997; de Grijs et al.
2002b; Gouliermis et al. 2004). This cluster has an age of ∼30 Myr
falling between the times displayed in Fig. 9 and a calculated re-
laxation time ∼250 Myr assuming a half-mass radius of 2.6 pc and
mass of 30 000 M� (de Grijs et al. 2002a) with 〈m〉 = 0.85 M�.
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This is longer than in our simulations. Note however that the mean
density of the model with Rhm = 0.75 pc matches well the density
inside the half-mass radius of the cluster NGC 1818 (Elson, Fall
& Freeman 1987). Inspection of Fig. 9 of Gouliermis et al. (2004)
shows that the power indices in the inner part (e.g. <0.3 arcmin)
derived from their data are similar to those of our simulation. This
raises the possibility that dynamical mass segregation may yet play
a key role at the heart of that cluster while primordial segregation is
needed to explain the external parts, a conclusion already reached
by de Grijs et al. (2002b).

6.2 Colours

It is interesting to investigate to a fuller extent observable conse-
quences of mass segregation. To that end, we extracted colours from
our model clusters by coupling the Cambridge evolution tracks to
the spectral library of Lejeune, Cuisinier & Buser (1997, 1998).
Nebular gas emission lines, thought present in embedded young
clusters (Anders & Fritze-v. Alvensleben 2003), are left out of the
current analysis.

Sampling the mass spectrum requires some care in order to mini-
mize errors in colour magnitudes as discussed by Charlot & Bruzual
(1991). First, we tabulated the various evolutionary epochs for a
large set of masses split in equal logarithmic intervals from 2 to
100 M�. The luminosity function was constructed by carefully in-
tegrating the light flux from all the stellar masses in a given evolution
phase, paying great attention to resolve such brief but very bright
phases as the upper AGB.

Colours were computed in different wavebands (B, V , I from
Bessell 1990, and K from Bessell & Brett 1988) and compared
with those of other authors, who used the evolutionary tracks of the
Geneva group, the Padova group or variations thereof (Girardi &
Bertelli 1998; Bruzual & Charlot 2003; Mouhcine & Lançon 2003
and references therein; mostly based on tracks by Bressan et al. 1993
or Schaller et al. 1992). We found that the Cambridge tracks produce
significantly redder colours than others, which have in general been
more specifically tuned to reproduce the observed integrated colours
of star clusters. The origin of these differences lies in the time stars
spend in the late, red phases of stellar evolution. In calculations using
the Cambridge tracks, the predominance of red supergiants and up-
per AGB stars at near-infrared wavelengths is probably exaggerated.
To illustrate the effect of the luminous red stars, we ran simulations
with and without stars on the thermally pulsing AGB (TP-AGB).
Fig. 10 shows the evolution of the integrated V − K colour of the
model cluster. The two curves bracket values commonly found in
the literature for simple stellar populations.

Colour gradients were quantified by measuring the difference
between the colours measured inside and outside the projected half-
light radius:

V −K ≡ (V − K )<Rhl − (V − K )>Rhl . (30)

(V−K) is positive when the inner half of the cluster is redder than
the outer half. Fig. 11 shows the evolution of V−K for the ref-
erence model (Table 1). At early times, mass segregation tends to
make the centre bluer, as the massive stars that fall towards the
centre are still on the main sequence. Once these stars evolve off
the main sequence, the centre of the cluster very rapidly be-
comes the reddest part. Further evolution of the colour gradient
presents fluctuations that reflect the lifetimes of stars of progres-
sively smaller initial masses and the mass-dependent time they spend
as luminous red objects. However, V−K remains above 0.05 mag

Figure 10. V − K plotted against time for the reference model cluster (see
Table 1). The solid line is for integration with all possible stellar phases
including the TP-AGB. The dotted line is the same but without the TP-AGB
phase.

throughout, even when the brightest stars such as those of the
TP-AGB are artificially switched off.

6.3 Long-term evolution

It is natural to ask whether the continued increase of η observed
for the reference model over a time-scale of ∼100 Myr carries over
to longer time-scales. Recall that the relaxation time of that model
∼200 Myr from equation (8). We would anticipate some increase in
η for any cluster with an age �t r, however longer relaxation times
also imply longer mass-segregation times and significant contribu-
tions from low-mass stars to η. Since the stellar winds of lower-mass
stars moving off the main sequence are less energetic, it is not clear
whether or not the residual gas will be evacuated on a very short
time-scale and how this will impact on the dynamics. We take the
view that much of the gas can either remain within the cluster for
a period exceeding tr, or on the contrary be evacuated rapidly, thus

Figure 11. Difference of colour V−K between internal and external part of
a cluster relative to its half-light radius at each given time. The inner region
becomes bluer over the first 10 Myr of evolution, when the most massive
stars in the sample (mmax = 20 M�) become red giants. Thereafter, the
inner part remains systematically redder than the outer region by as much
as 0.2 dex over the first 50 Myr. Note however that the colour index V −K
fluctuates wildly. The trend of increasing V −K at t > 40 Myr is continued
in time exceeding 60 Myr (off scale). To account for possible bias from the
TP-AGB phase, when stars are very bright in the red, we recomputed the
colours by removing all stars in that phase of evolution (dotted line on the
figure). The behaviour stays unchanged.
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hopefully bracketing all realistic cases. Below we assess whether
either limit (or both) will result in a drop in η over long time-scales.

We ran the reference calculation (Table 1) for up to 500 Myr. That
stretch of time would correspond to several revolutions through the
galactic potential of a galaxy such as the Milky Way, and overrun the
starburst phase of a typical galaxy merger where young clusters are
observed to form. Since heavy stars play only a minor role beyond
∼30 Myr of evolution (cf. Fig. 6), we split the 35 mass bins so that
the stellar MS lifetimes now differ by ≈20 Myr from one bin to the
next (instead of five adopted earlier, see Fig. 3). In this way, the
part of the mass spectrum below 5 M� is far better sampled than
previously. Nevertheless, the discreteness of the mass function will
cause large fluctuations, particularly noticeable at times t � 200 Myr
(cf. Section 4.3) and tend to underestimate the increase of η as we
have seen when comparing simulations with fewer components.

In Fig. 12, we graph η evaluated in three different ways for com-
parison. The dotted curve (denoted ‘η with ML’) assumes instan-
taneous evacuation of the mass released through stellar evolution.
The dashed curve denoted η lum also assumes instantaneous mass
evacuation but is the analogue of η computed (as in Fig. 6) from
light-weighted quantities, using a MC representation of the clus-
ter. To verify the impact of stellar ML, we also plot the value of η

obtained with a constant total cluster mass. The result is shown in
Fig. 12 labelled as ‘η without ML’ (solid line). For that curve we
find an increase of η of a factor ranging from 5 to 6 by the end of the
run. This curve remains significantly and systematically higher than
the other two throughout the run. These curves bound, therefore, all
possible values because in practice some of the gas will leak out and
η ∝ M would decrease as a result. A full simulation including hy-
drodynamical effects would trace η somewhere between the curve
shown here for η lum and the solid line of η without ML.

It is highly likely that tidal fields will affect the morphology of
a cluster as it orbits the host galaxy. This will certainly change the
profiling of η in time, for example, by stripping some of the cluster
mass. But unless the cluster evolves in a very strong tidal field, the

Figure 12. Parameter η versus time for an 35-component simulation (see
text for details of the numerical set-up). The top-most solid curve was ob-
tained by computing η at constant total cluster mass, so disregarding ML
due to stellar winds. The dotted curve assumes on the contrary that this ML
leaves the cluster instantaneously. A more realistic situation where the stellar
winds escape over a finite time interval would pitch η somewhere between
the two curves shown here. Note that η was once more calculated by taking
the most luminous component as tracer. If we draw MC realizations using
the luminosity from all the stars to compute η = η lum under the same as-
sumption of instantaneous ML, we instead obtain the dashed curve which
shadows closely the dotted line. Either way of computing η yields continued
increase up to 500 Myr.

dynamics inside the half mass radius should prove relatively robust.
If the total cluster mass decreases, stripping mass outside rhl, then
η would decrease from the values obtained here. A full inspection
of this issue would require three-dimensional model clusters which
lay beyond the scope of the current study.

7 A P P L I C AT I O N TO C L U S T E R M A S S

F U N C T I O N S ( C M F s )

7.1 η–tr0 relation

The results of Sections 5.1 and 5.3 suggest a common thread linking
models of high mean density and those of smallish total mass. Since
these two quantities combine to give the system relaxation time
in equation (8), we may hope to relate η for models of different
relaxation times but comparable ages for a given IMF through a
simple scaling formula involving the initial relaxation time tr0. Thus,
we take the view that evolution will be driven almost exclusively by
two-body relaxation and not, for example, variations in the stellar
mass function. Such effects would play a significant role, as shown
in Fig. 6, but only for clusters not older than a few Myr.

We sought out such a scaling relation by performing a series of
runs for models with different values of tr0, spanning a wide range of
values in Rhm0 and N but in other respects identical to the reference
model (Table 1). We computed η for these models at t = 10 Myr,
approximately when the first stars become supernovae, and a time
t = 40 Myr which gives an intermediate age between, for example,
age estimates of Antennae clusters (Mengel et al. 2002) and that
of M82-F (Smith & Gallagher 2001; McCrady, Graham & Vacca
2005). Fig. 13 plots the variations in η at these two times relative to
its initial value, η t/η0, as function of tr0. Both sets of points are
well fitted by single power laws,

ηt

η0
= At × t−at

r0 , (31)

and we list the values of At and power index at in Table 2 for
two different times. The error bars shown on the figure result from
oscillations of η due to the mass sampling. The power index at shows
only a mild dependence on the age of the cluster. This is somewhat
surprising if we note that the same power-law functional fit applied
to the half-light radius Rhl/Rhl0 and square velocity dispersion
σ 2

1d/σ
2

1d0 give equally good results but now the parameters vary
much between the two chosen times (cf. Table 2).

Figure 13. The parameter η as a function of initial relaxation time tr0 from
different simulations where both N and Rhm0 have been varied. The relative
increase η/η0 is a power law of tr0. The error bars are deviations from the
mean value of η at each time.
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Table 2. Power-law fits to η as function of the initial relaxation time. A least-
squares fit of the functional form defined by equation (31) was performed
at two cluster ages. The s.d. values on At and At are, respectively, 5 and
1 per cent.

t = 10 Myr t = 40 Myr
η Rhl σ 2

1d η Rhl σ 2
1d

At 500 −90 −57 800 −76 −36
at 1.36 1.15 1.22 1.36 1.05 1.08

A general expression for η valid at ages between 0 and about
50 Myr can be derived from the above. Guided by the aspect of
Figs 5, 7 or 8, we distinguish an early regime of rapid evolution, up
to ∼10 Myr, and a subsequent regime of slower changes. A good
fit to model values is obtained by running a straight line from the
value of η at t = 0 to its value at t = 10 Myr for the early regime,
and another straight line through the values at 10 and 40 Myr for the
later evolution, using Table 2. It can be summarized, with t in Myr,⎧⎨⎩

at = 1.36,

At =
{

50 t if t < 10 Myr,

10 t + 400 if t > 10 Myr.

(32)

Fig. 14 compares the analytical values with the results of a simu-
lation with tr0 � 205 Myr. Differences do not exceed 10 per cent
even when extrapolating to ages of ∼100 Myr. This level of error is
found for all models with an initial relaxation time above 100 Myr.
When the relaxation time is shorter, we find that the interpolation
scheme systematically underestimates η.

7.2 Application to a model CMF

Using the linear interpolation scheme of the preceding paragraph
we may compute the current mass conversion factor η of a cluster
from equation (31) given tr0 and its age t < 100 Myr. The real
mass of the cluster so retrieved may then be compared to the mass
estimate we would have computed had we kept the initial value
η0 ≈ 8.6 constant throughout; the ratio of real to estimated mass
equals η(tr0, t)/η0. To compute η(tr0, t) first requires a cluster mass
and half-mass radius, in order to evaluate tr0 from equation (8). To
do this for an ensemble of clusters, we set up Gaussian distributions

Figure 14. Example of the reconstruction of the evolution of η in time.
The symbols ( ) represent the data from the model while the various curves
are drawn from the parameter fits of Table 2 using three values of tr0 in
equation (31).

Figure 15. Apparent (dotted curves) and actual (solid curves) cluster mass
functions drawn from Gaussian distributions in radii and ages. (a) Results
for a cluster mass distribution of mean radius equals 1 ± 0.2 pc and mean
age equals 30 ± 5 Myr; and (b) same as (a) but with mean radius equals
2 ± 0.4 pc and mean age equals 60 ± 10 Myr. The MC realizations contained
10 000 clusters. The resulting distribution of initial relaxation time are (a)
190 ± 70 Myr and (b) 550 ± 130 Myr.

for M and Rhm as well as the cluster age, t. These distributions were
each sampled independently with 104 realizations using a standard
Ulam–von Neumann (MC) rejection method. In the following, we
quote the dispersion σ of these distributions as uncertainties on the
mean value (i.e. mean ± σ ).

The results are shown in Fig. 15 with a log-Gaussian CMF of mean
mass 5 × 105 M� for two realizations: (a) an ensemble of compact
clusters of mean radius 1 ± 0.2 pc and age 30 ± 5 Myr, in line with
values adopted for our reference model and (b) an ensemble of mean
radius 2 ± 0.4 pc and mean age 60 ± 10 Myr inspired from M82-F
cluster data (McCrady et al. 2005). The resulting relaxation time
distributions are, respectively, 190 ± 70 Myr and 550 ± 130 Myr.

Because the mass derived assuming a constant η = η0 is always
lower than the actual cluster mass, the distribution shifts to lower
masses as compared to the true CMF. Table 3 list the displacements
of the peak of the CMF for four Gaussian distributions of different
mean initial relaxation times tr0, each of the same 50 Myr dispersion.
It is clear that the shorter relaxation times lead to a larger shift and
we find a maximum shift of 0.2 dex for the distribution of average
tr0 = 150 Myr. Very similar conclusions apply for the ensemble of
longer-relaxation time when the average age is also longer [case (b)
above, displayed on the right-hand panel in Fig. 15].

In this spirit, the very massive and young Antennae clusters are
particularly interesting. Table 3 of Mengel et al. (2002) lists param-
eters for five young clusters of ages ranging from 6 to 10 Myr and
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Table 3. Shift of a lognormal distribution in mass centred on 106 M� for
different mean relaxation times. The cluster population has a Gaussian age
distribution of mean 30 ± 20 Myr.

〈tr0〉 ± 50 Myr 150 250 350 450

Shift of 〈log M〉 0.2 0.15 0.1 0.05

masses from 600 000 to 5 × 106 M�. The projected half-mass radius
of these clusters is significantly larger than 1 pc, the value we have
adopted for our reference model. Those large radii may mislead one
to expect much larger relaxation times and, consequently, little or
no evolution of the η over time. However, we note that Mengel et al.
(2002) fitted King models with a concentration parameter �/σ ≈ 6
to the light profiles of their clusters. Such King models are signif-
icantly more concentrated than the Plummer model that we used
in the calculations performed here. In fact, it turns out that a King
model with �/σ = 6, a half-mass radius of 2–3 pc (cf. table 3 of
Mengel et al. 2002) and a mass of some 500 000 M�, has a mean
density within its core radius that essentially equals the mean den-
sity within the half-mass radius of our reference Plummer model.
Consequently, the rapid evolution of η found in this article should
be applicable to the dynamics in the core of some Antennae clusters,
implying that the core regions of very rich clusters are still affected
by strong segregation despite their very low age, a conclusion also
reached by de Grijs, Wilkinson & Tadhunter (2005) using observa-
tional arguments. As a result, the core will appear more compact,
while the half-mass radius is left largely unchanged, a situation that
leads to King model fits with higher values of �/σ than is appro-
priate (cf. also Boily et al. 2005, for examples of this effect).

8 D I S C U S S I O N

This paper investigated possible biases when estimating the dy-
namical mass of young and dense stellar systems from spectropho-
tometric data. Using the virial theorem, one may convert observed
half-light radius and flux-weighted mean velocity dispersion to mass
through the dimensionless parameter η defined in equation (3). This
factor will vary with time due to mass segregation whenever the
two-body relaxation time in equation (8) is short: the heavy bright
stars segregate to the centre rapidly. A parameter space exploration
led us to conclude that for clusters where tr0 � 200 Myr η may in-
crease by a factor of 2 compared with its initial value, whereas if
tr0 � 500 Myr then very little evolution of η will take place within
the first 100 Myr. Meanwhile, the mass distribution and potential,
dominated by fainter stars, remains largely unchanged, so that light
does not follow mass anymore.

We can synthesize the main features of this bias in η in a diagram
of cluster age versus relaxation time derived from observations.
Substituting the projected half-mass radius Rhm and the total mass
M for rg and N in equation (8), we get

tr0 = 2 × 0.138 η
1/2
0

G 〈m〉 √
3 ln �

R 2
hm σm1d, (33)

where 〈m〉 is given by the IMF and ln � is the Coulomb logarithm
[for which we adopted ln (0.4 N) previously]. The same formula
applied to observed quantities would give an estimated relaxation
time

tr,obs = 2 × 0.138 η
1/2
0

G 〈m〉 √
3 ln �

R 2
hl σlos. (34)

With the ratio η/η0 given by equation (7) we obtain a ratio of ‘true’
to measured relaxation times,

tr0

tr,obs
=

(
η

η0

)2 (
σlos

σm1d

)3

. (35)

The ratio of squared velocity dispersion was found not to decrease
by more than 10 per cent throughout the simulation time; we may
therefore set σ los/σ m1d = 1 in equation (35). Equation (35) together
with equation (31) can be solved with input cluster age and measured
relaxation time to obtain a unique pair (tr0, η). It is then straightfor-
ward to draw lines of constant η in a graph of age versus tr,obs axes
and recover the true relaxation time of the mass profile (since we
must have tr0 = tr,obs at time t = 0 by construction and the potential
does not change).

Fig. 16 graphs the contours lines of constant η/η0 in the plane
tr,obs–age. All clusters start off on the age = 0 axis which coincides
with the contour η/η0 = 1. As the cluster becomes older and mass
segregation sets in, the time evolution marks a path that is seen to
drift to shorter (measured) relaxation times and larger η. Each level
is indicated on the graph. The path for our reference model is shown
along with a second model of initial half-mass relaxation time of
400 Myr. Note that even for this model tr,obs drops to ≈200 Myr

Figure 16. Contours of constant η(t)/η0 (dotted curves) in the plane of
cluster age versus relaxation time, tr,obs, derived from cluster observables.
The contours were constructed using the bilinear interpolation scheme of
Section 7.1. The contour η(0)/η0 = 1 coincides with the horizontal axis
(cluster age = 0). (a) The solid lines trace the evolution in time of η/η0 for
two model clusters with initially tr,obs = 180 and 400 Myr. The arrows point
to the future. The value of tr,obs decreases with age, always, while η(t)/η0

increases. (b) Same as (a) but now one of the models has tr,obs = 100 Myr
initially. The evolution track for that case crosses contours of yet higher
values of η(t)/η0 at fixed age. Note the change of scale on the abscissa.

C© 2006 The Authors. Journal compilation C© 2006 RAS, MNRAS 369, 1392–1406

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/369/3/1392/1231562 by guest on 21 August 2022



Dense star clusters in starburst galaxies 1405

after 100 Myr of evolution: at that time its mass is underestimated
by ≈30 per cent. Fig. 16(b) zooms in on the interval [0:100] Myr of
the tr,obs-axis.

As seen in Fig. 16, the most dramatic evolution in η occurs in the
first 10 Myr. Furthermore, if only the most luminous stars were used
as tracers, still higher factors η/η0 would be expected (cf. Fig. 6).
For the young massive Antennae clusters for which the measured re-
laxation time tr,obs > 500 Myr, mass segregation is negligible when
applied to these clusters as a whole. We noted, however, that our
reference model provides a good fit to the core region of some of
these clusters in terms of mass and density. Thus, mass segrega-
tion may yet prove an efficient agent for evolution in the central
part of massive young clusters, a process that would contribute to
make the core look more compact than it really is and so inflate
the concentration parameter c = log(r h/r c) of King model fits to
these clusters. Examples of this phenomenon are given in Boily et al.
(2005).

Light curves have been used to estimate colour indices averaged
over two surface elements bounded by the projected half-light ra-
dius. The difference between these colour indices taken as a func-
tion of time shows that the inner part becomes bluer by 0.05 dex
so long as massive stars have not reached the red giant state. At
that time and for all times thereafter, the inner region becomes red-
der (by more than 0.05 dex). Colours should be interpreted with
caution. The evolution of V − K is highly sensitive to the prop-
erties of the red stages of stellar evolution, and especially to the
red supergiant and AGBs. Such fine details of stellar evolution,
often model dependent and difficult to pin down with precision,
have less bearing on the colour gradients because these giants
stars dominate the light in the red wherever they are, and hence
V−K quantifies their concentration in space. The stellar evolution
tracks used here tend to exaggerate the role of bright red stars. Dis-
carding the most luminous red supergiants or TP-AGB stars alto-
gether reduces the gradients by a few hundredths of a magnitude at
most.

The evolution of the stellar mass function within the model clus-
ters was also quantified through variations in the power indices de-
fined for the IMF equation (18). We noted that the variations of the
power index β during evolution are a good match to those observed
in the LMC cluster NGC 1818 (Gouliermis et al. 2004). However,
the initial relaxation time of the more concentrated model used in
this section of ∼115 Myr is significantly smaller than the one de-
rived for this cluster [we compute ∼250 Myr from equation (8); see
also Elson et al. 1987] which implies that dynamical mass segrega-
tion alone does not account for gradients in the stellar population
for the cluster as a whole. Thus, we would argue that a fair degree
of primordial stellar segregation must be relied on to explain that
cluster photometry. Despite this caveat, it is well worth repeating
that the central relaxation time of NGC 1818 of some 120 Myr is
of order of the half-mass relaxation time of the model used, and
therefore dynamical segregation surely has played a role in the evo-
lution of the stellar mass function near the centre (see also de Grijs
et al. 2002b). Our view is that a set of models tailored to that par-
ticular cluster will be required to disentangle fully primordial from
evolutionary effects.

With η(tr0, t) derived from equation (31), it was possible to con-
struct a log-Gaussian cluster mass function and carry out a sta-
tistical survey of the impact of mass segregation on the shape of
the observed CMF obtained from assuming no evolution of η, to
the CMF derived from taking into account the time-evolution of η

(Fig. 16). The actual total integrated mass of the CMF is 50 per cent
larger than the apparent one for the case describe in Fig. 15(a) and

20 per cent for Fig. 15(b). This has direct bearing on the global
SFR derived for galaxy mergers and starburst galaxies in general.
We noted that the two CMFs so constructed differ mostly at the
low-mass range (<500 000 M�) where the relaxation time is sig-
nificantly shorter. To quantify this effect, we found a shift in the
peak of the real CMF towards high masses compared to the ‘ob-
served’ CMF. This shift is on the order of 0.2 dex for a distribution
of relaxation times centred around 200 Myr and is lower when this
mean relaxation time is larger (Table 3). Furthermore, we also found
a slight widening of the observed CMF, by a logarithmic factor of
�0.05 (see Fig. 15). This would have some influence on evolu-
tionary predictions of cluster mass functions. Vesperini (1998) has
shown that the Milky Way CMF may well shift to smaller masses
by �0.1 dex over a Hubble time due to tidal destruction and other
effects. The trend we found here goes in the opposite direction,
however it is only operative for clusters with short relaxation times.
As clusters are possibly more massive than estimated from obser-
vations but also less concentrated (lower King fitting parameter) it
is not clear how tides and other disruptive effects will shape up the
CMF, especially if the host galaxy itself is out of equilibrium. A
set of fully three-dimensional N-body simulations could enhance
our knowledge of the influence of mass segregation on longer time-
scales and with strong tidal fields found, for example, in merging
galaxies.

Our models of isolated clusters suffer a few important limita-
tions. We have mentioned the role that tidal fields will play in re-
moving weakly bound stars. Another aspect of the problem is the
possibly low star formation efficiency when the cluster forms. We
mentioned how gas from stellar winds might impact on the dynam-
ics (Section 6.3). Residual gas from the formation epoch will also
drive much evolution in the early stages by bringing the cluster out
of virial equilibrium (Elson et al. 1989; Kroupa & Boily 2002, see
also Bastian & Goodwin 2006). Yet another aspect is our tacit as-
sumption that stars are all born at the same time and all evolve in
unison. Stars in massive clusters may well have ages that vary by a
few Myr. This will have some bearing on the rise of η in the early
stages because not all the stars become remnant at the same time,
leading to enhanced mass segregation and further increase in η. For
instance, the knee seen at t ≈ 10 Myr may well increase to yet higher
values before shifting over to the slower rate of increase that we have
advertized (Fig. 6).

A more severe limitation however, one that will impact on η at
all times, is the fraction of primordial binaries. Tight binaries will
survive for eons and in particular a very large fraction of them will
survive for the short times that are of interest here. The presence of
binaries and multiple stars naturally enhances the observed velocity
dispersion which biases the mass estimate to larger values through
the virial theorem. However, binaries also instantly broaden the
width of the effective stellar IMF, since, roughly speaking, they will
dynamically act as single stars of mass equal to the sum of their
member stars. If the fraction of primordial binaries is low, the mean
stellar mass will remain unchanged but the maximum mass will
effectively double. The net effect, then, is similar to halving the
mass-segregation time-scale tms by reducing the mean stellar mass.
This can be accomplished by increasing the power index α of the
IMF in equation (18). We have found after ≈10 Myr of evolution for
the extreme case where α = 2.3 (Salpeter value) that η has nearly
increased by 30–50 per cent in comparison with the result for the
standard case α = 1.3. These considerations clearly point to yet
more rapid evolution and the need for more realistic models than is
affordable here to pin down more precisely the dynamics of young
massive clusters.
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