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Abstract. We have used the master equation approach to study a moderately complex network of diffusive reactions occurring
on the surfaces of interstellar dust particles. This network is meant to apply to dense clouds in which a large portion of the
gas-phase carbon has already been converted to carbon monoxide. Hydrogen atoms, oxygen atoms, and CO molecules are
allowed to accrete onto dust particles and their chemistry is followed. The stable molecules produced are oxygen, hydrogen,
water, carbon dioxide (CO2), formaldehyde (H2CO), and methanol (CH3OH). The surface abundances calculated via the master
equation approach are in good agreement with those obtained via a Monte Carlo method but can differ considerably from those
obtained with standard rate equations.
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1. Introduction

Rate equations have been widely used in simulations of gas-
phase processes in the interstellar medium (Le Teuff et al.
2000). Their application has also been extended to treat dif-
fusive reactions on the surfaces of dust particles (Pickles &
Williams 1977; Hasegawa et al. 1992). This approach, how-
ever, is valid only if the average number of reactive surface
species per grain is large and the discrete nature of the system
can be neglected. When this number becomes small, the rate
equations may no longer constitute an accurate description of
the chemical processes (Tielens & Hagen 1982); moreover, for
species with surface populations less than one, it can become
meaningless to use the rate equations (Charnley et al. 1997;
Caselli et al. 1998).

This problem has spurred attempts to develop alternative
methods for handling diffusive reactions on granular surfaces.
One possible solution is to use Monte Carlo procedures to sim-
ulate the grain-surface chemistry. Different methods, based on
Monte Carlo simulations, have already been employed for var-
ious grain surface networks (Tielens & Hagen 1982; Charnley
et al. 1997; Charnley 2001; Caselli et al. 2002). These sim-
ulations were performed under the constraint that, during the
evolution of the surface chemistry, the gas-phase abundances
of all species stay constant – a requirement that cannot be
met in complex gas-grain models, where it is essential that the
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gas-phase and the grain-surface reactions run in a parallel mode
during the calculations and that both adsorption onto and des-
orption from grain surfaces occur (Ruffle & Herbst 2000). It
does not appear possible, however, to follow simultaneously
the gas-phase chemistry with rate equations and the surface
chemistry with a Monte Carlo approach. Although one can
use the Monte Carlo method to simulate gas-phase reactions
(Charnley 1998), a Monte Carlo solution for both gas-phase
and grain-surface chemisty could be done only with an exceed-
ingly large amount of computing time, and has not yet been
attempted. Current gas-grain chemical models (e.g. Ruffle &
Herbst 2000) use a semi-empirical modification of the stan-
dard rate equations for diffusive surface chemistry known as
the “modified rate approach” (Caselli et al. 1998; Stantcheva
et al. 2001; Caselli et al. 2002). Although this approach is ef-
ficient, its semi-empirical nature raises doubts of its suitability
under all conditions.

Recently, two groups (Biham et al. 2001; Green et al. 2001)
proposed a second stochastic approach to granular chemistry,
known as the master equation treatment. In this approach, dif-
ferential rate equations for species with a small surface abun-
dance are replaced by differential equations in which one solves
for the probability that a specific number of atoms or molecules
of that species (0, 1, . . . ) is present on a grain at any time. In
general, the probabilities for each surface species are not inde-
pendent and so an exact treatment requires the determination of
joint probabilities (e.g., for 0 of species A, 1 of species B, etc.).
Green et al. (2001) used the master equation method to study
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the simple O, H system; in this system O and H atoms, with
fixed gas-phase abundances, are allowed to adsorb onto grains
and react to produce the three molecules OH, O2, and H2 via
diffusive processes. For this system, determination of the sur-
face populations of the minor but important species H and O re-
quires the calculation of two-body probabilities, while surface
abundances of the diatomic species can be calculated from nor-
mal rate equations. The two-body probability approach to the
simple O, H system can itself be simplified by a number of
approximate methods (Green et al. 2001). One approximation,
proposed by Biham et al. (2001) but not attempted by Green
et al. (2001), reduces the two-body probability to independent
probabilities for the individual species O and H. With this ap-
proach, the so-called “many-body” master equation reduces to
separate master equations for the individual species. Although
the approximation leads to a significantly smaller number of
simultaneous differential equations to solve, its validity is not
clear for systems with strong correlations between the surface
abundances of the different minor species.

If one attempts to scale up the many-body master equation
approach to model realistic complex networks of surface reac-
tions, one can experience serious problems involving both com-
puter time and memory, unless suitable approximations can
be found. In order to learn more about the use of the method
for larger systems, we have considered an intermediate system
more complex than previously studied but not at the level of
complexity needed for a complete network of surface reactions.
In particular, we report here the use of the many-body master
equation approach to solve a grain-surface chemical network
in which gaseous H, O, and CO accrete onto grain surfaces
and lead to the production of molecular hydrogen, formalde-
hyde, methanol, water, oxygen, and carbon dioxide (Caselli
et al. 2002; see also Charnley et al. 1997). This system has
previously been studied by the modified rate and Monte Carlo
approaches (Caselli et al. 2002). We consider here a variety
of different diffusive rates and temperatures to see how the
master equation approach fares. As opposed to the previous
treatments based on the master equation, we utilize a time-
dependent approach designed eventually to be coupled with
a time-dependent gas-phase chemistry, since the advantage of
the direct solution of the master equation compared with the
Monte Carlo realization is that the differential equations are
easily coupled to rate equations for the gas-phase species.

The organization of the paper is as follows. In the next sec-
tion, we discuss the chemical network of diffusive surface re-
actions and the different rates chosen. In Sect. 3, we write out
the differential equations needed to model the methanol system
via the master equation approach, while in Sect. 4 we present
our results, and compare them with Monte Carlo and rate ap-
proaches. A general discussion is contained in Sect. 5. In addi-
tion, a detailed mathematical discussion of the master equation
and Monte Carlo realizations to stochastic kinetics is contained
in the Appendix.

2. The H, O, CO Network

In this network, three gas-phase species – H, O, and CO – are
allowed to accrete onto a granular surface where they react via

Table 1. H, O, and CO gas-phase abundances (cm−3) utilized.

Abundance n Low Intermediate High
H 1.15 1.15 1.10
O 0.09 0.75 7.0

CO 0.075 0.75 7.5

diffusion to produce the stable molecules H2, O2, H2O, H2CO,
CH3OH, and CO2, as well as reactive intermediate species. Of
the ten reactions, nine are association reactions, in which a sin-
gle product is formed. No gas-phase chemistry is allowed to
occur and the gas-phase concentrations of the three species are
assumed to remain constant despite accretion onto grains. This
somewhat contradictory assumption permits the surface chem-
istry to occur only over a period sufficiently short that the abun-
dances of the gas-phase species do not change dramatically.

The calculations were carried out for three different sets of
gas-phase abundances of the accreting species, known respec-
tively as the low, intermediate, and high density cases. All of
these cases refer to dense clouds in which most of the atomic
hydrogen has already been converted into molecular hydrogen,
leaving only a small remnant in atomic form. Such conditions
pertain when a significant amount of CO has been produced via
gas-phase chemistry. The abundances n(cm−3) of H, O, and CO
shown in Table 1 were obtained from steady-state gas-phase
models run at molecular hydrogen densities of 103, 104, and
105 cm−3. In the low-density case, there is more atomic hy-
drogen than O and CO, and the chemistry will be seen to be
strongly reductive, whereas in the high-density case, there is
little atomic hydrogen around to react with CO.

The surface reactions for the network are listed in Table 2
along with activation energies in K where appropriate. The ac-
tivation energies Ea (K) are approximate only (Caselli et al.
2002). The total number of surface species is 12; this includes
the highly reactive radicals OH, HCO, and H3CO. The key re-
action sequence in the network is the relatively slow hydro-
genation of CO into methanol (CH3OH) via H-atom addition
reactions. Unambiguous laboratory evidence for this hydro-
genation is not available (Hiraoka et al. 2000), but conditions
in interstellar clouds are not those in the laboratory and the
complete synthesis in Table 2 is by no means ruled out by ex-
periments. Once produced, all stable species except H2 remain
on the grain surface; the evaporation of molecular hydrogen is
included.

Whether one uses rate equations, the Monte Carlo ap-
proach, or the direct master equation method, it is necessary
to utilize diffusion rate coefficients k for the reactive surface
species (Hasegawa et al. 1992; Appendix). The rate coefficients
here are in units of s−1, as preferred by Caselli et al. (1998).
These are the sum of the rates t−1

diff (s−1) of the reactive partners
to traverse an entire grain, which is here assumed to contain
106 binding sites, multiplied by a factor κ that accounts for any
non-zero chemical activation barrier (Hasegawa et al. 1992).
The rates depend strongly on the barriers against diffusion Eb

from site to site chosen, and whether diffusion occurs via ther-
mal hopping or via quantum mechanical tunneling (Tielens &
Hagen 1982).
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Table 2. Surface reactions in the H, O, CO model.

Number Reaction Ea (K)

1 H + H−→ H2

2 H + O−→ OH
3 H + OH−→ H2O
4 H + CO−→ HCO 2000
5 H + HCO−→ H2CO
6 H + H2CO−→ H3CO 2000
7 H + H3CO −→ CH3OH
8 O + O −→ O2

9 O + CO −→ CO2 1000
10 O + HCO −→ CO2+H

In our calculation, we have considered three sets of barri-
ers against diffusion. The first, which comes from the earlier
astrochemical literature (Allen & Robinson 1977; Tielens &
Hagen 1982; Hasegawa et al. 1992), contains rather low bar-
riers and allows efficient tunneling for atomic H. The second
and third are based on the recent experiments of Pirronello
et al. (1997, 1999) as simulated by Katz et al. (1999), which
show that atomic H moves much more slowly on olivine and
amorphous carbon than previously assumed in the astrochemi-
cal literature. Two sets of barriers based on these experiments
on olivine have been used (Ruffle & Herbst 2000) – one, des-
ignated “slow H”, in which only the H atom barrier is raised,
and the other, designated “slow”, in which all other barriers are
raised proportionately. In both sets of barriers, no tunneling is
allowed, since no tunneling of H was detected in the labora-
tory. For our calculations here, the earlier astrochemical values
are used principally because the slower diffusion rates cannot
produce much formaldehyde and methanol in the small times
considered, and so are not emphasized (Caselli et al. 2002).
In our more complex gas-grain models, the slower rates have
been used, and show that formaldehyde and methanol can be
produced over long periods of time (Ruffle & Herbst 2000).

In addition to diffusive rates, the rates of adsorption and
desorption must be included in our calculation (Hasegawa
et al. 1992). Adsorption is assumed to occur at unit efficiency
once a gas-phase species strikes a grain. We consider only
thermal desorption (evaporation) and treat it as in previous
models (see e.g. Caselli et al. 1998); the rates, exponentially
dependent on the desorption energy ED, are included for the
accreting gas-phase species and for molecular hydrogen prod-
uct. Heavy molecular species desorb too slowly for this process
to be considered here. The small barriers against diffusion and
the desorption energies for all species in the model are listed in
Table 3.

Table 4 gives our values for the accretion rate coefficients
kacc (cm3 s−1) onto a grain, the evaporation rates t−1

evap from the
grain, and the diffusion rates for the species H, O, and CO at
10 K, unless they are vanishingly small. Calculations have been
done mainly at this temperature, although temperatures up to
20 K have been considered.

Table 3. Energy barriers against diffusion (low values) and desorption
energies (K).

Species Eb (K) ED (K)

H 100 350
O 240 800
OH 378 1260
H2 135 450
O2 363 1210
H2O 558 1860
CO 363 1210
HCO 453 1510
H2CO 528 1760
CH3O 651 2170
CH3OH 618 2060
CO2 750 2500

Table 4. Assorted rates for selected species at 10 K.

Species kacc (cm3 s−1) t−1
evap (s−1) t−1

diff (s−1)

H 1.45(−5) 1.88(−3) 5.14(+4)a

O 3.62(−6) 2.03(−23) 4.24(−5)
CO 2.73(−6)

a Quantum tunelling included.

3. Master equation for H, O, CO system

Of the three species – H, O, and CO – that accrete onto grain
surfaces, the first two are very reactive and never build up large
surface populations. On the other hand, CO reacts only slowly
via reactions with activation energy and so can build up a large
surface population under certain circumstances. In general, all
surface species in our network can be classified as either ma-
jor or minor species. The major ones correspond to the stable
species that react slowly if at all (CO, H2CO, CH3OH, H2O,
O2, H2, CO2) and can build up large abundances, while the mi-
nor ones are atoms and radicals likely to have a surface number,
defined as the number of species per grain, at or below unity.
We treat the minor species – H, O, OH, HCO, and H3CO –
probabilistically with corresponding surface numbers i1, i2, i3,
i4, and i5.

The first step in the master equation approach is to solve
for the joint probability P(i1,i2,i3,i4,i5), defined as the proba-
bility that i1, i2, i3, i4, and i5 numbers of minor species exist
on the surface as a function of time. In the calculations dis-
cussed here, we start with the initial condition that the joint
probability is unity for P(0, 0, 0, 0, 0). Let X and Y be, re-
spectively, the jth and kth reactive elements of the ordered
set {H, O, OH, HCO, H3CO}. Let Z represent any of the major
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species. The time derivative of the five-body probability for
each value of i1, i2, i3, i4, i5 can then be written as (Appendix)

dP
dt (i1, i2, i3, i4, i5) =

∑
{X}

kacc(X)n(X)
[
P(..., i j − 1, ...) − P(..., i j, ...)

]

+
∑
{X}

t−1
evap(X)

[
(i j + 1)P(..., i j + 1, ...) − i jP(..., i j, ...)

]

+
∑
{X,Y}

kX,Y(i j + 1)(ik + 1)P(..., i j + 1, ..., ik + 1, ...)

−
∑
{X,Y}

kX,Y(i j)(ik)P(..., i j, ..., ik, ...)

+
∑
{X}

kX,X
(i j + 2)(i j + 1)

2
P(..., i j + 2, ...)

−
∑
{X}

kX,X
i j(i j − 1)

2
P(..., i j, ...)

+
∑
{X,Z}
〈NZ〉kX,Z

[
(i j + 1)P(..., i j + 1, ...)

]

−
∑
{X,Z}
〈NZ〉kX,Z

[
i jP(..., i j, ...)

]
,

(1)

where n stands for gas-phase concentration and 〈N〉 for surface
abundance; i.e., the average number of atoms or molecules per
grain of a species.

The first term on the right-hand side of Eq. (1) accounts for
changes in the state of the surface on a particular grain due to
accretion of species. In this particular case, the sum consists of
two terms because the only accreting species with minor sur-
face abundance are H and O. The second term describes the
changes of the system due to evaporation, and the remaining
terms take into account any changes due to surface reactions.
These terms are subdivided into expressions for reaction be-
tween two distinct minor species (X, Y), for self-reaction (X, X),
and for reaction between a minor and a major species (X, Z).
Note that all of the terms refer to reactants; there is also one
minor product – H atoms in reaction 10 of Table 2. To include
the production of H in Eq. (1) requires a term which, when X
and Y are equal to O and HCO, contains probability functions
where three indices change. We have not included this term in
Eq. (1) for simplicity, but it is of course included in our calcu-
lations. The average abundances of the major species are ob-
tained from rate equations discussed below. It is easily shown
that the total probability as a function of time is conserved at
unity.

Because the abundances of minor species are low, joint
probabilities with high numbers of these particles are very un-
likely and therefore, the probabilities for such states can be
neglected. In particular, we choose a set of parameters N =
{N1,N2,N3,N4,N5} such that the only probabilities P(...,i j,...)
to be considered possess i j ≤ N j, j∈ {1, 2, 3, 4, 5}. Specific

choices for the set N are discussed in the Results section. It
is obvious that for the master equation method to be feasible,
the set N must contain elements as small as possible.

Once the probabilities are determined by integration for
a specific time, the average numbers of minor species, 〈NH〉,
〈NO〉, etc., as well as the correlation terms 〈NHNO〉, 〈NHNOH〉,
etc., can be calculated from these probabilities; e.g.,

〈NH〉 =
N∑

i1 ,i2,i3,i4,i5

i1P(i1, i2, i3, i4, i5). (2)

Both average numbers and correlations are then used in the rate
equations for the abundance of the major surface species, while
the latter can also be used to test how independent or correlated
the minor species are. In the rate equations for major species,
shown below, the division of species into major and minor ones
leads to the fact that correlations are only used for pairs of mi-
nor species:

d〈NH2〉
dt

= − t−1
evap(H2) 〈NH2 〉

+ kH,H × 0.5 × 〈NH(NH − 1)〉, (3)

d〈NO2〉
dt

= kO,O × 0.5 × 〈NO(NO − 1)〉, (4)

d〈NH2O〉
dt

= kH,OH × 〈NHNOH〉, (5)

d〈NCO〉
dt

= kacc(CO)n(CO)

− kH,CO〈NCO〉〈NH〉 − kO,CO〈NCO〉〈NO〉 (6)

d〈NH2CO〉
dt

= kH,HCO〈NHNHCO〉
− kH,H2CO〈NH2CO〉〈NH〉 (7)

d〈NCH3OH〉
dt

= kH,H3CO〈NHNH3CO〉, (8)

d〈NCO2 〉
dt

= kO,CO〈NCO〉〈NO〉 + kO,HCO〈NONHCO〉· (9)

3.1. Approximation of independent probabilities

Considering the large number of coupled differential equations
for the many-body P required in the exact master equation ap-
proach, it is perhaps useful to consider whether the use of one-
particle probability functions is adequate. This approach was
suggested but not tested by Biham et al. (2001) for the simple
O, H system, and leads to a different and somewhat simpler sys-
tem of differential equations. The H, O, CO system reduces to
the O, H system if no CO is allowed to accrete onto grains and
the OH radical is treated as unreactive. Biham et al. (2001) used
the notation PH(i) and PO(j) for the (independent) probabilities
that i H atoms and j O atoms are on the surface, respectively.
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For X, Y ∈ {H, O}, the equation for the probability that species
X has i atoms is

dPX

dt
(i) = kacc(X)n(X)[PX(i − 1) − PX(i)]

+ t−1
evap(X)[(i + 1)PX(i + 1) − iPX(i)]

+ kX,X

[
(i + 2)(i + 1)

2
PX(i + 2) − i(i − 1)

2
PX(i)

]

+ kX,Y〈NY〉[(i + 1)PX(i + 1) − iPX(i)] (10)

with initial conditions: PH(0) = 1 and PO(0) = 1. Note
that species X depends on species Y only through its average
abundance.

The rate equations for the major species are in the form

d〈NOH〉
dt

= kO,H ×
∞∑

i1=1

i1PH(i1) ×
∞∑

i2=1

i2PO(i2)

= kO,H × 〈NH〉〈NO〉, (11)

d〈NH2 〉
dt

= kH,H ×
∞∑

i1=2

i1(i1 − 1)
2

PH(i1)

= kH,H × 〈NH(NH − 1)〉
2

, (12)

d〈NO2 〉
dt

= kO,O ×
∞∑

i2=2

i2(i2 − 1)
2

PO(i2)

= kO,O × 〈NO(NO − 1)〉
2

· (13)

For the production of OH, the average abundances of O and
H appear as independent products rather than as a correlation,
which would be the case if the minor (H, O) species were de-
termined with a two-body probability function.

3.2. Implementation

The calculations were performed with the use of a Gear algo-
rithm on a Cray SV1 computer. To enhance the performance,
the equations were supplied by a subroutine which wrote them
in an explicit form. Calculations were virtually all performed to
a time of 1000 yr, which is rather short by astronomical scales,
but is more than sufficient to allow the minor species to reach
a steady-state condition and the major species to increase lin-
early with time. We have investigated how the needed computer
time depends on the astronomical time scale and find that for
the system studied, there is hardly any difference in computer
time if the astronomical time is increased 100-fold. To increase
the stability of the calculation, after every call of the equation-
solving routine, the total sum of the many-body probabilities
was evaluated and the amount by which it deviated from unity
was added to the probability for the state with no minor species.

4. Results

Unless we state that slow H or slow rates are being used, the
results below are for the fast rates discussed in Sect. 2. The
fast diffusion rates are emphasized both because they allow the
rapid production of methanol and because they cause a larger
discrepancy between the results of the standard rate equations

Table 5. Abundances and correlations for the H, O system.

Average Exact Approx.

〈NH〉 6.24(−03) 5.69(−03)
〈NO〉 1.82(−01) 1.23(−08)
〈NH〉〈NO〉 1.14(−03) 7.00(−11)
〈NHNO〉 4.80(−11) –

and more exact methods. Unless stated to the contrary, the tem-
perature is fixed at 10 K.

4.1. Check of the independence approximation

Before proceeding to our main results, it is interesting to check
the validity of the suggestion by Biham et al. (2001) that in-
dependent probabilities be utilized. We have used the simple
O, H system for a comparison among the following five meth-
ods: the Monte Carlo approach (Charnley 2001; Appendix),
the master equation approach, the approximation to the mas-
ter equation approach of Biham et al. (2001), the rate equation
approach, and the modified rate equation approach (Stantcheva
et al. 2001). Calculations were performed at a fixed concentra-
tion of gas-phase atomic oxygen (1 cm−3) and a variable con-
centration of gas-phase atomic hydrogen. No desorption of the
products was allowed. In the master equation calculations, the
maximum allowed numbers {Ni} for H and O were never larger
than 5.

Figures 1–3 show the mole fractions of the three diatomic
molecules, calculated by the various approaches as functions
of the gas-phase atomic hydrogen abundance. For the range of
conditions investigated, the exact master equation (Exact ME)
and the Monte Carlo simulation (Appendix) show excellent
agreement for all three species. The independent probability
approximation of Biham et al. (2001) (Approx. ME) follows
the inaccurate results of the rate equations for O2, is in good
agreement with the exact approaches for H2, and is in toler-
able agreement for OH except at very low gas-phase H con-
centrations, where it approaches the inaccurate rate equation
results. In general, the semi-empirical modified rate equation
approach outperforms the independent probability approxima-
tion. Biham (private communication) has reported better suc-
cess with the approximation for slower diffusion rates, so one
should not rule it out for all situations.

Another test of whether or not an approximation based on
independent probabilities is useful is to compare various cor-
relations and averages computed with both the exact and the
approximate master equation approaches. In Table 5, we list
the average surface abundances and correlations for the atomic
H and O when n(H) = n(O) = 1 cm−3. We can see that the val-
ues calculated with both approaches are in mixed agreement,
just as Figs. 1–3 suggest. For example, while the hydrogen sur-
face abundance is almost identical in both cases, the oxygen
abundances differ from each other by almost seven orders of
magnitude. Moreover, the correlation 〈NHNO〉 is nowhere near
the product of the individual averages when calculated by the
exact approach.
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Fig. 1. H, O system. Mole fraction of surface molecular oxygen deter-
mined via various methods plotted vs. the gas-phase concentration of
H for a 10 K system.
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Fig. 2. H, O system. Mole fraction of surface molecular hydrogen de-
termined via various methods plotted vs. the gas-phase concentration
of H for a 10 K system.
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Fig. 3. H, O system. Mole fraction of surface OH determined via var-
ious methods plotted vs. the gas-phase concentration of H for a 10 K
system.

4.2. H, O, CO system

For this system, we performed calculations at the three densi-
ties shown in Table 1 using the simple rate equation, Monte
Carlo, and master equation methods. For the master equation
calculations, the set of minimumNi’s which must be used is {2,
2, 1, 1, 1}, since it is necessary to consider at least two atoms
of H and O on the surface for the production of H2 and O2,
respectively. Calculations were first performed with this min-
imal cutoff for the five minor species, and the results checked

by comparison with the Monte Carlo method, and by increas-
ing the Ni’s. In general, one can get a picture of what cutoff
is needed for each species by looking at the average number
of each minor species calculated at a given cutoff, or even the
number obtained via the rate equation method. If this number
approaches unity, then a higher cut-off is needed, and if it ex-
ceeds unity, then it is reasonable to treat the species as a major
one not requiring inclusion in the many-body probability P.

Because the steady-state criterion leads to the fact that the
surface abundances of O and OH in all three density cases are
approximately equal, we raised the cut-off of OH from 1 to 2
leading to Ni’s of {2, 2, 2, 1, 1}, which should produce more
accurate results. In the case of high density, however, the O
and OH abundances are sufficiently high (see the detailed dis-
cussion below) that we also tried the case {2, 3, 3, 1, 1}. Any
further increase ofNi’s led to an increase in the computing time
without changing the results significantly. After the following
discussion, we turn to analogous calculations with slow diffu-
sion rates, where the cutoff problem is more severe.

The calculated surface populations at 10 K for low,
medium, and high density are shown, respectively, in Tables 6–
8 for a time of 103 yr. In addition to the individual populations,
the total number of surface species is shown, as is the CPU
time utilized for the calculation. It can be seen that at most
one monolayer is built up during the time of the calculation.
With the normal assumptions, one monolayer of material cor-
responds to a fractional abundance with respect to the total gas
density of 10−6. It is to be remembered that only major species
can be detected on grain surfaces (or in subsequent evaporation
into the gas during star formation) so that inaccuracies in minor
species need not pose a critical problem.

With the large diffusion rates, the minor species (H, O,
OH, HCO, and CH3O) all have exceedingly low abundances
(<1 per grain), a situation known as the “accretion limit”.
Such abundances are not capable of being determined accu-
rately by the Monte Carlo method, which yields integers only.
Occasionally we have run the simulations several times and
averaged the results, so that non-integers can be obtained. In
the accretion limit, the rate equations should not reliably yield
accurate answers for the stable species, and it is easy to see
from the tables that such can be the case here. Concerning the
more accurate methods, the minimal master equation method
(designated 22111; note that the commas have been removed)
takes about as little CPU time as the rate equation approach and
never yields results more than a factor of two different from
the Monte Carlo approach for species which can be compared.
The latter method is significantly more computer intensive. The
master equation calculation with cutoffs 22211 is typically even
better, but at the expense of a factor of three in computer time.
For the high density case, the oxygen atom abundance is 0.5,
and increasing the cutoffs to 23311 improves the agreement
with the Monte Carlo method but, again, at the expense of in-
creased computer time. We conclude that under these physical
conditions, the minimal master equation method is a fast and
reliable appoach for the H, O, CO system. Although the results
for the modified rate method were not presented, this approach
typically does better than the simple rate method but worse than
the other approaches.
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Table 6. Calculated populations for surface species at low density and 103 yr.

Species Rate eq. Monte Carlo Master Eq. Master Eq.
22111 22211

Total 1.69(+04) 1.65(+04) 1.63(+04) 1.65(+04)
Total (monolayers) 1.68(−02) 1.65(−02) 1.63(−02) 1.65(−02)
H 1.21(−05) 1.00(+00) 7.96(−03) 7.96(−03)
O 5.21(−07) 0.00(+00) 1.92(−02) 1.90(−02)
OH 5.21(−07) 0.00(+00) 1.86(−02) 1.93(−02)
H2 1.11(+02) 2.00(+00) 1.94(+00) 1.94(+00)
O2 3.64(−07) 1.70(+02) 1.62(+02) 1.62(+02)
H2O 1.03(+04) 9.90(+03) 9.65(+03) 9.86(+03)
CO 1.51(+02) 0.00(+00) 2.81(−02) 2.81(−02)
HCO 3.28(−07) 0.00(+00) 1.22(−02) 1.22(−02)
H2CO 1.55(+02) 0.00(+00) 2.82(−02) 2.83(−02)
H3CO 3.28(−07) 0.00(+00) 1.23(−02) 1.23(−02)
CH3OH 6.17(+03) 6.40(+03) 6.28(+03) 6.39(+03)
CO2 2.24(−07) 9.00(+01) 8.95(+01) 8.95(+01)
CPU (s) 0.5 11 1 3

Table 7. Calculated populations for surface species at intermediate density and 103 yr.

Species Rate eq. Monte Carlo Master Eq. Master Eq.
22111 22211

Total 1.50(+05) 1.34(+05) 1.25(+05) 1.33(+05)
Total (monolayers) 1.50(−01) 1.34(−01) 1.25(−01) 1.33(−01)
H 5.41(−06) 1.00(+00) 3.01(−03) 2.88(−03)
O 9.75(−06) 0.00(+00) 1.35(−01) 1.36(−01)
OH 9.75(−06) 0.00(+00) 1.11(−01) 1.35(−01)
H2 2.20(+01) 5.00(−01) 7.32(−01) 7.01(−01)
O2 1.12(−04) 9.40(+03) 8.92(+03) 9.03(+03)
H2O 8.57(+04) 6.02(+04) 5.18(+04) 5.93(+04)
CO 3.39(+03) 1.00(+00) 7.43(−01) 7.76(−01)
HCO 7.36(−06) 0.00(+00) 1.14(−01) 1.14(−01)
H2CO 3.47(+03) 1.00(+00) 6.18(−01) 7.11(−01)
H3CO 7.36(−06) 0.00(+00) 1.21(−01) 1.22(−01)
CH3OH 5.79(+04) 5.79(+04) 5.79(+04) 5.81(+04)
CO2 8.23(−05) 6.60(+03) 6.64(+03) 6.64(+03)
CPU (s) 1 13 1 3

Table 8. Calculated populations for surface species at high density and 103 yr.

Species Rate eq. Monte Carlo Master Eq. Master Eq. Master Eq.
22111 22211 23311

Total 1.17(+06) 1.11(+06) 9.20(+05) 9.63(+05) 1.09(+06)
Total (monolayers) 1.17(+00) 1.11(+00) 9.20(−01) 9.63(−01) 1.09(+00)
H 3.42(−10) 0.00(+00) 1.30(−08) 1.09(−08) 8.29(−09)
O 4.52(−01) 1.00(+00) 4.90(−01) 5.06(−01) 5.76(−01)
OH 4.52(−01) 1.00(+00) 2.60(−01) 4.05(−01) 5.97(−01)
H2 8.79(−8) 0.00(+00) 2.90(−06) 2.50(−06) 1.89(−06)
O2 2.74(+05) 2.81(+05) 1.80(+05) 1.91(+05) 2.68(+05)
H2O 2.51(+05) 1.79(+05) 1.00(+05) 1.33(+05) 1.71(+05)
CO 6.47(+05) 5.28(+05) 4.80(+05) 4.93(+05) 5.23(+05)
HCO 6.71(−04) 0.00(+00) 2.10(−01) 1.88(−01) 1.53(−01)
H2CO 1.86(+02) 5.01(+04) 6.40(+04) 5.98(+04) 5.12(+04)
H3CO 3.96(−07) 0.00(+00) 5.30(−02) 4.54(−02) 3.62(−02)
CH3OH 7.33(−02) 1.10(+04) 1.90(+04) 1.56(+04) 1.17(+04)
CO2 2.04(+02) 5.82(+04) 7.90(+04) 7.15(+04) 6.01(+04)
CPU (s) 1 30 1 3 10
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Fig. 4. The mole fractions of surface O2, H2O, and CO after 1000 yr
for high density conditions plotted vs. temperature (K).

The tabulated results are all for a temperature of 10 K.
We have also done calculations for high density at tempera-
tures through 20 K. The results are plotted for major species in
Figs. 4 and 5 in terms of mole fractions vs. temperature. Cutoffs
of 23311 have been used. Although the major species have sur-
face abundances that increase linearly with time, the mole frac-
tions remain constant. Results are shown for the Monte Carlo
(MC), master equation (ME), simple rate equation (RE), and
modified rate equation (MR) approaches. An analogous plot
based on the Monte Carlo method is shown in Caselli et al.
(2002) and is in good agreement with the present results. The
Monte Carlo and master equation results are essentially identi-
cal, while the rate equation results are at best in mixed agree-
ment with the two exact approaches. The modified rate method
is significantly better than the simple rate approach but still can
show factor of 2 or greater disagreement with the Monte Carlo
and master equation methods.

Generally speaking, the results show that under the high
density conditions considered here, the production of methanol
is reasonably efficient only at the lower temperatures consid-
ered. Its efficiency at 10 K appears to peak at intermediate den-
sities (see Table 7). The mole fraction of CO2 also decreases
strongly at the higher temperatures, while O2 and CO tend gen-
erally to increase with increasing temperatures.

4.3. Slow diffusion rates for the H, O, CO system

As the diffusion rates are lowered, the abundances of surface
oxygen atoms and OH radicals increase dramatically and the
need for a more detailed treatment than the rate equation ap-
proach lessens. Indeed, as the average abundance of a minor
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Fig. 5. The mole fractions of surface H2CO, CH3OH, and CO2 after
1000 yr for high density conditions plotted vs. temperature (K).

species becomes greater than unity, it becomes difficult for the
many-body master equation treatment to converge, so that it is
best to remove those species from the many-body probability
Eq. (1) and compute them via equations similar to Eq. (3). In
Tables 9 and 10 we plot results at low and high densities ob-
tained with the “slow” (M2) diffusion rates of Ruffle & Herbst
(2000) using the rate equation, Monte Carlo, and master equa-
tion methods. For low density, we report results for both the
minimal cutoff case and for a calculation, designated 2xx11 in
which O and OH are not treated probabilistically. For high den-
sity, we can only perform the latter calculation since the surface
abundances for O and OH are very large.

For the slow rates, it can be seen that little chemistry oc-
curs except for the formation of water and, at high densities,
OH. (Any H2 formed has desorbed.) Nevertheless, the simple
rate equation approach agrees surprisingly well with the 2xx11
reduced master equation approach. This occurs despite the fact
that the average H atom abundance is less than unity, presum-
ably because the abundances of its reactive partners O and OH
exceed unity. The Monte Carlo method is also in fine agree-
ment for major species although it once again is more computer
intensive; it cannot really be compared with the other meth-
ods for minor species given the large statistical uncertainties in
the small numbers. For low density, the minimal cutoff mas-
ter equation approach is unreliable, as is to be expected when
the O abundance exceeds unity. For high density, the O atom
abundance is so large that a calculation with astronomical sig-
nificance should include the Eley-Rideal mechanism of surface
chemistry, in which gas-phase species collide reactively with
nearly stationary species on grain surfaces.
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Table 9. Calculated populations for surface species with “slow” diffusion rates at low density and 103 yr.

Species Rate eq. Monte Carlo Master Eq. Master Eq.
22111 2xx11

Total 1.68(+04) 1.69(+04) 6.98(+03) 1.68(+04)
Total (monolayers) 1.68(−02) 1.69(−02) 6.98(−03) 1.68(−02)
H 8.22(−02) 0.00(+00) 8.43(−02) 8.15(−02)
O 3.75(+00) 3.00(+00) 7.86(−01) 3.79(+00)
OH 3.75(+00) 5.00(+00) 1.81(−01) 3.79(+00)
H2 1.71(−07) 0.00(+00) 1.60(−07) 1.50(−07)
O2 8.84(−10) 0.00(+00) 2.66(−11) 9.00(−10)
H2O 1.03(+04) 1.03(+04) 5.05(+02) 1.03(+04)
CO 6.47(+03) 6.59(+03) 6.47(+03) 6.47(+03)
HCO 1.15(−04) 0.00(+00) 3.93(−05) 7.38(−05)
H2CO 1.58(−01) 0.00(+00) 5.49(−02) 9.96(−02)
H3CO 2.76(−09) 0.00(+00) 3.27(−10) 1.11(−09)
CH3OH 2.52(−06) 0.00(+00) 3.04(−07) 1.00(−06)
CO2 1.36(−14) 0.00(+00) 1.24(−15) 8.77(−15)
CPU (s) 0.4 12 1.2 0.2

Table 10. Calculated populations for surface species with “slow” diffusion rates at high density and 103 yr.

Species Rate eq. Monte Carlo Master Eq.
2xx11

Total 1.45(+06) 1.45(+06) 1.45(+06)
Total (monolayers) 1.45(+00) 1.45(+00) 1.45(+00)
H 2.33(−05) 0.00(+00) 2.33(−05)
O 4.50(+05) 4.51(+05) 4.50(+05)
OH 1.97(+05) 1.97(+05) 1.97(+05)
H2 1.38(−14) 0.00(+00) 1.38(−14)
O2 4.25(+00) 4.00(+00) 4.25(+00)
H2O 1.52(+05) 1.52(+05) 1.52(+05)
CO 6.47(+05) 6.48(+05) 6.47(+05)
HCO 5.04(−03) 0.00(+00) 5.01(−03)
H2CO 3.88(−03) 0.00(+00) 3.87(−03)
H3CO 2.94(−11) 0.00(+00) 2.93(−11)
CH3OH 2.19(−11) 0.00(+00) 2.17(−11)
CO2 4.75(−08) 0.00(+00) 4.73(−08)
CPU (s) 0.6 27 0.6

5. Discussion

We have shown that a moderately complex network of chemi-
cal reactions that occur diffusively on the surfaces of dust parti-
cles can be studied successfully by a master equation approach
previously used only for significantly simpler systems (Biham
et al. 2001; Green et al. 2001). It is important to use an “ex-
act” method such as the master equation approach or its Monte
Carlo realization when there is a very low surface abundance of
reactive species, since the rate equation method may be inac-
curate, and the semi-empirical modified rate equation method
may not be entirely correct either. The advantage of the mas-
ter equation approach to the Monte Carlo method is that the
former involves the solution of simultaneous differential equa-
tions. It is therefore facile to consider the gas-phase chemistry
occurring simultaneously, because gas-phase abundances are
also determined by solving simultaneous differential equations.
Moreover, it is possible to determine when the master equa-
tion method must be used for all minor species, and when it is

acceptable to use the simpler and faster rate equation approach
to diffusive surface chemistry. Specifically, when the abun-
dances of reactive species on grain surfaces begin to exceed
unity, there may be no need to use the more detailed approach,
as can easily be tested. Calculations reported here show in-
stances where even if the average atomic hydrogen surface
abundance is below unity, the simple rate equation method
works well if the O and OH abundances are high. Finally, for
the system studied here, the master equation approach is actu-
ally faster than its Monte Carlo analog.

With all of these advantages, one might conclude that it
should be facile to implement the master equation approach in
current complex gas-grain models of interstellar clouds. But
this optimism is misplaced. If the master equation method dis-
cussed in this paper is to be extended to still larger systems
of reactions, such as that used in current gas-grain chemical
models (Ruffle & Herbst 2000), some method must be found
to reduce the number of simultaneous equations neccessary.
Let us consider the extent of the problem. The minimal-cutoff
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(22111) master-equation approach for fast diffusion rates re-
quires the solution of 3 × 3 × 2 × 2 × 2 = 72 simultane-
ous differential equations to fully determine the many-body
P, excluding the additional coupled equations for the major
species. As one increases the number of minor species, the
number of simultaneous equations to be solved increases dra-
matically. Suppose, we wish to consider the chemistry of deu-
terium fractionation in the H, O, CO network discussed here.
Such an extension requires the following new minor species: D,
OD, DCO, H2DCO, HD2CO, D3CO, making a total of 11 such
species. The deuterium fractionation in this model was treated
successfully by the Monte Carlo method (Caselli et al. 2002).
Assuming that minimal cutoffs of 1 are needed for all these
additional species with the exception of D, we calculate that
a total number of 6912 simultaneous equations is needed for
the many-body probability function P. This compares unfavor-
ably with the total of 652 equations used for both the gas-phase
and surface chemistry in our most complex models. It is diffi-
cult to even load the variables for such a calculation onto most
computers, and the computer time necessary is virtually pro-
hibitive. Even if only D is treated stochastically and OD, DCO,
etc. are treated via rate equations, the computer time increases
by a factor larger than 10 compared with the H, O, CO system.

Given the importance of developing approximation meth-
ods, we have investigated a simple such approximation: the
idea that the many-body probability can be approximated as
the product of individual, independent probabilities. We have
seen that, even for the simple O, H system, the approximation
of independent probabilities is not a reliable approach to the
solution of the many-body master equation if one assumes fast
diffusion rates. Although we did not report the results here, our
extension of the independent probability approach to the more
complex H, O, CO system has also met with failure. We are
currently studying other approximation methods. One rather
promising approach at this time is to limit the total number of
equations by limiting the total number of reactive species on a
grain surface. We hope to report results with this method in the
near future.
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Appendix A:

A.1. Kinetics of chemically reacting system

Let us consider an interstellar gas consisting of K different
atomic and molecular species labelled by αi, i = 1, ...,K ≥ 1
in a fixed physical volume V with concentration nαi . Each par-
ticle of species αi is characterized by mass mi, velocity ci, and
a set zi of internal quantum states. The chemical species in the
gas can interact through m = 1, ...,M ≥ 1 chemical reactions
of the type:

m: αi(ci, zi) + α j(c j, z j)→ αk(ck, zk) + αl(cl, zl). (A.1)

The probability that reaction (A.1) occurs at a specific rela-
tive velocity with products scattered in a certain direction is
related to

gi jdσm = gi j
dσm(gi j,Ω)

dΩ
dΩ, (A.2)

where dσm is the reactive differential scattering cross-section,
gi j = |ci − c j| is a relative velocity, and Ω is a solid scatter-
ing angle. The differential cross section depends on the inter-
action potential of the particles involved and can be calculated
by methods of quantum mechanics or measured in laboratory
experiments (Light et al. 1969).

In astrochemical problems, interstellar gases are usually
considered under the assumption of local thermal equilibrium.
This requires that reactive collisions occur less frequently than
elastic and inelastic processes so that a temperature can be
maintained. At thermal equilibrium, the distribution of pos-
sible molecular speeds is given in three dimensions by the
Maxwellian distribution function f (M)

α . It is then possible to ob-
tain the conventional rate equations of chemical kinetics (Light
et al. 1969):

d
dt

nαi (t) =
∑

m

[nαk nαl qαk ,αl − nαi nα j qαi,α j ], (A.3)

where the functions q.. are kinetic rate coefficients for the for-
ward (with cross section indicated by→) and backward (with
cross section indicated by ←) directions of chemical reac-
tion (A.1):

qαk ,αl =
∫

dck dclgkl dσm← f (M)
αk

(ck) f (M)
αl

(cl)
qαi ,α j =

∫
dci dc jgi j dσm→ f (M)

αi
(ci) f (M)

α j
(c j).

(A.4)

A.2. Stochastic approach to a chemically reacting
system

Chemical kinetics in a rarefied interstellar gas can be formu-
lated as a stochastic evolution of an ensemble of atoms and
molecules. A stochastic approach is based on the relation-
ship between two basic ways of describing the chemically re-
acting and evolving gas: (i) the Liouville dynamic equation
and corresponding kinetic equations (Smith 1969) and (ii) the
stochastic laws, describing a random process and its stochastic
Kolmogorov equation equivalent (Gillespie 1976; Marov et al.
1997). For a space-uniform gas, the changes in the state of the
gas caused by instant collisions can be considered to be jump-
like Markovian processes (Marov et al. 1997), after which the
state of the system does not contain the memory of how the
state was reached.

In a stochastic treatment, the evolution of the reacting sys-
tem is governed by the so-called chemical master equation
(Gillespie 1982; van Kampen 1992):

∂φ(N, t)
∂t

=

M∑
m=1

[am(Nm)φ(Nm, t) − am(N)φ(N, t)], (A.5)
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which is linear with respect to the probability density φ(N, t)
that a system is described by state N at time t. The parameters
in the equation are defined below:

a) The state of the system is characterized by

N(t) = {N1(t), ...,NK(t)}, (A.6)

where the atomic and molecular populations Ni(t) for each
species i are random integer variables in the considered gas
volume V at time t;
b) The state of the system realized after an instant change
of molecular populations in accordance with the stoichio-
metric scheme of reaction m is given by

Nm = {...,Ni − 1, ...,
Nj − 1, ...,Nk + 1, ...,Nl + 1, ...}; (A.7)

c) The probability that a certain reaction m will take place
in an infinitesimal time interval [t, t + dt] is given by the
expression am(N)dt, where am(N) is independent of dt and
is equal to:

am(N) = V−1hi jqm. (A.8)

Here, qm is the rate coefficient for reaction m, and hi j is a
combinatorial factor equal to the number of possible pairs
of reacting molecules, or NiNj, for αi , α j, and Ni(Ni−1)/2
for αi = α j.
The function am(N) depends on the specific chemical chan-
nel m, the current gas state N = N(t), and the gas tempera-
ture and volume. This function, usually called the propen-
sity function (Gillespie 1976), refers to processes that lead
away from state N. The function am(Nm) depends on the
state of the gas Nm, and refers to processes that lead to
state N.

Because N(t) refers to a Markovian jump-like random process,
the time distribution between collisions is given by an expo-
nential law:

P{τ(N → N′) ≤ τ} = 1 − exp (−a0(N)τ), (A.9)

where a0, the total reaction probability, is defined by

a0(N) =
M∑

m=1

am(N). (A.10)

Expressions (A.6)–(A.10) give an exact definition of the ran-
dom state of the system N(t) describing a chemically reacting
gas within a stochastic framework. How do we describe a sys-
tem of reactions on the surface of a dust particle?

It is well known that the random nature of interstellar grain
surface chemistry, as well as the accretion and desorption pro-
cesses leading to grain mantle growth, necessarily involves
a stochastic framework (Tielens & Hagen 1982; Tielens &
Charnley 1997; Herbst 2000; Charnley 2001). The stochastic
treatment of grain surface chemistry can be formulated in terms
of the master equation approach. To do this, the surface should
be represented by a lattice or a monolayer – each lattice point
corresponds to a surface site. A lattice point can assume a num-
ber of distinct values that stand for various adsorbed molecules
(with zero for a free site). The monolayer, together with all its

site populations, is considered as a state vector N for the sur-
face reacting system. Each surface reaction changes the mono-
layer population vector in accordance with the reaction stoi-
chiometry. The evolution of this surface reacting system over
time is described by a chemical master equation – Eq. (A.5).
Since there are a large number of reactive sites on interstellar
dust particles, additional assumptions are normally made for
stochastic theories – that all sites are identical, that one need
only follow the number of particles of a given species on the
entire grain, and that the distribution of particles on a grain is
random.

In astrochemical environments at very low temperatures
(∼10 K), light atoms are the major mobile species on grain sur-
faces. Atoms migrate mainly by thermal hopping from site to
site with a timescale

ταh = ν
−1 exp(EαD/kTd),

where EαD is the energy barrier for surface diffusion for atomic
species α, Td is the surface temperature, and ν is the vibrational
frequency of the particle in the lattice binding site (∼1012 s−1).
Light hydrogen atoms can also migrate by quantum mechan-
ical tunneling, with a characteristic timescale τH ∼ 10−12 s.
Migration on the surface leads to reactions with other light mi-
grating atoms or heavy and relatively static molecules and rad-
icals with reactive transition probabilities

am(N) = h′i j × pm × (τ−1
α + τ

−1
β ), (A.11)

where the τ−1 factors are for the two reacting species and
can be either for surface hopping or tunneling. The factor
pm is unity unless there is an activation energy barrier Em.
This factor is then equal to the Arrhenius factor exp(−Em/kTd)
or, for the case of quantum mechanical tunneling through
the potential barrier of height Em and width Lm, is equal to
exp(−4πLm(2µEm)0.5/h), where µ is the reduced mass. The
prime in the combinatorial factor h′i j means that there is a de-
nominator with the actual number of sites on a grain. The de-
nominator converts the rate of diffusion from one site to another
into the rate of diffusion t−1

diff over the equivalent of an entire
grain. As suggested by Charnley (2001), the surface chemical
network should be extended by interpreting the accretion and
desorption processes as additional reactions responsible for the
chemical coupling between gas-phase and grain mantle frac-
tions of the interstellar gas.

A.3. Methods for solving the chemical master equation

A.3.1. Monte Carlo algorithms

These algorithms are based on the fact that the probability of
generating the stochastic “trajectory” with a Monte Carlo al-
gorithm is exactly the probability that would come out of the
solution of the corresponding master equation.

To accomplish this, the homogeneous Markovian process
N(t) is replaced by an equivalent uniform Markovian chain.
An exact realization for the Markovian chain on a discrete time
grid is as follows. We choose a time interval 4t and determine
times t1 = 14t, t2 = 24t, . . . , tδ = δ4t, for which we will
store the values of N1 = N(t1), N2 = N(t2),. . . , Nδ = N(tδ),
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respectively. To determine the state Nδ+1 of a dust particle, we
perform the following steps:

a) we determine randomly: (1) which reaction will occur
during the transition via (A.10) and (A.11), and (2) in ac-
cordance with the probability distribution (A.9), the time
τ that has elapsed from the previous transition. This can
be done using the direct simulation or first reaction meth-
ods (Gillespie 1976; Lukken et al. 1998; Charnley 1998,
2001), the former of which is used here. Then, we update
the species’ populations, and advance the transition time
counter as T (s) = T (s−1) + τ ;
b) if the transition time counter satisfies the following
condition:

tδ+1 ≤ T (s) < tδ+2,

it means that we have stepped over the next point on the
time grid. In such a case, we assign a value to Nδ+1 that is
equal to the current state. If the inequality does not hold,
we repeat the operations from step a).

We repeat the whole procedure until the time counter reaches a
fixed time Tfinal.

Algorithmic steps (a)–(b) represent the exact Monte-Carlo
procedure for solving the chemical master equation. One re-
alization for the Markovian chain N1, N2, N3, . . ., gives only
one possible evolution of the system. Thus, it is important that
the procedure be repeated and many trajectory realizations be
obtained. Due to the linearity of the chemical master Eq. (A.5)
and, consequently, of analogous Monte-Carlo algorithms for its
solution, the evolution can be calculated by averaging through
trajectory realizations of the random process N(t).

A.3.2. Direct solution

For surface chemistry, one natural way to deal with the stochas-
tic approach is to create one probability variable for each pos-
sible state of the reacting chemical system under study. If the
system can be contained within a limited set of possible states
so that the number of molecules of each species is limited by
some fixed value N̄i during the system evalution – Ni(t) ≤ N̄i –
it is useful to adopt as a representation of the state probability
distribution φ(N, t) a set of many-body probabilities P for spe-
cific numbers of molecules for the species being considered.
By substituting this set into the chemical master equation, we
can obtain a set of coupled differential equations for the time
derivative of the detailed probabilities of all possible states –
d
dt P(i1, ...iN).

Such a set of differential equations is used in this paper, but
with a caveat. For surface chemistry, it is normally not neces-
sary to include all species in the model in the realization of the
master equation. Generally, only a few reactive species have
surface abundances so low that a stochastic treament is neces-
sary. All other molecules can be described by a deterministic
approach with coventional rate equations. These two (stochas-
tic and deterministic) subsets of the system are coupled through
the combinatorial factors

h̄i j = 〈Nj〉
N̄i∑
i=1

iP(..., i, ...) (A.12)

where 〈Nj〉 is a mean molecular population for the determinis-
tic j species and the P(..., i, ...) are probabilities for the stochas-
tic i species. This division allows us to combine the direct solu-
tion of the chemical master equation for stochastic species with
simple or modified rate equations for deterministic species to
produce realistic grain-surface chemical networks.
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