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Maxwell accounted for the apparent elastic behavior of the electromagnetic
field by augmenting Ampere’s law with the so-called displacement current, in
much the same way that he treated the viscoelasticity of gases. Maxwell’s orig-
inal constitutive relations for both electrodynamics and fluid dynamics were not
material invariant. In the theory of viscoelastic fluids, the situation was later
corrected by Oldroyd, who introduced the upper-convective derivative. Assum-
ing that the electromagnetic field should follow the general requirements for a
material field, we show that if the upper convected derivative is used in place
of the partial time derivative in the displacement current term, Maxwell’s elec-
trodynamics becomes material invariant. Note, that the material invariance of
Faraday’s law is automatically established if the Lorentz force is admitted as
an integral part of the model. The new formulation ensures that the equation
for conservation of charge is also material invariant in vacuo. The viscoelastic
medium whose apparent manifestation are the known phenomena of electrody-
namics is called here the metacontinuum.

KEY WORDS: Maxwell’s electrodynamics; Hertz’s equations; material invari-
ance; Oldroyd’s upper-convected derivative.

1. INTRODUCTION

The first attempt to explain the propagation of light as a field
phenomenon was by Cauchy around 1827 (see the account in Ref. 39)
who postulated the existence of an elastic continuum, through which light
propagates as shear waves. Unfortunately, Cauchy’s model of elastic ae-
ther contradicted the natural perception of a particle moving through the
field. As a result, it did not receive much attention because the notion
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of an elastic liquid was not available at that time. Subsequently came the
contributions of Faraday and Ampere which eventually led to the formu-
lation of the electromagnetic model. The crucial advance was achieved,
however, when Maxwell(26) added the term, ∂E

∂t
, which he named the “dis-

placement current,” in Ampere’s law. It was very similar to the non-local
term in his constitutive relation for elastic gases(27) (see, also Ref. 19 for
an insightful review on viscoelastic models). We observe that the electric
field vector is a clear analog of the stress vector in continuum mechan-
ics. One can say that Maxwell postulated an elastic constitutive relation
by adding the displacement current to Ampere’s law. Indeed, the new term
transformed the system of equations, already established in electrostatics,
into a hyperbolic system with a characteristic speed of wave propagation
similar to the speed of sound in gases. Maxwell identified the characteris-
tic speed with the speed of light, and thus paved the way in understanding
electromagnetic wave phenomena.

The advantage of Maxwell’s system over the model proposed by
Cauchy was its success in incorporating the empirically observed laws,
such as Faraday’s, Ampere’s, and Biot–Savart’s, at the time when Cauchy’s
approach seemed unrelated to those. However, the most puzzling aspect of
Maxwell’s model was its apparent lack of Galilean invariance. This was an
indication that the linear form of Maxwell’s electrodynamics was somehow
divorced from the basic principles of Newtonian mechanics, and contin-
uum mechanics, in particular.

The difficulties in establishing Galilean invariance lie in the fact that
the constitutive relations proposed by Maxwell are not material invariant
neither in the theory of gases, nor in electrodynamics. Invariance in fluids
was remedied by Oldroyd(29) who enunciated the principle of invariance of
a constitutive law under deformational motions of the coordinate frame,
which is currently known as “material indifference.”(37) Instead of follow-
ing the same path as in the theory of viscoelastic fluids, and reformulating
the model to what is now called “material invariant,” the theory of elec-
trodynamics took another path—postulating that the electromagnetic field
should be exempt from the requirement of material invariance. Then the
natural step was to assume that it is Lorentz invariant as suggested by
the structure of the linear Maxwell’s equations. This brought into view the
notion of invariance in four-dimensional (4D) space–time (see the account
in Ref. 38) which is a different concept than material invariance in three
dimensions. This tenet is the currently accepted one and it amounts con-
ceptually to the assumption that the electromagnetic field is not a material
continuum per se.

Consequently, it seems important to reexamine the issue of material
invariance of electromagnetism (EM) beginning from the first principles.
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To this end, we derive a material invariant formulation of the Maxwell–
Ampere law, assuming that the proper description of a material field must
be material invariant. It should be noted that a similar situation arises
regarding the Maxwell–Cattaneo model of thermal waves. The importance
of material derivatives there is discussed in Ref. 10. Concerning EM, if the
material invariant formulation is able to explain the known phenomenol-
ogy in a more consistent manner, it should be given the proper attention
as an alternative to the dominant point of view that one need not assume
material properties for the vacuum.

2. INVARIANCE OF ELECTRODYNAMICS IN MOVING FRAMES

Maxwell’s equation are not invariant in moving frames if the time
remains absolute. This kind of situation is well understood in continuum
mechanics and it happens when the acceleration of a material point lacks
the convective part. If the so-called material (aka convective or substan-
tial) derivative is used, then the models are shown to remain invariant
under a general change of coordinate system, which is not restricted to
rigid (non-deformable) frames in rectilinear motion. The most natural way
out of the perceived non-invariance is to replace the partial time deriva-
tives in Maxwell’s equations by convective time derivatives, as was done
at end of the 19th century by Hertz, who regarded his formulation as an
explanation of electromagnetic phenomena inside material bodies (see Ref.
16, ch. 14). The fact that the Maxwell–Hertz equations are Galilean invari-
ant (and in fact, material invariant) is usually overlooked in the litera-
ture. Apparently, this point was originally raised in Ref. 30, as reported in
Ref. 5, where the case for Galilean invariance is forcefully argued. In
modern notations, the Maxwell–Hertz equations read(5,30)

∂B

∂t
+ v · ∇B = −∇ × E, (1)

∂E

∂t
+ v · ∇E = c2∇ × B − 1

ε0
j , (2)

∇ · B = 0, (3)

ε0∇ · E = ρ, (4)

where ρ is the charge density.
The Galilean invariance of Eqs. (1)–(4) is a relatively minor point.

The more important fact about them is that they are also material invari-
ant as any system that contains convective derivatives for the acceleration
must be. It is important to realize, however, that Maxwell’s displacement
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current has an analog in the constitutive law for Maxwell’s fluid, and using
a mere convective derivative may not be enough to make the law mate-
rial frame indifferent. (The correct expression of the displacement current
that makes it material invariant together with the continuity of charge is
the object of Section 4.)

Now, the Maxwell–Hertz equations (called also “progressive wave
equations”) are clearly the correct model for electromagnetic phenomena
in moving bodies. In this sense, the results of the present paper can also
be considered as a refined derivation of the Maxwell–Hertz equations. But
the primordial question is whether the progressive-wave equations (e.g.,
the version given in the present paper) can be construed to hold also in
vacuo. The answer is obviously in the affirmative if one accepts the fact
that what is currently called “physical vacuum” has to be a physical (mate-
rial) continuum. This requirement means that one should not just con-
sider a field in an empty geometric space, but understand that the space
itself is a material continuum with interactions between the points fol-
lowing the rules for material continua.(37) This conjecture forms the con-
ceptual basis of the present work which we name the Material Invariance
Principle (MIP). A definition of MIP is as follows:

There exist a three-dimensional absolute material continuum with specific rheol-
ogy which obeys the principle of material invariance, including material frame
indifference of the constitutive relations. The electromagnetic field is a manifes-
tation in three dimensions of the dynamics of the absolute continuum, called the
metacontinuum.

If EM is a manifestation of another reality that is on a deeper level,
then the latter appears to be beyond (meta) EM, and the best way to con-
vey this notion is to call it the metacontinuum. Although MIP involves the
notion of an absolute medium, the metacontinuum of the present work is
not the classic aether because it is not considered as a medium “surround-
ing” the particles and bodies, but as a materialization of the space itself.
The particles and bodies are deformational patterns of the metacontinu-
um. This concept is an attempt to formulate on a quantitative level the
proposal of Riemann (adopted by Einstein in General Relativity) that all
physical forces are the manifestation of the geometry of space. If we are
to implement this proposal we inevitably have to assume that the space is
not a geometric volume of non-interacting points but is rather a contin-
uum of interaction material points for which the material invariance prin-
ciple should reign. The description of the metacotinuum from the point of
view of theory of viscoelstic liquids is presented elsewhere.(9)

Note that there are no objections for this 3D continuum to be,
in fact, a 3D hypersurface, such as a (hyper)membrane or (hyper)shell,
immersed in a higher-order geometric (or material) space. The corollary
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of MIP is that the governing equations will have the same form in any
coordinate system (“frame”), including coordinate systems that are in arbi-
trary deformational motion (“deformable frames”). The latter includes
also the case of rotational motion of the frame. The simplest corollary
of this principle is that the equations of electrodynamics will be Galilean
invariant, since a rigid frame in rectilinear motion is the simplest limiting
case of a deformable frame in general motion.

The drive to make the original Maxwell equations invariant took
quite a bold turn more than a decade after Hertz’s book was published.
At that time it was discovered that some vestiges from the missing con-
vective terms can be restored in the coordinate transformation, provided
that time is no longer considered as an absolute parameter. Instead it was
stipulated that time in the moving frame (parameterized by x′ = (x−vt)/γ )
transforms like t ′ = (t − vx)/γ , where γ is the Lorentz contraction factor.
Such a transformation leaves the form of the linear wave equations for the
potentials (Lorenz gauge) unchanged in a moving frame.

When translating the notion of Lorentz invariance in moving frames
of the potentials to magnetic and electric fields, additional terms (forces)
need to be added in Maxwell’s equations.(22,31,32) In Faraday’s law, it is
the electromotive force that acts upon a moving electrical charge in a mag-
netic field. This is called the Lorentz force, because it was Lorentz who
added it to Faraday’s law as an integral part of the latter.(24) To make
Faraday’s law invariant in the moving frame, the electric field must trans-
form according to the rule E′ = E + v × B which is the progenitor of the
Lorentz-force term. In order that the Maxwell–Ampere equation be valid
in a moving frame, then B ′ = B − c−2v × E has to replace the magnetic
field.(22,32) Thus, the Lorentz invariant formulation of the two dynamical
Maxwell equations reads

−∇ × E = ∂B

∂t
+ ∇ × (v × B) = ∂B

∂t
+ v · ∇B, (5)

c2∇ × B ′ − j ′

ε0
= ∂E

∂t
+ ∇ × E + v(∇ · E) = ∂E

∂t
+ v · ∇E. (6)

When we presented the convective form of the equations (the last equali-
ties in each of those), we made use of Eqs. (3) and (4). Note also, that the
current has to transform according to j = j ′ +ρv = j ′ +ε0(∇ ·E)v. If this
is not taken into account, the resulting system is not Galilean invariant.(23)

As no surprise, we found that the proper acknowledgment of all rele-
vant terms stemming from the Lorentz transformation yields the standard
convective derivatives. In other words, the artificial (from the point of view
of a material continuum) device called the Lorentz transformation, yields
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equations in a form indistinguishable from that of Hertz provided that the
velocity is constant. Yet this does not mean that the Lorentz transforma-
tion gives the Hertz form of the equations, because the former has very
limited validity for v = const, while the latter is valid for arbitrary veloci-
ties. For this reason, the attempts to generalize the Lorentz transformation
to arbitrarily moving frames has not been successful.(31) In our opinion it
cannot be generalized in principle, because it amounts to a relative time
that is different from point to point. Even if it may be deemed acceptable,
the fact that velocity depends on spatial coordinates and time, immediately
destroys the invariant nature of the Lorentz transformations. It brings into
consideration a host of additional terms involving spatial and temporal
derivatives of the velocity components.

The Lorentz invariance can be viewed as a “poor man’s material
invariance” in the sense that the assumption of relativity of time (with
mandatory time dilation) is a palliative solution to the problems of
Maxwell’s system in moving frames: a heuristic approach that can restore
some terms of the convective derivatives. On the contrary, MIP introduced
here is much more general than Lorentz invariance/covariance and fits bet-
ter with the notion of “general covariance.” In fact, it can be called “Gen-
eral Invariance” (GI) since the governing equations are in tensorial form.
As mentioned in Ref. 31, the terminology involving “covariance” and/or
“invariance” is quite often very loose. In a sense, the MIP proposed here
makes the definition of GI non-ambiguous.

The fact that Eqs. (5) and (6) (especially Faraday’s law) are also
Galilean invariant has been spotted by many authors (see, e.g., the author-
itative monographs, Ref. 18, pp. 212–213, Refs. 22 and 32). In order not
to contradict the notion that the equations of electrodynamics cannot be
Galilean invariant in vacuo, the authors of Refs. 18, 22 and 32, and many
others, attempted to explain the apparent Galilean invariance as a limit
of the Lorentz invariance for small velocities. Indeed, it is only natural
to present this result as a limiting case in slowly moving frames, because
the Lorentz force is observed in material bodies, and their velocities are
not supposed to exceed the speed of light. The discussion on whether
material bodies, or some other processes in the metacontinuum, can exceed
the speed of light, goes beyond the scope of present work. The postu-
late that the speed of light cannot be exceeded is, in fact, an additional
conjecture, regardless of the fact that many investigators assume that it
stems from the postulate of the constancy of the speed of light. The
speed of light being a limiting velocity for bodies in translatory motion
does not contradict the absolutivity principle, MIP, of the present work.
Drawing an analogy with acoustics, we can say that the small-ampli-
tude (linear) waves cannot exceed the speed of light, but shock waves do.
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And this effect is exclusively connected with the fact that convective time
derivatives enter the model. For EM, this would mean that a body at
supercritical (superluminal) speeds will behave as a shock wave of the met-
acontinuum (more precisely a tangential discontinuity or vortex sheet),
which is equivalent to the statement that the body (in its original form
and structure) cannot exceed the speed of light. Thus in MIP, the limiting
property of the speed of light finds its natural explanation without impos-
ing it as an additional postulate to the theory.

Yet, Eqs. (5) and (6) are still not the desired set of equations because
one cannot derive from them an invariant equation for conservation of
charge. This means that using merely the convective derivative does not
make the model “material invariant,” which is a more stringent require-
ment than Galilean invariance, and entails the latter. The way out of
this situation is to exploit the above stated analogy between the Max-
well–Ampere law and Maxwell’s constitutive relation for elastic liquids.
The simplest constitutive laws, such as Hooke’s law in elasticity and the
Navier–Stokes law for Newtonian viscous liquids, establish pointwise
(“local”) connections between the stress tensor and the tensor of strains,
or rate of strains. Such constitutive laws are local in the sense that they
have no memory, and material invariance is trivially established by the
transformation rule. It is a very different situation when a constitutive
law involves also time derivatives (relaxation of stresses or retardation of
strains). It is beyond doubt that adding a mere partial time derivative in
a constitutive relation is not sufficient to ensure material invariance. It
is interesting to note that taking the convective derivative, which is well
suited to make the inertial terms in the momentum equations material
invariant, is not enough to make a constitutive law fully material invariant
(see Ref. 29). Nowadays, Oldroyd’s notion of invariance of a constitutive
law is incorporated in the so-called principle of material-frame indiffer-
ence.(37)

The mathematically rigorous way to pursue the analogy between elec-
trodynamics and the theory of elastic liquids is to consider the Maxwell
displacement current as a constitutive relation; this is the object of the rest
of the present work.

3. INVARIANT TIME DERIVATIVE OF A VECTOR DENSITY

Directional and other invariant derivatives of tensors are investigated
in numerous mathematical and physical works but in order to make
the paper self-contained and to clarify the physical meaning, we present
here the pertinent derivations. In addition, formulating the passage from
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geometric coordinates to embedded material coordinates highlights the
main idea of present paper.

Consider the 3D space and a fixed system of coordinates {xi}, in it.
The fixed coordinate system can be assumed to be Cartesian without loos-
ing the generality. Together with the fixed coordinate system, consider a
generally curvilinear moving coordinate system {x̄i}, that is embedded in
the material continuum occupying the geometric space in the sense that
coordinate lines of the moving system consists always of the same mate-
rial particles. Then the transformation xj = f j (x̄i; t) presents the law of
motion of a material particle, parameterized by the coordinate x̄j . Assume
that at time t , the two coordinate systems coincide. Then at time t + �t ,
the law of motion gives the infinitesimal transformation xj = x̄j + vj�t ,
which can be resolved for the material coordinates:

x̄i = xi − vi(xj )�t, (7)

where vi is the contravariant velocity vector.

∂x̄i

∂xj
= δi

j − �t
∂vi

∂xj
+ o(�t),

∂xj

∂x̄i
= δ

j
i + �t

∂vj

∂xi
+ o(�t). (8)

Let A represent some mechanical quantity, e.g., stress vector, electric
field, temperature flux, etc. For all these mechanical characteristics, the
actual observable is the following integral (see, e.g., Ref. 34)

∫
D

A d3x =
∫

D̄

A dx̄. (9)

The principle of material invariance requires that this integral be invariant
under coordinate transformation, which means that the vector A is a ten-
sor density (or what is called “relative tensor of unit weight”(25)). In com-
ponent form, the integral in the left-hand side can be rewritten as

∫
D

Ak dx1 dx2 dx3 ≡
∫

D̄

∂x̄k

∂xj
JAj dx̄1 dx̄2d x̄3, (10)

where J is the Jacobian of the coordinate transformation,

J =
∣∣∣∣ ∂xi

∂x̄j

∣∣∣∣ = 1 + �t
∂v̄i

∂xi
+ o (�t) (11)
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and Ak are the contravariant components of A. Being reminded that D is
an arbitrary region, one finds the transformation rule for a vector density
in contravariant components

Āk = J
∂x̄k

∂xl
Al, (12)

where a summation is understood if an index appears once as a super-
script and once as a subscript. Material invariance (see Ref. 29) requires
that in constitutive laws, the total time variance of a tensor density,

dAj

dt
= lim

�t→0

Āj (x̄k; t + �t) − Aj(xk; t)

�t
(13)

is used. Taylor series with Eq. (7) acknowledged, yields

Āj (x̄k; t + �t) = Āj (xk; t) + �t

[
∂Āj

∂t
+ vl ∂Āj

∂x̄l

]
+ o(�t)

= Āj (xk; t) + �t

[
∂Aj

∂t
+ vl ∂Aj

∂xl

]
+ o(�t), (14)

where the fact is also acknowledged that at the moment t , vectors A and
Ā, and their gradients coincide. Now, the contravariant components Ak

transform according to the rule from Eq. (12), which gives

Āj (xk; t) =
(

1 + ∂vi

∂xi
�t

) (
Aj(xk) − ∂vk

∂xm
Am(xk)�t

)

= Aj(xk) + ∂vi

∂xi
Aj (xk)�t − ∂vk

∂xm
Am(xk)�t + o(�t). (15)

After making use of Eq. (11) and neglecting the higher order terms
in (�t), Eq. (15) yields

dAj

dt
def= lim

�t→∞
Āj (xk) − Aj(xk)

�t
= ∂Aj

∂t
+ LvA

j

= ∂Aj

∂t
+ vk ∂Aj

∂xk
− ∂vj

∂xm
Am + ∂vi

∂xi
Aj , (16)

where Lv is the Lie derivative along the vector field vi (see Ref. 25 for
a mixed tensor density of arbitrary rank). The first term in the invari-
ant derivative (the partial time derivative) accounts for the changes of the
components as functions of time, and the second term (the Lie derivative)
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represents the changes due to the fact that the coordinate system and the
associated basis are also changing with time (being “convected” with the
velocity field). In abstract vector notations valid in any coordinate system,
one gets

dA

dt
= ∂A

∂t
+ v · ∇A − A · ∇v + (∇ · v)A. (17)

What Oldroyd did, actually amounted to taking the directional deriv-
ative of a contravariant tensor density along the contravariant velocity
vector of the material point at which the constitutive relation was written,
which is a generalization of the advective part of the usual material deriv-
ative. For a pointed exposition of different issues connected with invariant
derivatives, we refer the reader to the recent article(36) and the literature
cited therein.

Following the established terminology,(3) we can call Eq. (17) “the
upper convected” material derivative of vector A. Note that if A was not a
tensor density, but an absolute tensor, then the last term in Eq. (17) would
be absent (see also Ref. 36). As shown in Ref. 29, there is a difference in
the frame indifferent material derivatives of a contravariant and a covari-
ant tensor, and the choice was left open to additional mechanical consid-
erations in the mechanics of viscoelastic liquids.(3)

For the purpose of present work, it suffices to adopt the argument
from Ref. 34, namely, that the electric field behaves as a contravariant ten-
sor density. If so, one has to use Oldroyd’s upper convected derivative. An
interesting point is whether a covariant formulation can be derived. Nat-
urally, in such a derivation the lower convected derivative would appear.
However, as shown later in this work, the upper convected formulation
fits precisely within the model, explaining the continuity equation for the
charge in a moving frame while it can be demonstrated that the lower con-
vected derivative cannot accomplish this result. Hence, in electrodynamics
there is no alternative to the upper convected derivative.

4. MATERIAL INVARIANT MAXWELL-HERTZ
ELECTRODYNAMICS

Guided by the analogy with elastic liquids, we find that the natural
way to formulate electrodynamics in vacuo in a manner invariant under
the changes of material frames, is to replace the partial time derivative of
Maxwell’s displacement current with the full material invariant time deriv-
ative (Oldroyd’s derivative in this case) which secures that it is material



Material Invariant Formulation 1711

frame indifferent. We propose that the Maxwell–Ampere law be re-formu-
lated using the Oldroyd upper convected derivative, dE

dt
, in lieu of the par-

tial time derivative. This means that in the Hertz System, we replace the
Maxwell–Ampere law, Eq. (2), by

∂E

∂t
+ v · ∇E − E · ∇v + (∇ · v)E = c2∇ × B − j

ε0
. (18)

Note, that in Eq. (1), material invariance is ensured by the usual
material derivative, while Eq. (18) involves the Oldroyd upper convected
derivative. A similar situation is observed in viscoelastic fluids, where the
momentum equations involve the usual material derivative, while the rhe-
ology is based on the upper convected derivative. The reason for this
asymmetry is that the magnetic field B can be explained as the curl of the
velocity field of the metacontinuum (aka the vector potential in the Lor-
enz gauge), and hence Faraday’s law is a straightforward corollary of the
momentum equations (Cauchy balance).(6–8)

The formulation proposed here is also instrumental in deriving a
material invariant continuity equation for the charge. To see this we take
the divergence of Eq. (18), and after the cancellation of similar terms (not
possible in the case of lower convected derivative), we get

∇ · [Et + v · ∇E − E · ∇v + (∇ · v)E]

= (∇ · E)t + v · ∇(∇ · E) + ∇v : ∇E − ∇E : ∇v − E · (∇ · v)

+E · (∇ · v) + (∇ · v)(∇ · E)

= (∇ · E)t + v · ∇(∇ · E) + (∇ · v)(∇ · E)

= (∇ · E)t + ∇ · [(∇ · E)(∇ · v)] = ε0
−1 [ρt + ∇ · (ρv)] , (19)

where the last equality is obtained after the expression for charge density,
Eq. (4), is substituted. Consequently, this gives the following equation for
the charge density

∂ρ

∂t
+ ∇ · (j + ρv) = 0, (20)

which is the accepted form of the continuity equation in a moving (labo-
ratory) frame.(15,18) While a naive approach to material invariance would
have been to take just the usual material derivative, in doing so, one would
not obtain the proper equation of conservation of charge. Taking the full
fledged invariant derivative is the only way to make the full system of
electrodynamics material invariant.
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It is clear that without the last term in Eq. (20), one cannot explain
any electromagnetic phenomena in a moving frame and it is already a part
of the model of electrodynamics. The main difference here is that we do
not arbitrarily add the convective term. Rather, it appears as an integral
part of the model, just in the same way as the Lorentz force does.

In closing of this section, we mention that the metacontinuum model
which is valid in any coordinate frame (moving with acceleration, rota-
tion, and even with deformation), is valid also in rigid frames moving
translatory with constant velocity. The material invariance principle entails
as a small corollary the Galilean invariance in inertially moving non-
deformable frames. However, it has always been of interest whether a
model is Galilean invariant or not. Indeed, in a moving frame one can
introduce the new variables x̂ = x − V t, v̂ = v − V , ĵ = j + ρV , ) and
if ∇̂ is the nabla vector, and Ê and B̂ are the electric and magnetic fields
in the new frame, then the governing system has exactly the same form as
Eqs. (1), (18), and (20), namely

∂B̂

∂t
+ v̂ · ∇̂B̂ = ∇̂ × Ê,

∂Ê

∂t
+ v̂ · ∇̂Ê − Ê · ∇̂v̂ + (∇̂ · v̂)Ê = c2∇̂ × B̂ − ĵ

ε0
, (21)

∂ρ

∂t
+ ∇̂ · (ĵ + ρv̂) = 0.

5. DISCUSSION

One of the consequences of Galilean invariance is that the speed of
propagation of small disturbances (speed of light) will be the same in any
inertial frame. Hence, there is no need to postulate the absolutivity of the
speed of light as an additional postulate. Consequently, the material invari-
ant electrodynamics formulated here resembles the modern formulation of
Maxwell’s theory of elastic liquids.

The difference between material invariant and Lorentz invariant elec-
trodynamics must show up in the formula for the Doppler effect. There
is no place in the new formulation for the concept of the relativistic
Doppler effect (whatever this might mean), because the absolutivity of the
speed of light is an inherent feature of the model. Hence, no need for “rel-
ativistic addition” of velocities when considering the propagation of waves.
The scale factors for the relativistic, Rd, and classic, Cd, Doppler effects
can be written as(14)
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Rd =
√

1 + v/c

1 − v/c
, Cd =

√
1 − v2/c2, → Rd = Cd + O(v2/c2). (22)

What kind of Doppler effect is present in Nature (either classic or rel-
ativistic) can be easily found experimentally using interplanetary probes.
This is because their velocity can be inferred from the rate of change of
their spatial position, while, on the other hand, the Doppler shift is inde-
pendently measured. If the wrong formula is used for the Doppler effect,
then discrepancies between the two kind of measurements of the speed of
a craft must arise that are of order of v2/c2 with v being the relative veloc-
ity of the craft with respect to Earth.

The superb measurements performed by Pioneer 10 and 11 space
probes can be used to assess which Doppler effect takes place. As has
been well documented (see Ref. 1 and the works cited therein), there is an
apparent blue shift in the Doppler data when compared with the veloc-
ity as computed from the trajectory. The magnitude of the blue shift is of
order of 10−8 = O(v2/c2). This discrepancy is believed now to have been
caused by some kind of unexplained acceleration toward the sun. This has
been called the “Pioneer anomaly” because no clear cause has yet been
officially accepted explaining this phenomenon. In our opinion, it is pre-
mature to implicate an acceleration, or any other physical effect, for the
discrepancy because in the mentioned works, the relativistic Doppler for-
mula was used. That was also the point of Renshaw(33), who did a com-
parison between the relativistic and classic Doppler effect for this case. He
showed that the expected discrepancy when using the relativistic Doppler
effect in lieu of the classic one is quite close to the reported difference of
approximately −8 × 10−8 cm/s2. However, it is not possible to take this
analysis to a more quantitative level without access to the raw data, and
for this reason it is not done in the present paper. Yet, considering the fact
that the order of magnitude of the anomaly is so close to the difference
between the two Doppler formulas one should not disregard the possibil-
ity that the relativistic Doppler formula is the culprit, thus warranting re-
examination of the data using the classic Doppler formula.

Another strong point in favor of the existence of an absolute mate-
rial continuum is the discovery that there is anisotropy in the Dopp-
ler shift of the cosmic microwave blackbody radiation (CMBR), which
was reported as early as in 1976 in Ref. 11 and confirmed in 1977.(35)

Since then, the anisotropy has been verified many times over (see Ref.
2) and can be regarded as one of the most important scientific discover-
ies of the last quarter of the 20th century. The anisotropy of the Dopp-
ler shift was clearly observed to follow the cosine rule with the axis of
symmetry pointed approximately toward constellation Leo. The velocity
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corresponding to this anisotropy was estimated to be 270±60 km/s in Ref.
11, and at 390 ± 60 km/s in Ref. 35. From the viewpoint of the present
paper, this must be the velocity of Earth with respect to the metacontinu-
um, where the background radiation propagates. In other words, the Earth
moves relative to the metacontinuum which creates the observer’s Doppler
effect, manifested in the above-mentioned anisotropy.

It is easy to understand why the principle of relativity is cor-
rect for point particles (Galileo) and may be incorrect for continua
(Poincare–Einstein), such as the electromagnetic field. A particle (at least
in Galilean–Newtonian physics) does not have structure, while a wave has
spatial structure and the changes in this spatial structure, e.g., Doppler
shift, provide the necessary information about the underlying metacontin-
uum, including information about the state of motion of the laboratory
frame. And this is exactly what happens in CMBR anisotropy.

Additional support for the notion of material invariance can be found
in Ref. 12, where the planetary magnetic fields are explained as a result
of the presence of convective derivatives of the electric field E. This
amounts to the assumption that the Hertzian version of Maxwell’s equa-
tions reflects better the nature in this case than the original (non-invariant)
Maxwell’s system.

The last issue to be addressed is how it is possible that the particles
can move through an absolute continuum without disturbing the latter?
This was the key question whose unsatisfactory answer led to the downfall
of the 19th century aether theories. The way out of this conceptual quag-
mire is to realize the fact that particles are not moving through the meta-
continuum: they are propagating over it. In 1884–1885, Hinton (see, e.g.,
Ref. 17) was the first to suggest that a separate material space adjacent to
our physical space can be assumed as the medium for the propagation of
light. The intended meaning in Ref. 17 was that a point moves on one 3D
hypersurface and the wave propagates on another 3D hypersurface. These
two are embedded in a 4D space and have minute thicknesses which can-
not readily be detected. The two hypersurfaces exchange momentum and
energy because they touch each other tangentially. In a sense, the parti-
cles glide over the surface of the absolute medium without entraining it.
At the same time, they can create wave-like disturbances which propagate
though the adjacent medium and interact with different particles at differ-
ent positions. The concept of minute thickness alongside the fourth dimen-
sion formed the basis of the 5D theories proposed by Kalutza(20) in 1921
and elaborated by Klein,(21) over four decades after the original work of
Hinton.

The proposal of Ref. 17 is not the only way to avoid the “aether drift”
fallacy. There is another possibility that looks much more plausible in the
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light of the recent development in soliton theory (see Refs. 4,28); soli-
tons being shown to behave as particles upon collisions and are, in fact,
called “quasi-particles.” Following this idea, one can consider a particle
as a localized wave of metacontinuum. It goes beyond the scope of pres-
ent paper to present the details of such a concept and this will be done
elsewhere. A preliminary account can be found in Ref. 8. The main point
here is that a soliton/quasi-particle will propagate over the metacontinu-
um in much the same way as a water wave propagates on the surface
without carrying along the molecules of water with it. This concept is
also fully compatible with the concept of wave-particle duality. One can
easily see that a propagating soliton in a material continuum is a phase
pattern that undergoes Lorentz contraction. In a sense, the Lorentz
contraction of quasi-particles is another manifestation of the Doppler
effect.(8) Assuming that the particles are the coarse-grain description of
localized waves of very short length, one arrives at a unified model in
which the Lorentz contraction is mandatory and is a manifestation of the
presence of the metacontinuum, the latter being the progenitor of waves
and particles alike. This concept can also contribute to the resolution of a
long standing paradox pointed out by Einstein,(13) (p. 21), that one cannot
rationally reconcile the absolute speed of light with the apparent relativity
of rectilinear motion. In the light of the proposed here MIP, the speed of
light is a characteristics of the absolute medium, while the speed of rec-
tilinear propagation of a pattern is in fact a phase speed and is by defi-
nition relative. Moreover, the phase speed of a pattern cannot exceed the
characteristic speed of the continuum without the pattern radically meta-
morphosing into a discontinuity (a shock, vortex sheet, etc.)

6. CONCLUSIONS

In the present paper, it is argued that the partial time derivative of the
electric field representing Maxwell’s displacement current can be replaced
by a material invariant time derivative in the same vein as in Ref. 29 refor-
mulation of the constitutive relations for viscoelastic liquids. It is shown
that together with the Faraday’s law in its form augmented by the Lorentz
force, the new formulation is material invariant in vacuo, including the
continuity equation for the conservation of electric charge. As a result, the
electromagnetic field in vacuo can be considered as a material continuum,
even without the presence of gross matter. This led us to propose the
existence of an metacontinuum and of an material invariance principle
(absolutivity principle) for the GI of the latter.



1716 Christov

On the basis of this material reformulation, we reassessed several sig-
nificant outstanding issues in contemporary physics which currently invoke
controversy. We showed that some of the perceived discrepancies encoun-
tered in the explanations can be resolved if the electromagnetic field is
endowed with the ubiquitous properties of a material continuum.
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